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Introduction: Various activities in biological cells are affected by three-
dimensional genome structure. The insulators play an important role in the
organization of higher-order structure. CTCF is a representative of mammalian
insulators, which can produce barriers to prevent the continuous extrusion of
chromatin loop. As a multifunctional protein, CTCF has tens of thousands of
binding sites in the genome, but only a portion of them can be used as anchors of
chromatin loops. It is still unclear how cells select the anchor in the process of
chromatin looping.

Methods: In this paper, a comparative analysis is performed to investigate the
sequence preference and binding strength of anchor and non-anchor CTCF
binding sites. Furthermore, a machine learning model based on the CTCF
binding intensity and DNA sequence is proposed to predict which CTCF sites
can form chromatin loop anchors.

Results: The accuracy of the machine learning model that we constructed for
predicting the anchor of the chromatin loop mediated by CTCF reached 0.8646.
And we find that the formation of loop anchor is mainly influenced by the CTCF
binding strength and binding pattern (which can be interpreted as the binding of
different zinc fingers).

Discussion: In conclusion, our results suggest that The CTCF core motif and it’s
flanking sequence may be responsible for the binding specificity. This work
contributes to understanding the mechanism of loop anchor selection and
provides a reference for the prediction of CTCF-mediated chromatin loops.
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1 Introduction

High-order chromatin structure influences a variety of biological processes in the
nucleus, including gene transcription, gene regulation and DNA replication. The
structure of interphase chromatin has been extensively researched with the development
of various chromatin conformation capture techniques (Fullwood et al., 2009a; Fullwood
et al., 2009b; Lieberman-Aiden et al., 2009; Hsieh et al., 2015), unveiling the functional units.
For example, extensive researches on chromosome compartments (Dixon et al., 2012),
topologically associated domains (TADs) (Rao et al., 2014) and loops (Narendra et al., 2015)
have been carried out. Chromatin loops usually form between the locus that separated by
hundreds of thousands base pairs. These long-range interactions usually form a local
chromatin structure. According to previous studies, the destruction of these loops leads
to a significant imbalance in nearby gene expression (Lupiáñez et al., 2015; Hnisz et al.,
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2016). The binding sites of CTCF (an 11 zinc finger DNA binding
protein) frequently occur on the boundaries of loops and
topologically associated domains, which highlights the
importance of CTCF binding for the loop formation.

In the process of gene expression, the gene regulatory elements
work in order. These regulatory elements can be classified as
promoters, enhancers, insulators, and other regulatory sequences
(West et al., 2002; Kellis et al., 2014). Insulators protect genes in cells
from inappropriate regulatory signals from adjacent chromatin
environments, and play an important role in cell type-specific
gene expression (Liu et al., 2019). CTCF was originally thought
to be an active chromatin-labeled insulator. As an evolutionarily
conserved zinc finger family transcription factor, CTCF was
discovered for the first time in the chicken gene promoter (Bell
and Felsenfeld, 2000). CTCF was found to be related to blocking the
activity of enhancers in the process of transcription (Liu et al., 2021).
Changes in the CTCF protein and its binding sites on insulators are
linked to a variety of human diseases. For example, deletion of CTCF
in the domain may result in an interaction between the enhancer
and a glioma oncogene (Katainen et al., 2015); the binding site of
CTCF is the main mutation hot spot of the non-coding cancer
genome (Ohlsson et al., 2001); zinc finger mutation or abnormal
target selective methylation destroy the spectrum of target specificity
and is related to cancer (Phillips and Corces, 2009).

CTCF was later found to play an important role in chromatin
organization. Paired CTCFs binding act as loop anchors to limit the
interaction between remote regulatory elements (de Wit et al., 2015;
Rowley and Corces, 2018). As a result, how to distinguish the
interacting CTCF pair and the non-interacting CTCF pair is a
critical issue. Many experiments have revealed that the
interaction between CTCF and cohesin is crucial for loop
formation (Wutz et al., 2017). This interaction establishes a
dynamic chromatin loop between remote CTCF binding sites to
drive the formation of TADs. The chromatin loops may form
through the process of loop extrusion (Alipour and Marko, 2012;
Barbieri et al., 2012; Fudenberg et al., 2016; Haarhuis et al., 2017; Rao
et al., 2017; Davidson et al., 2019; Kim et al., 2019). Cohesin can pass
through and extrude DNA to form chromatin loops until it is
blocked by CTCF. In addition, the formation of the loop can also
be realized through other mechanisms (Brackley et al., 2013; Bianco
et al., 2018; Conte et al., 2020). Although the formation mechanism
of the loop has been deeply studied, the ability of the model based on
polymer physics to predict a single CTCF loop has not been
systematically evaluated (Di Pierro et al., 2016; Kai et al., 2018).
The machine learning model named Lollipop uses 77 features of the
genome and epigenome to predict the interaction of CTCF pairs (Lv
et al., 2021). Deep-loop uses only DNA sequences to predict CTCF-
mediated chromatin loops (Xi and Beer, 2021). The loop extrusion
and competition model can predict the specificity of CTCF
interaction through four characteristics. These four characteristics
are chromatin loop competition, CTCF binding site distance, CTCF
motif and CTCF binding intensity. The aforementioned
experiments aim to predict the loops formed between pairs of
CTCF binding sites and require the CTCF ChIP-seq data as
input. In mammalian cells, there are approximately 50,000 CTCF
binding sites, corresponding to more than one million possible
CTCF pairs separated by less than 1 Mb. However, Hi-C or
ChIA-PET measurements revealed that only approximately 2%–

5% of CTCF pairs are directly interacting. This increases the
difficulty of de novo prediction task. We notice that only a
portion of CTCF binding sites are used as loop anchors. Can we
first distinguish the loop anchor and non-anchor to reduce the
search space for loop identification? Motivated by this idea, we
intend to determine if a single CTCF binding site may serve as the
anchor of loop by using sequence and binding intensity features. We
find the binding intensity of CTCF, the core motif and the flanking
sequence of the motif all have an important influence. Previous
models ignore the flanking sequence features of the CTCF motif. In
this paper, we developed support vector machine (SVM) (Guo et al.,
2008; Zhang and Liu, 2017), convolutional neural network (CNN)
(Li and Liu, 2020; Cui et al., 2021), random forest (RF) (Xu et al.,
2019; Dao et al., 2022), linear discriminant analysis (LDA), Naive
Bayes (NB), logistic regression (LR) (Yang et al., 2021) and
stochastic gradient descent (SGD) model to predict the potential
of CTCF binding to form chromatin loop anchors. We considered
the binding intensity of CTCF, the sequence characteristics of the
CTCF core motif and the flanking sequence as input features. These
features performed well in almost all the models, indicating that they
are important for the formation of loop anchors.

2 Materials and methods

2.1 Data source

We download the public ChIP-seq data of CTCF from the
ENCODE database (Ecker et al., 2012). The detection method is
ChIP-seq, the target set is transcription factors, the biological sample
term is GM12878, the reference genome is hg19, and the file type is
bed narrowPeak. We also downloaded ChIA-PET data of CTCF
from ENCODE. The detection method is ChIA-PET, the target set is
transcription factors, the biological sample term is GM12878, the
reference genome is hg19, and the file type is fastq.

2.2 Data processing

The positive and negative set was constructed as follows:
First, ChIA-PET data of CTCF were preprocessed by using ChIA-
PET2 (Li et al., 2017). ChIA-PET2 can significantly improve the
sensitivity and reproducibility of detecting chromatin loops while
maintaining the same false discovery rate. We can calculate the
false discovery rate of each ChIA-PET data by ChIA-PET2. The
false discovery rate refers to the expected value of the proportion
of the number of falsely rejected true assumptions compared to
the number of rejected original assumptions. The false discovery
rate offers several advantages, including flexible adjustment of its
value, clear meaning, and its ability to be used as an evaluation
metric for screened different variables. The ChIA-PET data of
CTCF will give a pair of DNA anchors that can form chromatin
loops. Here, the data with FDR < 0.05 are considered as the
CTCF-mediated chromatin loops. In addition, we focus on
whether single CTCF site can form loop anchor. ChIA-PET
data consists of a combination of two anchors, which can
result in a single anchor corresponding to multiple other
anchors. Therefore, when extracting location data of anchors,
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repeated anchors may be generated. Thus, after removing
duplicate anchors in the data with the cutoff of FDR < 0.05,
we obtained the location data of all CTCF loop anchors in the
GM12878 cell line. Secondly, the ChIP-seq data of CTCF were
used to obtain the location of the core motif with a length of 19 bp
at the corresponding data by storm (Schones et al., 2007). Storm
scans the input sequences and find the fragment with the highest
motif score. Importantly, it also provides the information about
whether sequence fragment occurs on the sense chain or
antisense chain. This data will later be crucial for extracting
sequences of CTCFs in the same binding direction. Finally, The
motif location data were compared with the CTCF loop anchors.
If there is an overlap between them, it is considered that the
binding site of the CTCF can form loop. Then, the position data
of these motifs are taken as the positive set and add the label “1”.
The position data of non-overlapping motifs are taken as the
negative set that cannot form a loop, and the label “0”is added. In
the GM12878 cell line, the number of samples that cannot form
loops is 26,765, the number of samples that can form loops is
22,191, and the total number of samples is 48,956.

The context sequence of CTCF, in addition to its core motif,
is crucial for controlling gene expression. Huang et al. (2021)
used the SOX2 gene reporting system of mouse embryonic stem
cells to study how the context sequence of the CTCF binding site
regulates insulator function. They discovered the following: 1)
The 10–20 bp sequence upstream of the core motif of CTCF
rather than the core motif itself determines whether CTCF can
perform the insulator function 2) The insulating effect depends
on the number of CTCF tandem binding sites. These findings
provide new insights into the classification of CTCF binding
sites. The binding and dissociation of CTCF on the genome is a
dynamic process. The residence time of CTCF is determined by
the binding stability. CTCF has 11 zinc finger structures. The
zinc finger ZF3-ZF7 binds with the core motif, and ZF9-ZF11
binds 10–20 bp upstream of the core motif. The existence of
ZF8 as a linker also plays an important role in promoting the
overall binding stability (Soochit et al., 2021). In the above
experiment, when each flanking sequence of the motif gradually
decreases from 60 bp to 20 bp, the insulation effect does not
decrease significantly, and the strong insulation effect of CTCF
always exists. However, when the flanking sequence of the core
motif gradually decreases to 10 bp, the strong insulation effect
of CTCF is significantly reduced. This demonstrates that the
flanking sequences 10–20 bp from core motif has a significant
effect on the insulation effect. Furthermore, the bases upstream
and downstream of the motif will have a great impact on the
function of CTCF. Therefore, we added 20 bp upstream and
downstream to the CTCF motif and obtained the location data
of the 59 bp sequence. Because the binding of CTCF is
directional, the sequence direction should be taken into
account when extracting sequences. One-hot encoding is
used to make the 59 bp sequence fragment into a matrix
consisting of 0 and 1, where base A corresponds to (1,0,0,0),
base T corresponds to (0,1,0,0), and bases C and G correspond
to (0,0,1,0) and (0,0,0,1), respectively. Then, a 48,956 × 236 one-
hot matrix is obtained.

The binding intensity of CTCF can affect the movement of
cohesin, thereby affecting the formation of the loops. The

narrowPeak ChIP-seq data gives the CTCF binding intensity
at the corresponding position. There is a large variation among
the CTCF binding intensity values. It will greatly affect the
training of the model. Due to the unique characteristics of each
assessment index, a multi-index evaluation system typically has
different dimensions and orders of magnitude. If the original
indicator values are used for analysis when there is significant
variation between the indicators, the importance of the
indicators with higher values will be accentuated, while the
significance of the indicators with lower values will be
substantially diminished. Therefore, data normalization is
required for the CTCF binding intensity to reduce the impact
of the large variation in the training model. Here, we took the
logarithm base two of the CTCF binding intensity value
to narrow the gap between the value of CTCF binding
intensity with the sequence data. Finally, the normalized
value of the CTCF binding intensity and one-hot matrix were
merged to construct the feature matrix (Supplementary
Material).

2.3 Summary of the machine learning model

The basic motivation of the support vector machine (SVM) is to
find a decision hyper plane to maximize the interval between the two
types of data, construct an objective function according to the
maximum interval, and then transform it into its dual problem
for solution. For non-linear problems, first use a transformation z =
φ (x) to map x to a new feature space z, then transform it into the
dual problem of support vector machine, and we use radial basis
functions as kernel functions.

The random forest (RF) algorithm is an ensemble algorithm
composed of multiple decision tree classifiers, with each
subclassifier being a CART classification regression tree.
Therefore, random forest can perform both classification and
regression. The risk of overfitting can be reduced by averaging the
decision trees.

Convolutional Neural Network (CNN) is a specialized type of
artificial neural network commonly used in deep learning for
analyzing visual imagery. It is designed to automatically and
adaptively learn spatial hierarchies of features from input images
or other two-dimensional data, such as audio spectrograms. CNNs
are composed of multiple convolutional layers that apply
mathematical operations called convolution to the input data,
followed by pooling layers that reduce the dimensionality of the
output from the convolutional layers. The output of the pooling
layers is then fed into fully connected layers, which perform the final
classification or regression of the input data.

We also use other machine learning models to train on the same
dataset, including the linear discriminant analysis (LDA), Naive
Bayes (NB): The Naive Bayes method is a classification technique
that is based on Bayes’ theorem and the assumption of
independently occurring features, logistic regression (LR): logistic
regression is a generalized linear regression that utilizes logistic
functions, and stochastic gradient descent (SGD): stochastic
gradient descent is an iterative optimization algorithm used to
update a model’s parameters based on the steepest descent
direction of the loss function.
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2.4 Performance assessment

We have employed several machine learning models to train on
the same dataset, including linear discriminant analysis (LDA),
support vector machines, Random Forest (RF)), logistic
regression (LR), stochastic gradient descent (SGD), Naive Bayes

(NB) models, convolutional neural networks (CNN), support vector
machine models (SVM). We then compared the results of each
model.

To evaluate the prediction performance of the model,
Accuracy (Acc), Precision (Pre), F1-score (F1), Area Under
ROC Curve (AUROC), Area Under PRC Curve (AUPRC),

FIGURE 1
Flow chart for CTCF loop anchor prediction.
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Specificity (Sp), Sensitivity (Sn) and Matthews correlation
coefficient (MCC) are used as evaluation indicators (Zhang
Q. et al., 2022; Zhang Z. Y. et al., 2022; Han et al., 2022;
Yang et al., 2022). TP (True Positive): successful prediction
of positive samples as positive. FP (False-Positive): incorrectly
predicts negative samples to be positive. TN and FN correspond
to the value of the negative set.

The ratio of correctly classified positive samples in the total
number of positive samples:

Sn � TP

TP + FN
(1)

The ratio of correctly classified negative samples in the total
number of negative samples:

Sp � TN

TN + FP
(2)

MCC, which has a value range of [- 1,1], is simply a
correlation coefficient that describes the relationship between
actual classification and prediction classification. A score of
1 denotes the subject’s perfect prediction, a value of 0 denotes
that the prediction result is less accurate than a random
prediction, and a value of −1 denotes that there is no
consistency between the predicted classification and the
actual classification:

MCC � TP × TN − FP × FN
�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (3)

The ratio of the sample size of correctly classified positive
samples to the total number of samples predicted by the model
as positive samples:

Pr ecision � TP

TP + FP
(4)

The F1 score is the harmonic average of precision and recall:

F1 � 2 ×
Pr ecision × Recall
Pr ecision + Recall

(5)

3 Results

3.1 Overview of CTCF loop anchor
prediction

In order to predict the CTCF loop anchor, we propose a
computational framework (Figure 1). The framework includes
dataset construction, feature extraction, and machine learning
algorithm selection. We first establish the precise location of the
CTCF binding sites based on ChIP-seq data and motif scanning.
The positive and negative sets are then generated based on
ChIA-PET data. The feature matrix is constructed by extracting
sequence of the core motif, flanking sequence, and CTCF
binding strength. The machine learning methods are
implemented on the feature matrix to distinguish the loop
anchor and non-anchor. More details of the framework are
discussed in the Materials and methods section.

3.2 Comparison of prediction performance

We trained these machine learning models by using tenfold
cross-validation, and then tested the prediction performance on a
separated independent testing set. The training dataset is randomly
divided into K subgroups of the same size for the K-fold cross
validation test. The remaining K-1 folds are utilized as the training
dataset for the machine learning model, while one fold is used as the
validation dataset. Each fold serves as the validation dataset once this
procedure has been repeated K times. One-10th of the dataset is used
as an independent testing set, and the rest is considered as a training
set. The training set was used to perform ten-fold cross-validation
and train the model, and then the model’s performance is verified on
the test set. We compared the predictive performance of seven
machine learning models on independent test sets by evaluating Sn,
Sp, Pre, Acc, MCC, F1, AUROC, and AUPRC (Figure 2). Except for
the Naive Bayes model, the accuracy rates of the other models are
greater than 0.85, with the support vector machine model having the
highest accuracy rate of 0.8646. As shown in Figure 3, the AUROC
and AUPRC values of the other models (in addition to the naive
bayes model) are around 0.92, and they perform well in terms of the
remaining F1 score, precision, and other evaluation criteria. This
demonstrates that the three types of features we selected have a good
predictive effect across a variety of different machine learning
models. The good performance of the selected features indicates
they have an important influence on the process of CTCF binding to
form chromatin loops.

3.3 Importance of features

We found no significant difference in the prediction results
obtained from the SVM, SGD, RF, LR, LDA, and CNN models. So
we selected the SVM model, which had a slight advantage in results,
and used different features and feature combinations for prediction.
To assess the contribution of various features or feature
combinations to the prediction, we used the core motif, flanking
sequence, and their combination with CTCF binding intensity as the
features to perform prediction (Table 1). We have discovered that
CTCF binding intensity alone has good predictive performance,
indicating its important role in the loop formation process.
Although the flanking sequence has slightly lower prediction
accuracy compared to the core motif, the combinations of the
flanking sequence and CTCF binding intensity yields a
marginally better outcome than the combination of core motif
and binding intensity. This demonstrates that the CTCF binding
intensity and core motif features are somewhat redundant. Adding
the flanking sequence feature to the model can increase prediction
accuracy.

We next try to find the key sites that play an important role in
the classification. We calculated the information content of each
site by using weblogo (Crooks et al., 2004). From Figure 4, we can
see that in the flanking sequence of the core motif, there are
obvious differences between the positive set and negative set of
sequence data, which is consistent with previous views (Huang
et al., 2021; Soochit et al., 2021). The flanking sequence also plays
an important role in the process of CTCF binding, and it will
affect whether CTCF can be used as the loop anchor. Comparing
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the information content shows that positive sets prefer certain
flanking sequence sites: 7–9, 12, 14, and 42–48. This further
reveals that the flanking sequence feature can effectively
distinguish chromatin loop anchor.

In order to determine the importance of each feature more
precisely, we performed feature selection, sometimes referred to as
feature subset selection (FSS). It alludes to the process of choosing N
characteristics from the already-existing M features to optimize the

FIGURE 2
Comparison of evaluation criteria between support vector machine and other machine learning models (A–H) are as follows: Acc, AUROC, AUPRC,
F1, MCC, Pre, Sn, Sp.
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system’s particular indicators. To decrease the dimension of the dataset
and enhance the efficiency of the learning algorithm, it is necessary to
choose some of the most useful characteristics from the original
features. The generating process, evaluation function, stop criteria,
and verification procedure are the four main components of the
feature selection process. We selected the top 20 features in order of
importance, and the most important feature was the value of the CTCF
binding intensity corresponding to the sequence. We ranked the
significance of the features and find that the flanking sequence sites
12, 45, 46 and 47 significantly contribute to classification. The sites 45 to
47 correspond to CTCF zinc fingers 1 to 3. Based on the analysis

FIGURE 3
ROC and PRC curves of support vector machine model. (A). The PRC curve of support vector machine model. (B). The ROC curve of support vector
machine model.

TABLE 1 Prediction performance of different feature and combinations of
features by SVM model.

Acc AUROC AUPRC

Core motif 0.6945 0.7491 0.7184

Flanking sequence 0.6467 0.6855 0.6422

CTCF binding intensity 0.8375 0.8954 0.8916

Core motif and CTCF binding intensity 0.8458 0.9118 0.9061

Flanking sequence and CTCF binding intensity 0.8599 0.9225 0.9226

FIGURE 4
Sequence alignment of positive and negative sets. (A). The negative set. (B). The positive set.
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combined with Figure 4, there were significant sequence differences
observed between the positive and negative sets at the flanking sites
12–17. These sites corresponded to the binding region of zinc finger
8–11 of CTCF. There are 11 zinc fingers in CTCF, and not all of them
bind to DNA at the same time. According to the research of Soochit
et al. (2021), the removal of zinc finger 8 results in a decrease of
chromatin residence time. Our result also suggests that the flanking
sequence may influence the residence time of CTCF on DNA.
Additionally, we compared the CTCF binding intensity and motif
matching score for positive and negative sets The CTCF binding
intensity of the positive set was mostly greater than that of the
negative set (Figure 5A). The same is true for the CTCF motif
matching score calculated by storm (Figure 5B). The motif matching
score is a method used to measure the similarity between a query motif
and a target motif. The positive set had a higher matching score,
suggesting that the binding of CTCF would be more stable. The results
support that the stronger the binding intensity, the more it can prevent
the movement of cohesin and thus form loops. Therefore, the CTCF
binding intensity is indeed an important feature to reflect whether
CTCF can be used as the anchor for forming loops.

From the research results, it can be concluded that the most
important factor affecting the formation of loop anchor is the CTCF
binding intensity. The sequence preference of flanking sequence and
the motif matching score are consistent with the different
distributions of CTCF binding strength in the positive and
negative sets. A more suitable sequence context is favorable to
the stable binding of CTCF and makes it simpler to prevent the
sliding of cohesin and thus form a loop anchor. The statistical
analysis of these three characteristics revealed that CTCF binding
strength, core motif, and flanking sequence are the most important
factors in predicting loop anchor.

4 Discussion

As an important transcriptional regulation mechanism in
organisms, the process of chromatin looping has been widely
studied. Previous studies have shown that this process can be

interpreted by the loop extrusion model (Xi and Beer, 2021). The
details of mechanism are gradually dissected. For instance, the
recent study demonstrates that the flanking sequence of CTCF
motif have a major impact on the TAD border formation (Huang
et al., 2021). Motivated by the experimental results and our
statistical analysis, we try to answer which CTCF binding sites
may form loop anchors. Our analyses indicate that the CTCF
binding intensity, the core motif sequence and the flanking
sequence have a certain difference between CTCF loop anchors
and non-anchors. Using these features, we employed machine
learning models to predict CTCF loop anchors. We conducted
ten-fold cross-validation and independent testing, both of which
demonstrated the ability of these characteristics to produce
accurate prediction results, The statistical analysis showed a
significant difference in CTCF binding strength between the
positive and negative sets, as well as in the motif matching
score. These results indicate that CTCF binding strength can be
used as a classification feature. Moreover, this difference may be
influenced by the motif and flanker sequences, highlighting their
importance as features for predicting CTCF loop anchors.
Specifically, based on feature importance ranking, we have
identified the flanking sequence sites 12 and 45 to 47, which are
likely bound by CTCF ZF8 and ZF1-3, make a significant
contribution. This is consistent with other study (Soochit et al.,
2021) that the upstream and downstream motifs determine the
stability of CTCF binding to DNA. In conclusion, our results
suggest that a better sequence context is favorable to the stable
binding of CTCF and makes it easier to block loop extrusion by
cohesin. Our study provides new insights into the functional
classification of CTCF and might even be helpful for the
prediction of CTCF-mediated chromatin loops.

Data availability statement
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the article/Supplementary Material, further inquiries can be directed
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FIGURE 5
(A). CTCF binding intensity of positive and negative sets. (B). CTCF motif matching score of positive and negative sets, where the p-value is given by
t-test.
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