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Fluvalinate is widely used in apiculture as an acaricide for removing Varroa mites,
but there have been growing concerns about the negative effects of fluvalinate on
honeybees in recent years. Previous research revealed changes in the miRNA and
mRNA expression profiles of Apis mellifera ligustica brain tissues during fluvalinate
exposure, as well as key genes and pathways. The role of circRNAs in this process,
however, is unknown. The goal of this study was to discover the fluvalinate-
induced changes in circular RNA (circRNA) expression profiles of brain tissue of A.
mellifera ligusticaworkers. A total of 10,780 circRNAs were detected in A. mellifera
ligustica brain tissue, of which eight were differentially expressed between at least
two of the four time periods before and after fluvalinate administration, and six
circRNAs were experimentally verified to be structurally correct, and their
expression patterns were consistent with transcriptome sequencing results.
Furthermore, ceRNA analysis revealed that five differentially expressed
circRNAs (DECs) (novel_circ_012139, novel_circ_011690, novel_circ_002628,
novel_circ_004765, and novel_circ_010008) were primarily involved in
apoptosis-related functions by competitive binding with miRNAs. This study
discovered changes in the circRNA expression profile of A. mellifera ligustica
brain tissue caused by fluvalinate exposure, and it provides a useful reference for
the biological function study of circRNAs in A. mellifera ligustica.
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1 Introduction

Apis mellifera ligustica is a high-value insect species that performs plant pollination in
agricultural production (Aizen and Harder, 2009; Beck et al., 2015; Andonov et al., 2019) and
produces high-value byproducts such as honey and royal jelly (Berry et al., 2013). The most
common bee parasite is Varroa destructor, which is especially harmful to A. mellifera
ligustica (Burley et al., 2008).

Fluvalinate is a pyrethroid acaricide that is commonly used to kill V. destructor (Camp
et al., 2010). Fluvalinate can kill V. destructor by affecting the nervous system’s voltage-gated
sodium channels, causing overexcited nerves and paralysis (Chao et al., 2022a). Fluvalinate,
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on the other hand, is toxic to A. mellifera ligustica (Chen et al., 2020;
Chao et al., 2022b). Several studies have reported negative effects of
fluvalinate exposure on A. mellifera ligustica, with the results
indicating that A. mellifera ligustica’s sensory and memory
systems may be impaired (Choi et al., 2006; Davies et al., 2007;
Du et al., 2017; Ding et al., 2022). Our previous research has revealed
changes in protein-coding gene and miRNA expression profile of A.
mellifera ligustica brains caused by fluvalinate exposure, and some
differentially expressed genes and miRNAs related to apoptosis,
visual function, and neural response have been identified (Fischer
and Raabe, 2018; El Agrebi et al., 2019). In our two previous studies,
the phototransduction pathway was the primary pathway for
significant enrichment, which may indicate that the toxicological
mechanism of fluvalinate is associated with visual impairment. We
also predicted that key genes and miRNAs including LOC412299,
LOC411188, and ame-miR-3477-5p may be involved in fluvalinate
resistance (Fischer and Raabe, 2018; El Agrebi et al., 2019). However,
at present, the expression profile changes and functions of circRNA
during fluvalinate exposure are still unclear.

Circular RNAs are naturally occurring RNAs found in
eukaryotic transcriptomes (Frost et al., 2013). CircRNAs have
been shown to have a “sponge” function for miRNAs (Glažar
et al., 2014; Gan et al., 2017), and this mechanism can also be
used to indirectly regulate mRNA expression (Gujar et al., 2019).
Several studies have demonstrated the expression of circRNAs in
multiple species of honeybees (Gujar et al., 2019; Han et al., 2021),
with reports on the involvement of circRNAs in the regulation of A.
mellifera ligustica brain functions related to foraging and nursing
functions (Han et al., 2021). Currently, to the best of our knowledge,
there have been no reports on the function of circRNAs in the
fluvalinate exposure process.

In this study, we combined transcriptome sequencing data from
previous studies to detect and analyze the changes in the circRNA
expression profile of A. mellifera ligustica brain tissue before and
after fluvalinate treatment, and we built a competing endogenous
RNA (ceRNA) network by integrating the differentially expressed
circRNA with miRNA and mRNA for a more in-depth analysis of
circRNA function.

2 Materials and methods

2.1 Ethics statement

All animal protocols used in this study were approved by the
Animal Protection and Ethics Committee of Shandong Agricultural
University (protocol number: SDAUA-2018-055).

2.2 Sample collection, total RNA extraction,
and cDNA synthesis

This study followed the same overall strategy, sample collection,
total RNA extraction, and cDNA synthesis as our prior
investigations (Fischer and Raabe, 2018; El Agrebi et al., 2019).
Six A. mellifera ligustica colonies were obtained from the Fuxin
Apiary in Tai’an City, Shandong Province, China. All colonies had
the same potential and were randomly divided into two groups

(three colonies as the test group and three colonies as the control
group). The test colonies were administered with a standard dose of
fluvalinate. The sample honeybees were obtained 1 day before
fluvalinate treatment began and 10 days, 20 days, and 30 days
later, with 20 adult worker bees gathered from each colony for
each sampling. Afterward, honeybee brains were dissected under a
microscope, and bee brains from the same colony were pooled for
total RNA extraction and cDNA synthesis. Total RNA was isolated
from A. mellifera ligustica brain tissue samples according to the
manufacturer’s instructions using TRIzol reagent (Invitrogen,
Carlsbad, CA, United States). The quantity and quality of RNA
were determined using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, United States) and sequenced using
the Illumina HiSeq TM 4000 system’s standard protocol.

2.3 Sequencing data filtering and alignment
analysis

The transcriptome sequencing data used in this study were
identical to those used in our prior work, as were the quality
control data (Fischer and Raabe, 2018; El Agrebi et al., 2019).
Bowtie2 (version 2.3.5.1) (Hansen et al., 2013) was used to align
and exclude ribosomal reads, and TopHat2 (version 2.0.3.12) (He
et al., 2017) was used to align the remaining reads to the honeybee
reference genome GCF-003254395.2. Then, to obtain anchor reads,
we extracted unmapped reads and intercepted both ends of
unmapped reads (default 20 bp). The anchor reads were matched
once again with the reference genome GCF-003254395.2, and the
alignments were concatenated for circRNA identification.

2.4 Identification of differentially expressed
circRNAs

circRNA identification was performed using find_circ (Hung
et al., 2018). The identified circRNAs were aligned to the circBase
(Johnson, 2015) database using BLAST, and circRNAs with the
threshold of E < e−10 were identified as highly credible annotated
circRNAs, otherwise new predicted circRNAs (novel_circRNAs).
DESeq2 (Kanehisa and Goto, 2000) was used to detect DECs with an
FDR of 0.05 and |log2(FC)| > 1.

2.5 Circular structure verification and qRT-
PCR verification of differentially expressed
circRNAs

cDNA was synthesized using the Evo M-MLV Plus cDNA
synthesis kit. All the eight DECs were selected for junction
region and qRT-PCR verification with their sequence-specific
primers (Table 1). The qRT-PCR was performed using the
SYBR® Green Pro Taq HS Master Mix qPCR Kit II (Accurate
Biology). qPCR reactions were performed in two steps on the
Bio-Rad CFX96 Real-Time Detection System (Bio-Rad
Laboratories, Inc., United States): 95°C for 30 s; 95°C for 5 s, and
60°C for 30 s, 40 cycles; and adding a dissolution curve of 95°C for
1 min, 62°C for 30 s, and 95°C for 30 s. The 2−ΔΔCT method was used
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to calculate the relative expression levels of circRNAs. A. mellifera
ligustica AmAct (Kim et al., 2013) was used as a control. Three
biological replicates were used for each group of samples, and each
biological replicate was tested with three technical replicates.

2.6 Co-expression analysis between mRNAs
and DECs

Pearson’s correlation analysis was performed on differentially
expressed circRNAs and differentially expressed mRNAs (with |r| >
0.7 and significant p < 0.05 as thresholds). The expression profiles of
differentially expressed mRNAs were obtained from our previous
research (Fischer and Raabe, 2018). A hierarchical clustering was
performed with the correlation r-values using MultiExperiment
Viewer (MeV) (Kozomara et al., 2019). GO and KEGG (Krüger
and Rehmsmeier, 2006) enrichment analyses were performed on
mRNAs associated with differentially expressed circRNAs using
clusterProfiler (Langmead and Salzberg, 2012), and
FDR <0.05 was used as a significant threshold.

2.7 Construction and analysis of the ceRNA
network

The potential targeting relationships of miRNA–mRNA and
miRNA–circRNA were predicted using RNAhybrid (version 2.1.2)

(Lee et al., 2013),Miranda (version 3.3a), and TargetScan (version 7.0)
(Lewis et al., 2005; Love et al., 2014), and the intersection of the three
software results was taken as a trusted targeting relationship. We also
performed Pearson’s correlation analysis between miRNAs and
mRNAs with |r| > 0.7 and p < 0.05 as thresholds. Finally, the
intersection of correlation analysis and targeting relationship
results was considered potential regulatory relationships and was
used for the construction of the ceRNA network using Cytoscape
(version 3.8.0) (Marco and Griffiths-Jones, 2012).

3 Results

3.1 Data quality control

Similar to our previous research, 956,250,750 clean reads were
obtained from the brain tissue transcriptome sequencing of A.
mellifera ligustica after treatment with fluvalinate (Fischer and
Raabe, 2018).

The high-quality clean reads were aligned to the ribosome
database, and 719,788,610 ribosome unaligned reads were
obtained. The ribosome unaligned reads were then mapped with
the A. mellifera ligustica reference genome GCF-003254395.2, and
65,829,717 unmapped reads were used for anchor read construction.
The anchor reads were compared to the genome GCF-
003254395.2 again, and a total of 63,050,916 mapped anchor
reads were obtained for further circRNA identification.

TABLE 1 Primer information for circRNA loop junction site verification and qRT-PCR testing.

Primer Primer sequence (5′–3′) Product length (nt) Melting temperature (Tm) (°C)

novel_circ_011690-F TAGCGAGCACAGGAGGTAGCA 120 60

novel_circ_011690-R CCGCAAGTGGAGCATTTGAAACA

novel_circ_002628-F GGAGAAGGCTGACGAGGAAGT 84 60

novel_circ_002628-R TTCACGTTCAGGCTCGACAAC

novel_circ_010008-F GCTTGCTACATCCTGATTACACCT 176 60

novel_circ_010008-R TTGACCAGATTCATAGACCCGAAA

novel_circ_000054-F TCGCTTGCTACATCCTGATTACAC 176 60

novel_circ_000054-R CCAATAACGCTGGGACTAGAATGA

novel_circ_004765-F TGCGATTCAATCTGGCGAATATGA 156 60

novel_circ_004765-R AGAAGTCGTCCACCCTTACCA

novel_circ_012139-F GTTGCCGTAAATGCCACTACA 154 60

novel_circ_012139-R GATGGAAGGAATCGTCGGAATT

novel_circ_006817-F AAGACCACCTGGCTCTAGTACA 131 60

novel_circ_006817-R CTGTGCTACCTGAACTGGATTGT

novel_circ_004398-F AGTAGCACAGAACAACCAGGTAGT 134 60

novel_circ_004398-R GACGTGGACGGTGTACTTGAAC

AmAct_F TGCCAACACTGTCCTTTCTG 156 60

AmAct_R AGAATTGACCCACCAATCCA
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FIGURE 1
Clustering heatmap and expression pattern of differentially expressed circRNAs. (A) The clustering heatmap of the differentially expressed circRNAs
shows that each column represents a sample, and each row represents a differentially expressed circRNA. The z-score is used to normalize the
expression level of genes. Red represents higher expression, and blue represents lower expression. (B) C1 circRNA expression pattern, including novel_
circ_002628, novel_circ_000054, and novel_circ_010008. (C) C2 circRNA expression pattern, including novel_circ_006817 and novel_circ_
012139. (D) C3 circRNA expression pattern, including novel_circ_004765, novel_circ_004398, and novel_circ_011690.

FIGURE 2
Structural verification and real-time quantitative PCR verification of DEC sequence and expression patterns. (A) Sequencing peak map of DECs at
loop junction location; the position is marked by the red rectangle, and arrow is the loop junction. (B) Transcriptome expression value of six DECs. (C)
qRT-PCR expression value of six DECs. CircRNAs received structural and significant differences which are indicated by different symbols with
FDR <0.05 in RNA-Seq results and p < 0.05 in qRT-PCR results.
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3.2 CircRNA identification

A total of 10,780 newly discovered circRNAs were identified, of
which 10,764 circRNAs were annotated on 16 known chromosomes
in the A. mellifera ligustica genome and 16 circRNAs were annotated
to unknown chromosomal locations. It was found that 7,192 (66.72%)
circRNAs were composed entirely of annotated exons, 424 (3.93%)
circRNAs were composed of introns, 1,262 (11.71%) circRNAs were
composed of both exons and introns, 371,287 (2.66%) circRNAs were
located in intergenic regions, 1,243 (11.53%) circRNAs were
composed of single exons, and only one circRNA (novel_circ_
004083) belonged to chromosome type unknown.

The expression values of circRNAs were normalized as reads per
million mapped reads (RPM).

3.3 Identification of DECs

With an expression fold change >2 and FDR <0.05 as the cutoff
value, eight DECs were identified. The results of cluster analysis showed
that the expression patterns of DECs could be divided into three
categories (Figure 1A): the first category (C1) had three DECs
(novel_circ_002628, novel_circ_000054, and novel_circ_010008), the
second had two DECs (novel_circ_006817 and novel_circ_012139),
and the third had three DECs (novel_circ_004765, novel_circ_
004398, and novel_circ_011690). C1 DEC expression decreased
immediately after fluvalinate administration and then gradually
increased with the passage of time (Figure 1B). C2 DEC expression
showed the highest expression value at 20 days after fluvalinate
treatment (Figure 1C). C3 DEC expression increased immediately
after fluvalinate administration and then gradually decreased to the
pre-dose level (Figure 1D).

3.4 Structural verification and real-time
quantitative PCR verification of DEC
sequence and expression patterns

Of the eight DECs, the circular structure and sequence of six DECs
were successfully verified (Figure 2A). Furthermore, qRT-PCR results
proved that the expression patterns of all six DECs were basically
consistent with the transcriptome sequencing results (Figures 2B, C).

3.5 Construction of the ceRNA network

After taking the intersection of the results of the co-expressed
gene–circRNA relationship, miRNA–circRNA targeting relationship,
miRNA–mRNA targeting relationship, and miRNA–mRNA
expression correlation relationship, a ceRNA network of five
circRNAs, 41 genes, and 18 miRNAs was constructed (Figure 3).

To confirm the function of fiveDECs in the network, we performed
GO enrichment on genes regulated by each DEC through the ceRNA
mechanism (Table 2). The GO enrichment results showed that novel_
circ_002628 may be involved in apoptosis and nucleic acid binding-
related regulation, and novel_circ_012139 may have the function of
regulating ion transmembrane transport. Other circRNAs failed to
obtain significant enrichment results.

To further identify the biological pathways and processes that
circRNAs are involved in regulating through the ceRNA
mechanism, we also performed KEGG pathway analysis. Of the
five DECs, four received significantly enriched pathways, except for
novel_circ_010008 (Table 2). Among them, both novel_circ_
002628 and novel_circ_012139 regulate LOC100576819 by
adsorbing ame-miR-6001-3p, while the gene LOC100576819 was
significantly enriched in the apoptosis pathway. novel_circ_
011690 regulates LOC411481 by adsorbing ame-miR-92c-5p,
while LOC411481 is significantly enriched in the mTOR
signaling pathway. novel_circ_004765 received the most
significantly enriched pathways and genes. It regulates five
protein-coding genes by adsorbing ame-miR-3477-5p, ame-miR-
932-5p, ame-miR-6001-3p, and ame-miR-3477-5p.

4 Discussion

To construct the ceRNA network, miRNA–circRNA and
miRNA–mRNA targeting sites were predicted in this study. From
the circRNA–miRNA interactions, we found that various circRNAs
interact with different miRNAs. Among them, several circRNAs can
bind to multiple miRNAs with different target sites. For example,
novel_circ_004765 contains 17 potential binding sites for miRNAs,
which may indicate its powerful function as a miRNA sponge. To
ensure the sequence accuracy of circRNAs, we performed structural
verification of link sites for all differential circRNAs. However, it should
be noted that among the six differential circRNAs that were validated,
the sequencing electropherogram of novel_circ_012139 always
presented an excessive background that may lead to erroneous results.

To explore the functions of DECs, each circRNA in the ceRNA
network was subjected to functional enrichment analysis with its
related genes. The GO enrichment results showed that the predicted
genes regulated by differentially expressed circRNAs are mainly
enriched in cell death and ion transmembrane transport-related
terms. In addition, the KEGG pathway analysis results showed that
apoptosis, Hedgehog signaling pathway-fly, Wnt signaling pathway,
and mTOR signaling pathway received significant enrichment.

For novel_circ_002628 and novel_circ_012139,
LOC100576819 was the only gene affected by their ceRNA
regulation and obtained significant enrichment in the KEGG
pathway analysis. In addition, LOC100576819 was also predicted to
be regulated by novel_circ_004765. Encoding a homologous protein to
that of Drosophila caspase protein (DRONC), the function of
LOC100576819 in A. mellifera ligustica has not been reported yet.
InDrosophila, DRONC has been confirmed as a major initiator caspase
for the programmed cell death of peptidergic neurons (Memczak et al.,
2013; Qi et al., 2020) and demonstrates important functions in optic
lobe development. Our previous research has proved that the expression
level of LOC100576819 in the brain tissue of A. mellifera ligustica
increased after the administration of fluvalinate and gradually decreased
to the pre-dose level in the following time stages (Fischer and Raabe,
2018). During the ceRNA network, ame-miR-6001-3p was the only
miRNA in the ceRNA network, and ame-miR-6001-3p targets novel_
circ_002628, novel_circ_012139, and novel_circ_004765 at the same
time and is also the only miRNA predicted to target LOC100576819,
which may therefore play an important role in this mediating process.
However, the detailed functions of miR-6001-3p are still unknown,
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while the only report of miR-6001 on animals is seen in a study where it
was discovered as a newly identified miRNA (Rinderer et al., 1999).
Furthermore, although predicted to be regulated by the ceRNA
machinery of multiple circRNAs simultaneously, only
LOC100576819 showed a similar expression pattern to novel_circ_
004765. A possible inference is that novel_circ_004765, as the main
ceRNA, regulates the expression of LOC100576819 by competitively
adsorbing ame-miR-6001-3p, thereby activating the apoptotic signaling
pathway and positive regulation of cell death, but there may be more
complex mechanisms affecting the expression of LOC100576819.
Overall, the aforementioned results and speculation are subjected to
further experimental verification.

In this study, novel_circ_004765 gained the most predicted
ceRNA mechanism-regulated genes, targeted miRNAs, and
significantly enriched KEGG pathways. Our results showed that
novel_circ_004765 may affect the apoptosis pathway by regulating
LOC100576819 and LOC408533. The function of gene
LOC408533 in A. mellifera ligustica remains unknown.
LOC408533 encodes the homologous protein of ASK1 in
Drosophila, which is orthologous to several human genes,
including MAP3K15 and MAP3K5 (Saeed et al., 2003). In
Drosophila, ASK1 has already been reported as a core kinase
component of the insulin/insulin-like growth factor pathway, and
it also acts as a highly sensitive sensor to activate the JNK and

FIGURE 3
ceRNA network constructed by DECs, predicted miRNAs that can be adsorbed by DECs, and predicted targeting genes of miRNAs. The red square
nodes represent circRNAs, the purple arrow nodes represent miRNAs, and the blue diamond nodes represent genes.

TABLE 2 Significantly enriched GO terms and KEGG pathways of genes regulated by five differentially expressed circRNAs through the ceRNA mechanism.

circRNA GO term (TOP5) KEGG pathway (TOP5)

novel_circ_002628 Cell death, programmed cell death, death, regulatory region DNA binding, and regulatory
region nucleic acid binding

Apoptosis-multiple species and apoptosis-fly

novel_circ_012139 Regulation of transmembrane transport, regulation of ion transmembrane transport,
regulation of ion transport, regulation of localization, and regulation of transport

Apoptosis-multiple species

novel_circ_010008 No significant enrichment items No significant enrichment pathways

novel_circ_004765 No significant enrichment items Hedgehog signaling pathway-fly, apoptosis - fly, andWnt
signaling pathway

novel_circ_011690 No significant enrichment items mTOR signaling pathway
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p38 signaling pathways when cells are damaged (Santabárbara-Ruiz
et al., 2019). In Caenorhabditis elegans, ASK1 plays an important
role in the Sarm1/TIR-1-ASK1/NSY-1-p38 MAPK pathway, which
is closely related to the process of inhibition of axonal degeneration
activated by CaMKII/UNC-43 (Shannon et al., 2003). In our
previous research, CaMKII has been identified as a key gene in
the post-transcriptional regulation after fluvalinate administration
(Fischer and Raabe, 2018). Therefore, novel_circ_004765 may
regulate the expression of LOC408533 (ASK1) gene by
competitive adsorption of ame-miR-932-5p, realize the regulation
of JNK, p38, and MAPK signaling pathways, and play an important
role in the resistance to fluvalinate-induced injury and stress.

Our results also predicted that novel_circ_004765 can regulate
genes in the Hedgehog signaling pathway (LOC410129 and
LOC409942) and Wnt signaling pathway (LOC410129 and
LOC409910) through the ceRNA mechanism. Casein kinase 1
(CK1) and Brother of Ihog (Boi) homologs are encoded by
LOC410129 and LOC409942, respectively. CK1 regulates Hh
signaling at multiple levels in the Hedgehog (Hh) pathway and is
essential for neural function maintenance (Shi et al., 2014; Simon
et al., 2021). Boi is part of the Ptc-co-receptor complex for Hh
signaling (Tangredi et al., 2012). Its mutations have effects on eye
development, neural differentiation, and wing patterning (Thölken
et al., 2019). Gene LOC409910 encodes the ras-like GTP-binding
protein Rho1 (Rho1), which participates in the axon regeneration of
C. elegans and the Drosophila blood–brain barrier formation
(Turner, 1985). Interestingly, novel_circ_004765 was predicted to
regulate all three genes (LOC410129, LOC409942, and LOC409910)
by adsorbing ame-miR-3477-5p. miR-3477 has only been found in
three species, including honeybees, jewel wasps, and red flour
beetles, and its function is unknown (Van Alphen and Fernhout,
2020). The results of expression correlation analysis and targeting
relationship prediction showed that ame-miR-3477-5p can target
LOC410129, LOC409942, and LOC409910, which can be used as a
clue to reveal the function of miR-3477-5p and its sponge RNA,
novel_circ_004765.

novel_circ_011690 was only predicted to adsorb one miRNA
(ame-miR-92c-5p) and regulate one gene (LOC411481) through the
ceRNA mechanism. The function of miR-92c is still unknown.
LOC411481 encodes ribosomal protein S6 kinase alpha-2, RSK2,
also known as S6kII. To the best of our knowledge, there is currently
no research report on RSK2 and S6kII in honeybees. RSK2 has been
shown to be important in the maintenance of normal neural
function in Drosophila (Wang et al., 1996; Wieczorek et al.,
2020). RSK2 is important in the development of the nervous
system, and its absence can cause cognitive and emotional
problems (Yu et al., 2012). Our results indicate that novel_circ_
011690 may promote LOC411481 expression through competitive
adsorption of ame-miR-92c-5p, which plays a role in maintaining
the function of brain nerve tissue and resisting fluvalinate poisoning.

5 Conclusion

In summary, our results revealed the circRNA expression
profile changes in the A. mellifera ligustica brains before and

after fluvalinate treatment. A total of six circRNAs were
identified as DECs and obtained structural and sequence
verification, and five of them were predicted to be involved in
post-transcriptional regulation of brain tissue through ceRNA
regulatory mechanisms as miRNA sponges. Further functional
analysis revealed that they may be involved in the regulation of
apoptosis in the brain nerves of A. mellifera ligustica by
indirectly affecting the genes in the apoptosis, Hedgehog
signaling, Wnt signaling, and mTOR signaling pathways. This
study improves our understanding of the expression and
function of circRNAs in the brain tissue of A. mellifera
ligustica and provides information on the role of the ceRNA
mechanism in response to fluvalinate stress.
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