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Editorial on the Research Topic
Cancer evolution

Introduction

Cancer is a complex disease (Donaldson et al., 2015; Yalcin et al., 2020) characterised
by the breakdown of multicellular cooperation between somatic cells (Aktipis et al., 2015)
that results in a set of convergent (Fortunato et al., 2017) traits known as the hallmarks of
cancer (Hanahan, 2022). Cancer cells can proliferate extensively within a tissue, spread
beyond the normal regulatory boundaries, and even colonise distant sites (Hanahan,
2022). Cancer progression is understood to be a complex Darwinian adaptive system
(Greaves and Maley, 2012), with cancer cells acting as the equivalent of an asexually
reproducing, unicellular quasi-species. Tumours are defined as large populations of
genetically-diverse cell subpopulations competing for a limited number of nutrients
while being selectively influenced by endogenous and exogenous factors. Because
evolution and Darwinian selection are contingent and blind to the future, the outcome
of this competition is the survival of clones well suited to flourish under specific
conditions. Many clones dominant at one point in time may reach evolutionary dead
ends and die out, while others may be able to persist. The level of genetic diversity found in
cancer cannot be fully explained by Darwinian evolution, so non-Darwinian mechanisms
have been proposed to account for cancer evolution (Vendramin et al., 2021). Neutral
evolution, macroevolutionary changes, and the role of non-genetic determinants all appear
to impact cancer progression significantly (Williams et al., 2016). The architecture of
cancer seems sophisticated and intricate, and a thorough understanding of evolution is
required for developing novel, evolutionary-informed therapeutic approaches (Gatenby
and Brown, 2020). For this Research Topic, we gathered five studies covering three key
aspects of cancer evolution.
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Somatic population genetics

Understanding the dynamics and possibly predicting cancer
progression requires knowing how evolutionary forces alter the
allele frequencies in somatic cells. Population genetic studies have
generated critical insights in cancer evolution (Williams et al., 2019),
including two of the articles in this Research Topic.

Luddy et al. investigated the principle of evolutionary triage
(Gatenby et al., 2014), which connects the frequency of a gene
mutation in a population with its contribution to cancer cell
fitness. A mutation that improves fitness will spur cell
proliferation, increasing the likelihood of its being found in a
Research Topic of tumours. Instead, a mutation that does not affect
fitness will only be detected at a frequency consistent with the
underlying mutation rate. Luddy et al. used this framework to
investigate genes associated with tumour-immune interactions in
two lung adenocarcinoma cohorts with different molecular
subtypes and found distinct convergent signatures of purifying
selection. Targeting genes or molecular pathways under purifying
selection may have therapeutic efficacy similar to targeting driver
genes and may open up new therapeutic pathways (Gatenby and
Brown, 2020).

Kurpas and Kimmel developed two alternative evolution models
and applied them to cancer data to test if cancer cells follow
Darwinian evolution. Both models describe the combined fitness
effect of driver and passenger mutations in cancer cells; the only
difference is how cellular fitness affects the likelihood of occupying
the space of a dying cell. In one model, population fitness is constant
in the absence of mutations, consistent with Darwinian selection,
whereas fitness is not constant in the alternative. The two models
were fitted to breast cancer samples, and it was found that the model
consistent with Darwinian selection fits the data better.

Molecular signatures

Molecular signatures can elucidate mechanisms of cancer
progression and inform the clinical practice of many cancer
types, perhaps most notably breast cancer (Lal et al., 2017).

Yan et al. developed a novel prognostic signature grounded on a
set of necroptosis-related genes to predict breast cancer patient
outcomes based on median risk scores. Patients above and below the
median are classified as high-risk and low-risk, respectively. High-
risk patients encounter low overall survival and worse predicted
tumour, node, and metastasis stages.

Cisneros et al. studied the role of stress-induced mutagenesis
(SIM) in cancer and introduced new statistical methods to identify its
signature. Using somatic mutations found in tumour and normal
tissue and SIM cell lines, they identified clusters of mutations
consistent with stress-induced mutagenesis. These genetic clusters
were less conserved in cancer, indicating a loss of regulatory control of
SIM, and stress-induced mutagenesis was related to patient survival.
This study shows that an evolutionary conserved adaptive mutation
response, already present in bacteria, is a source of genomic instability
that fuels cancer initiation, progression, and therapeutic resistance
(Fitzgerald et al., 2017). This process may explain tumours’ ability to
evolve under selective pressures, supporting evolutionary-based
treatment strategies (Natterson-Horowitz et al., 2023).

Integrative multi-omics

Multi-omic studies explore the interaction between multiple
biological factors to provide a more holistic view of biological
processes and their relative effect on an outcome (Song et al., 2020).
The development of a new multi-omics tool completes this Research
Topic on cancer evolution.

Huzar et al. describe MOCA, a multi-omics toolkit for
comparing gene expression and genetic evolution patterns in
single cells and testing their consistency. MOCA was applied to
published datasets and revealed links between genetic and
phenotypic changes that can aid in understanding tumorigenesis,
therapy resistance, and cancer progression. A significant shift
toward single-cell technologies is expected in the coming years
(Rozenblatt-Rosen et al., 2020), and MOCA will enable better
exploitation of these upcoming datasets.

Conclusion

Cancer is an evolutionary process of somatic cells, and therefore
the somatic evolutionary theory is critical to understanding and
treating this major cause of death. The articles in this Research Topic
emphasise and exemplify this fact. Evolutionary therapies are
promising treatment strategies that use the most recent advances
in somatic evolutionary theory to manipulate the evolution of cancer
cells, controlling their growth or driving them to extinction. These
advancements have the potential to improve the quality of life of
cancer patients by transforming cancer into a chronic disease or, in
some cases, eradicating it.
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