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The role and biological impact of structural variation (SV) are increasingly evident.
Deletion accounts for 40% of SV and is an important type of SV. Therefore, it is of
great significance to detect and genotype deletions. At present, high accurate long
reads can be obtained as HiFi reads. And, through a combination of error-prone
long reads and high accurate short reads, we can also get accurate long reads.
These accurate long reads are helpful for detecting and genotyping SVs. However,
due to the complexity of genome and alignment information, detecting and
genotyping SVs remain a challenging task. Here, we propose LSnet, an
approach for detecting and genotyping deletions with a deep learning
network. Because of the ability of deep learning to learn complex features in
labeled datasets, it is beneficial for detecting SV. First, LSnet divides the reference
genome into continuous sub-regions. Based on the alignment between the
sequencing data (the combination of error-prone long reads and short reads
or HiFi reads) and the reference genome, LSnet extracts nine features for each
sub-region, and these features are considered as signal of deletion. Second, LSnet
uses a convolutional neural network and an attention mechanism to learn critical
features in every sub-region. Next, in accordance with the relationship among the
continuous sub-regions, LSnet uses a gated recurrent units (GRU) network to
further extract more important deletion signatures. And a heuristic algorithm is
present to determine the location and length of deletions. Experimental results
show that LSnet outperforms other methods in terms of the F1 score. The source
code is available from GitHub at https://github.com/eioyuou/LSnet.
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1 Introduction

Structural variations (SVs), small insertions and deletions (indels), and single nucleotide
polymorphisms (SNPs) make up the majority of genetic variations in humans. The sizes of
SVs range from fifty to ten thousand bps or even more. They mainly include five types:
deletions, insertions, inversions, duplications and translocations (Sudmant et al., 2015).
According to previous research, there are thousands of SVs in each human genome (Collins
et al., 2020), with deletions corresponding to the highest proportion of approximately 40%,
and inversions corresponding to the lowest proportion of only 1% (Lei et al., 2022). Their
roles and biological impact are becoming increasingly obvious, and increasing evidence is
showing the importance of SVs in all biological categories and conditions, such as cancer
(Aganezov et al., 2020), Alzheimer’s disease and autism (Beyter et al., 2021). Undoubtedly,
accurate detection of structural variants is important, but it remains an unsolved problem.
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The development of sequencing technology is particularly
important for efficient SV detection in the genome. Sequencing
technology has evolved from Sanger sequencing (Sanger et al., 1977)
to next-generation short read sequencing technology (NGS) (Eid
et al., 2009), and then to long read sequencing technology (Carneiro
et al., 2012), which directly sequences individual DNA molecules.
The sequencing lengths of short reads are usually in the range of
150–500 bp. Short read sequencing is popular and cost effective SV
detection strategy. Short read sequencing has a high accuracy rate,
and the error rate can be as low as 1%. The errors are mainly small
insertions/deletions (indels) and base substitutions. However,
despite its advantages, it has certain difficulties when dealing
with complex regions, such as repeated regions and regions with
high or low GC content. Long read (third generation) sequencing
technology is represented by Oxford Nanopore Sequencing of
Oxford Nanopore Technologies (ONT) (Clarke et al., 2009) and
single molecule real time (SMRT) technology (Carneiro et al., 2012)
of Pacific Biosciences (PacBio). The reads obtained with third
generation sequencing technology are longer, but the accuracy
rate is lower. The 5%–20% error rate of long read sequencing
technology is significantly higher than that of NGS (less than
1%). However, these error-prone long reads are more suitable for
detecting longer SVs and can handle complex regions better.
Circular consensus sequencing (CCS) improves the accuracy of
SMRT sequencing (PacBio) and generates highly accurate
(99.8%) long high fidelity (HiFi) reads with an average length of
13.5 kilobases (kb) (Wenger et al., 2019). It can detect SVs well.

Sequencing based methods are commonly used for detecting
SVs, with good detection accuracy and sensitivity. Based on the type
of sequencing data used, SV detection methods can be divided into
short read alignment based approaches and long read alignment
based approaches.

Short read alignment based approaches typically call SVs based
on read depth, read pairs, or split reads. The read depth refers to the
calculated number of reads covering a base in the reference genome.
The read pairs method detects SVs by considering whether a read
pair has an abnormal information, such as insert size, alignment
direction, alignment location. When a read covers an SV, the read is
usually split into two or more small fragments for alignment, and the
SV can be detected based on the split positions. For example, DELLY
(Rausch et al., 2012), LUMPY (Layer et al., 2014), and Manta (Chen
et al., 2016) detect SVs by integrating two or three of the above
characteristics for improving accuracy.

At present, SV detection methods using long reads mainly rely
on intra-read and inter-read alignment signatures. Intra-read
alignment signatures enable the direct prediction of an SV based
on a large alignment gap between the reference and a read. Inter-
read alignment signatures involve inconsistencies in position, size,
and orientation among multiple long reads, similar to short read
signatures. Common methods include, cuteSV (Jiang et al., 2020),
sniffles (Sedlazeck et al., 2018), SVIM (Heller and Vingron, 2019)
and pbSV. These methods use both inter alignment signatures and
intra alignment signatures, but the ways in which they call SVs are
different. Sniffles analyzes SVs based on multiple features, such as
split read alignment, statistical analysis of mismatched regions, and
read depth. PbSVs are detected by calculating the lengths of variant
clusters and the consistency of variant sites. SVIM uses graph based
clusteringmethods and a new SV signature distance metric to cluster

detected signatures. CuteSV uses a variety of extraction methods to
comprehensively collect the signatures of various SVs. PBSVs are
detected using heuristic algorithms and specially designed clustering
and refinement methods.

In recent years, deep learning has greatly improved the state of
the art in visual detection, speech recognition, andmany other fields.
There are already some approaches using deep learning to call SVs.
DeepVariant (Poplin et al., 2018) uses convolutional neural
networks (CNNs) for SNP and small indel calls. It constructs
candidate variant site images for classification and has been
shown to outperform all state-of-the-art variant callers. DeepSV
(Cai et al., 2019) also uses a deep learning approach for the problem
of calling SVs. It uses a new visual sequence read method to call long
deletions. Both DeepVariant and DeepSV use short read data to call
SVs. BreakNet (Luo et al., 2021) is a new approach for detecting
deletions using long read. It builds a matrix by extracting the
information of the “D” operations in a CIGAR string and uses a
CNN and recurrent neural network to call deletions. However,
BreakNet cannot determine the genotype of a deletion.

In this study, we introduce LSnet, an approach for detecting and
genotyping deletions with deep learning networks. LSnet uses the
combination of error-prone long reads and short reads or HiFi
reads, and it can effectively use deep learning to automatically detect
deletions of different sizes and determine their genotypes. LSnet
overcomes the problem of the high sequencing error rate of long
reads based on the high accuracy of short reads. Experimental results
show that LSnet achieves better deletion detection results than
current popular SV callers.

2 Materials and methods

LSnet is a deletion detecting and genotyping method, which can
not only adopt the combination of error-prone long reads and short
reads as input, but also high accurate long reads (HiFi reads). It is
divided into two modules: a deletion call module and a genotype call
module. In the deletion call module, there are three main steps i) In
the first step, LSnet divides the reference genome into continuous
sub-regions. Based on the alignment file, LSnet extracts the
alignment features in each sub-region to generate feature
matrixes. ii) In the second step, LSnet uses a CNN and an
attention module for feature extraction. Next, LSnet uses a
bidirectional gated recurrent unit (GRU) module to analyze the
feature relationship among sub-regions and determines whether a
sub-region represents a variation through a fully connected layer. iii)
The third step is to call the exact breakpoint based on the CIGAR
strings and a heuristic algorithm. In the genotype call module, LSnet
uses the same feature matrix as input, and uses a CNNmodel to call
the genotype. The overall workflow of LSnet is shown in Figure 1.

2.1 Generating feature matrix

LSnet uses a sorted BAM file as the input to extract read
alignment features. LSnet divides the reference genome into
continuous sub-regions with L (200 bp in default) in length.
Then, for one position of a sub-region, LSnet extracts nine
features and records them as a 9-tuple SIG (readlc, readld, readllb,
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readlrb, readlsp, readlm, readsc, readslb, readsrb). readlc denotes the
long read coverage in this position. readld denotes the number of
long reads that indicate this position as a deletion. readllb and readlrb
denote the numbers of long reads indicating this position as a split
position (llb means that the left part of the read can be aligned with
the reference genome while the other part is soft-clipped; lrb means
that the right part of a read can be aligned with the reference genome
and the other part is soft-clipped). readlsp denotes the number of
split alignments at this position for long reads. readlm denotes the
average coverage of each 10 million bp length region of the
chromosome. readsc denotes the short read coverage in the
position. readslb and readsrb denote the numbers of short read
indicating this position as a split position. Then, LSnet uses
Formula (1) to normalize the elements in the SIG.

SIGlong read i( ) �
Siglong read i( ) − SIGlong readmean

SIGlong read std

SIGshort read j( ) �
SIGshort read j( ) − SIGshort readmean

SIGshort read std

(1)

SIGlong_read includes six elements, readlc, readld, readllb, readlrb,
readlsp, readlm, and SIGlongread(i) is the ith element in SIGlong_read.
SIGlong_read_mean represents the average of these six elements. SIGlong_

read std denotes the standard deviation of SIGlong_read. SIGshort_read

includes three elements, readsc, readslb, readsrb, and SIGshort_read(j) is
the jth element in SIGshort_read. SIGshort_read mean represents the
average of these three elements. SIGshort_read std denotes the
standard deviation of SIGshort_read. Each position in a sub-region
includes the above nine features. LSnet can generate a corresponding
feature matrix with nine rows and L columns for each sub-region. If a
sub-region is less than 200 bp, the matrix is padded with 0.

2.2 Building neural network

When a region referred to a variant, its adjacent normal regions
usually display different characteristics. So, the relationships between
adjacent regions can effectively help detect variations. For example, in a

region corresponding to a deletion, the number of “D” in CIGAR string
should be much higher than that in its adjacent normal regions, and the
read coverage of this deletion region should be lower than that of an
adjacent normal region. At the same time, if the length of a deletion
exceeds L, a single feature matrix cannot completely represent this
deletion. So, LSnet performs feature extraction from the feature matrix
and then captures the features of the relationships among adjacent sub-
regions to identify deletions. According to previous research, CNN
models (Kattenborn et al., 2021) are very effective for feature extraction.
Therefore, LSnet performs feature extraction on the original features by
means of a CNN. Moreover, spatial and channel attention mechanisms
are added to enable the network to notice more critical features and
extract more important information. In terms of capturing the relation-
ship features among adjacent sub-regions, Gated Recurrent Units
(GRU) (Cho et al., 2014)networks yield similar experimental results
with long short term memory (LSTM) (Yu et al., 2019) networks, but
GRU networks are easier to compute. Therefore, LSnet captures the
features among continuous sub-regions from two directions by means
of a bidirectional GRU network to allow the model to better detect
deletion region. Finally, the sub-regions are predicted through two fully
connected layers. The network structure is shown in Figure 2.

In detail, the CNN consists of two dimensional convolution,
maximum pooling and attention mechanism modules. First, after
four convolutions, a convolutional block attention module (CBAM)
(Woo et al., 2018) is added. Since the convolution operation extracts
informative features by mixing cross channel and spatial information
together, important features are emphasized along the two main
dimensions, i.e., the channel and spatial axes, by CBAM. CBAM
sequentially applies channel and spatial attention modules (shown in
Figure 3) to increase the expressiveness of the features by means of an
attentionmechanism, focusing on important features and suppressing
unnecessary features. C,H, andW in Figure 3 represent the number of
channels, length, and width of this feature, respectively.

CBAM is a simple and effective attention module that is widely
applied to improve the representational ability of CNNs. The specific
calculation formula is shown in Formula (2).

M′ � Channel M( ) ⊗ M
M″ � Spatial M′( ) ⊗ M′ (2)

FIGURE 1
The workflow of LSnet.
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The features M after convolution and maximum pooling areas is
used as input, and the final result M″ is obtained through a one
dimensional channel attention module Channel and a two
dimensional spatial attention module Spatial. The ⊗ indicates
elementwise multiplication.

LSnet uses a bidirectional GRU network to integrate the
information generated at different time steps. This bidirectional

GRU neural network uses a total of two 64 pairs of Gated Recurrent
Units, which can process the hidden representations generated by
the CNN module in a forward and reverse manner.

Finally, three fully connected layers are used for prediction. The
first two fully connected layers each have a dropout layer (0.4)
behind them, and the last fully connected layer uses the sigmoid
function as the activation function. If the final output result is greater

FIGURE 2
LSnet module for detecting deletions.

FIGURE 3
The architecture of CBAM.
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than 0.5, the associated sub-region is considered as a deletion;
otherwise, it is not a deletion.

2.3 Breakpoint estimation

After the sub-regions are predicted by the previous modules,
LSnet determines the exact starting and ending positions of all
deletions based on the sub-regions that are identified as deletions.
Each sub-region predicted as deletion is recorded as a triple (chr,
refstart, refend). chr indicates which chromosome it belongs to, and
refstart and refend indicate the starting and ending positions on the
reference genome where the deletion is located. Then, from the
CIGAR string of each read, LSnet finds the position whose “D” >
30 bp within the sub-region. If the following Formula (3) is satisfied,
it will be recorded as a sub-signature. cigarstart indicates the starting
position of the deletion in the CIGAR string of the read, and
cigarlength indicates the length of the deletion in the CIGAR
string. If the distance between two sub-signature is less than
20 bp, they will be merged into one long deletion region.

cigarstart − ref start
∣∣∣∣

∣∣∣∣ < 200
cigarlength > 30

(3)

Due to error-prone long reads and the design of the alignment
tools, a large deletion may be split into multiple smaller parts in the
reference. Then, LSnet finds the split alignment based on the soft-
cliped and hard-cliped positions in the CIGAR string. The starting
and ending positions of the read and the starting and ending
positions of the reference are recorded.

As shown in Figure 4, if two segments seg1 and seg2 belong to the
same read, and they are adjacent on the reference and are aligned
with the chromosomes in the same direction, then Distance is
calculated. If Distance >40 bp, it is considered a deletion. ref2s
and read2s indicate the starting positions of the reference and
read, respectively, in seg2. reF1e and read1e indicate the ending
positions of the reference and read, respectively, in seg1.

Distance � ref 2s − ref 1e( ) − read2s − read1e( ) (4)

The regions found above are all recorded in the form of a triple
(chr, rrefstart, rrefend), where rrefstart, and rrefend denote the starting
and ending positions, respectively, on the reference. All regions
found are sorted. If the two regions are on the same chromosome
and the two regions satisfy the following Formula (5), it is
considered that the two reads represent the same deletion
variation region and are stored in the same bin. After all data
have been processed, the final starting and ending positions of each
deletion are determined in accordance with the starting positions of
all data in each bin and the median deletion length.

rref start2 − rref start1 < � 1500
rref end2 − rref end1 < � 1500

(5)

2.4 Genotyping

In the previous step, we obtained specific location information
about each deletion. To detect the specific genotype of each deletion,
LSnet adopts the network structure shown in Figure 5. The genotype
prediction model uses only a CNN and an attention mechanism. The
network structure is similar to that of the deletion call model, and the
same data are used as for deletion detection. If the result is less than
0.5, the deletions considered a heterozygous variant and is marked as
(0, 1). If the result is greater than 0.5, it is considered a homozygote
and is marked as (1, 1). If there is a large variation, it will be covered by
multiple variant feature matrices. For such a case, we count all the
prediction results for the component subregions and select the
prediction result with the highest frequency as the genotype.

2.5 Model training

Data collected with different sequencing technologies were used,
including PacBio CCS, PacBio CLR long read HG002 dataset, and
2 × 250 bp short read data collected by the Illumina platform
HG002. For CLR data with relatively low accuracy, LSnet uses
both HG002 CLR long read data and HG002 Illumina platform

FIGURE 4
An example of soft-clipped alignment.
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short read data to obtain an accurate feature matrix. Due to the high
accuracy of CCS data, short read data were not used. The high
confidence call set from the Genome in a Bottle Consortium (GIAB)
was used to label the data, produce training, testing and validation
dataset. This call set is widely used by other callers to evaluate the
efficiency of SV. Deletion re-gions were set to 1, and other regions
were set to 0. After the data were labeled, they were divided into
training, testing, and validation sets for training and evaluation. The
data of chromosomes 1–10 were used as training data, the data of
chromosome 11 were used as validation data, and the data of

chromosomes 12–22 were used as testing data. We implemented
all callers on a computer with a 12 core, 24 thread CPU (Intel(R)
Xeon(R) Silver 4214 CPU @ 2.20 GHz). We used a single RTX
3090 video card for model training.

2.6 Model predicting

When performing variant detection, to adequately detect all
variant sites, we ran the detection process two times. The first

FIGURE 5
LSnet module for detecting genotype.
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detection was for normal subregions, for example, [0–200],
[200–400], and [400–600]. The results obtained were the sub-
regions of potential variant sites. The second detection,
performed with a 100 bp sliding window, generated new data
subregions, for example, [100–300], [300–500], and [500–700].
The data were then fed back into the neural network for deletion
prediction. If a variation was found in a sub-region in the second
prediction but not in the first, the variant sub-region would be
located in the overlap between the results of the first and second
predictions. LSnet marks both parts of the normal region as deletion.
For example, if [300–500] is a deletion, LSnet marks [200–400],
[400,600] two regions as deletions. This approach can effectively
improve the prediction results.

3 Results

The high-confidence SVs collected by GIAB were employed as
the ground truth, and LSnet was benchmarked against five long
reads SV callers and two short reads SV callers. The long reads SV
callers include sniffles (2.0.6), SVIM (1.4.2), pbSV (2.6.2.), cuteSV
(1.0.13), and BreakNet (2.0). And tow short reads callers include
Manta (1.6.0), Delly (1.1.5). Truvari was used to assess the results
and record the precision, recall and F1 score. Five well studied
human samples were chosen: HG002 CLR (mean read length:
7,938 bp), HG002 CCS (mean read length: 13,478 bp),
HG002 Illumina (mean read length: 250 bp), NA19240 (mean
read length: 6,503 bp), and NA19240 Illumina (mean read
length: 120 bp). The details of the datasets are shown in
Supplementary Table S1 in the Supplementary Materials. In the
HG002 dataset, chromosomes 11–22 were used as the testing

dataset for LSnet, and in the NA19240 dataset, chromosomes
1–22 were used as the testing dataset. At the same time, the
corresponding short read data from GIAB were used,
downsampled to the same coverage. The support read
parameters of SIVM, cuteSV, and LSnet were set to 10, 5, 3, 3,
and 2 for the HG002 CLR 69X, 35X, 20X, 10X and 5X datasets, and
the support read parameters of SVIM, cuteSV, and LSnet were set
to 3, 2, and 1 for the HG002 CCS 28X, 10X, and 5X datasets. We set
the support read parameters of the SV callers to 10 and 3 for the
NA19240 CLR 40X and 10X datasets. Deletions smaller than 50 bp
were removed.

3.1 Deletion detection with CLR HG002 data

First, we benchmarked LSnet, sniffles, SVIM, cuteSV, Pbsv,
BreakNet, Manta, Delly on the HG002 CLR 69X chromosome
12–22 data. The benchmark results for sample HG002 are shown
in Table 1. LSnet achieved the highest precision, recall and F1 score
for the 69X dataset. Next, we randomly downsampled the
HG002 chromosome 12–22 data to 35X, 20X, 10X, and 5X and
tested the performance of the SV callers on these datasets with
different coverages. As shown in Table 1, LSnet achieved the best
F1 score for all coverages. On the 35X downsampled data, LSnet also
maintained precision, recall, and F1 scores higher than those of the
other tools. On the 20X and 10X downsampled data, sniffles and
cuteSV, respectively, achieved the highest precision. On the 5X
downsampled data, LSnet had the lowest precision, but its recall
was 14% higher than that of the second best method. This proves
that LSnet achieves better performance than other SV callers under
different coverages.

TABLE 1 The performance comparison of SV callers on CLR dataset about HG002.

Depth LSnet Sniffles SVIM cuteSV pbSV breaknet Delly Manta

Hg002clr 69X precision 0.9737 0.9598 0.9659 0.9733 0.9601 0.9695 0.4808 0.7163

recall 0.9517 0.9554 0.9411 0.9373 0.9637 0.9131 0.577 0.5702

F1 0.9626 0.9576 0.9533 0.955 0.9619 0.9405 0.5245 0.635

35X precision 0.9712 0.9608 0.9597 0.9692 0.9477 0.9371 0.6001 0.7588

recall 0.9411 0.9434 0.935 0.9282 0.9449 0.9335 0.4796 0.7396

F1 0.9559 0.952 0.9472 0.9483 0.9463 0.9353 0.5332 0.5567

20X precision 0.963 0.9591 0.9622 0.9627 0.9396 0.9658 0.692 0.7824

recall 0.9048 0.9041 0.9033 0.8958 0.9169 0.8527 0.3716 0.315

F1 0.933 0.9308 0.9318 0.928 0.9281 0.9057 0.4835 0.4491

10X precision 0.96 0.9588 0.9791 0.9825 0.919 0.9782 0.738 0.7727

recall 0.7983 0.7908 0.673 0.6775 0.8225 0.6767 0.1745 0.1156

F1 0.8718 0.8667 0.7977 0.802 0.8681 0.8 0.2822 0.2011

5X precision 0.7773 0.9699 0.9673 0.9704 0.9412 0.5248 0.7105 0.8167

recall 0.6775 0.5113 0.5355 0.5438 0.5438 0.7621 0.0612 0.037

F1 0.724 0.6696 0.6894 0.697 0.6893 0.6217 0.1127 0.0708
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3.2 The performance for deletions with
different deletion sizes

We also benchmarked the results of the long read SV callers for
different deletion sizes on the 69X dataset, as shown in Table 2.We set
sizes of [50–200], [200–500], [500–1,000], and [1,000,]. LSnet
achieved relatively high F1 scores. LSnet had the highest precision
on the 50 and 200 bp data and the third highest recall. This shows that
LSnet can accurately find deletions sites in small variant regions. On
regions larger than 1,000 bp, LSnet had the highest precision and
recall, thus proving that LSnet is more sensitive to SVs in large regions.

3.3 The results of LSnet with support reads

We assessed the support read parameter in LSnet on
HG002 CLR datasets with various coverages (69X, 35X, and
20X). The support read parameter indicates the minimum
number of supporting reads for an SV to be reported. As shown

in Table 3, setting different numbers of support reads leads to
different results. When the set number of support reads was larger,
the precision was improved, and the sensitivity was reduced. When a
smaller number of support reads was set, the precision decreased,
and the sensitivity increased.

3.4 Deletion detection with NA19240 data

The SV callers were more fully benchmarked by using the
PacBio CLR dataset (mean read length, 6,503 bp; coverage, 40X)
from another well studied human sample (NA19240). Due to the
bamfile of NA19240 lacks a certain parameter, pbsv does not
support running on NA19240, we skipped the test of pbsv on
NA19240. This dataset contains a total number of
17,950 deletions. The precisions, recalls, and F1 scores of the
benchmarked SV callers are shown in Table 4. LSnet obtained
good F1 scores. On the 40X data, LSnet obtained an F1 score less
than 1% lower than that of the best method, sniffles. Then, we

TABLE 2 The performance of SV callers in different deletion size about HG002 69X data.

Size Sniffles cuteSV pbSV SVIM LSnet BreakNet

50–200 precision 0.943 0.9575 0.9509 0.9515 0.9599 0.9614

recall 0.9313 0.8984 0.9533 0.9162 0.9203 0.9231

F1 0.9371 0.927 0.952 0.9335 0.9397 0.9418

200–500 precision 0.9692 0.9663 0.9543 0.9714 0.9765 0.9612

recall 0.9793 0.9663 0.9741 0.9663 0.9689 0.9637

F1 0.9742 0.9663 0.9641 0.9688 0.9727 0.9625

500–1,000 precision 0.9841 1 0.9841 0.9219 0.9683 0.9531

recall 0.9841 0.9365 0.9841 0.9365 0.9683 0.9683

F1 0.9841 0.9672 0.9841 0.9391 0.9683 0.9606

1,000- precision 0.9728 0.9797 0.9718 0.9792 0.98 1

recall 0.9597 0.9732 0.9262 0.9463 0.9866 0.651

F1 0.9662 0.9764 0.9485 0.9625 0.9833 0.7886

TABLE 3 The performance of different support read on HG002 data.

Coverage Support>=1 Support>=3 Support>=5 Support>=10

69X precision 0.9662 0.9597 0.9648 0.9737

recall 0.9524 0.9524 0.9517 0.9517

F1 0.9442 0.956 0.9582 0.9626

35X precision 0.9441 0.9644 0.9712 0.9712

recall 0.9441 0.9418 0.9411 0.9411

F1 0.9441 0.953 0.9559 0.9559

20X precision 0.9216 0.963 0.9715 0.9824

recall 0.9147 0.9048 0.8746 0.7175

F1 0.9181 0.933 0.9205 0.8293

Frontiers in Genetics frontiersin.org08

Luo et al. 10.3389/fgene.2023.1189775

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1189775


randomly downsampled the data to 10X. On the 10X NA19240 data,
LSnet achieved the second highest F1 score.

3.5 Deletion detection with CCS HG002 data

PacBio CCS data were collected from the same samples of
chromosomes 12–22 to further benchmark the SV callers. Due to
the high accuracy of CCS data, LSnet did not need to use short read
data for assistance. The precisions, recalls, and F1 scores of the
benchmarked SV callers are shown in Table 5. LSnet achieved the
highest F1 scores on the 30x dataset. Then, we downsampled this
dataset to coverages of 10X and 5X. On the 10X downsampled data,
the F1 score of LSnet was lower only than that of BreakNet. On the
5X downsampled data, LSnet also achieved the highest F1 scores. In
genotype detection, LSnet showed the best performance on all
datasets with different coverages. Among them, on the 5X
dataset, the F1 score of LSnet was 5% higher than that of the
second best method cuteSV.

3.6 The performance comparison of SV
caller on genotype

We also evaluated the genotype detection ability of LSnet on the
CLR and CCS HG002 datasets with different coverages. Regarding

the genotyping performance shown in Figure 6, LSnet can achieve
good results. Since the short read SV caller menta cannot detect
genotypes, delly is relatively poor in deletion detection, so genotype
detection is not used. We evaluated genotypes using SV caller for
long reads.

In CLR HG002 datasets, as shown in Figure 6, the highest
F1 scores were obtained at 35X, 10X and 5X coverage. At the same
time, LSnet has the highest precision on 35X, 10X, and 5X. In CCS
datasets, we also evaluated the genotype performance of 28X, 10X,
and 5X. As shown, LSnet achieves the best F1 score at both 28X and
5X. In 10X dataset, LSnet F1 score is only 0.8% lower than pbSV.
And in the 5X data, LSnet improved by 3.6% over the second place
pbSV. These results suggest that LSnet also performs well in
genotyping.

4 Discussion

Due to the high sequencing error rate of long reads and the
complexity of SVs, it is still important to take full advantage of the
characteristics of both error-prone long reads and accurate short
reads. In this study, we developed LSnet to detect deletions using
deep learning methods based on the combination of error-prone
long reads and short reads or HiFi long reads. LSnet collects different
features from long reads and short reads, effectively extracts features
through a CNN and an attention mechanism, and then uses a GRU

TABLE 4 The performance of SV callers on NA19240 data.

Data chr LSnet Sniffles cuteSV SVIM Delly Manta

NA19240 1–22 precision 0.9259 0.883 0.9108 8,713 0.5406 0.6941

recall 0.2209 0.23 0.2238 0.0391 0.1018 0.1152

F1 0.3566 0.365 0.3594 0.0748 0.1714 0.1975

1–22 precision 0.905 0.9043 0.9167 0.8451 0.6853 0.8921

recall 0.2144 0.1637 0.158 0.0549 0.0741 0.2351

F1 0.3467 0.2772 0.2696 0.1031 0.1337 0.3721

TABLE 5 The performance of SV callers on HG002 CCS data.

Data Coverage LSnet Sniffles cuteSV SVIM pbSV BreakNet

CCS 28X precision 0.966 0.9525 0.9486 0.9343 0.9437 0.9518

recall 0.9456 0.9539 0.9479 0.9554 0.9615 0.9554

F1 0.9557 0.9532 0.9482 0.9447 0.9525 0.9536

10X precision 0.956 0.9552 0.959 0.9455 0.9417 0.9591

recall 0.9192 0.9026 0.9011 0.9041 0.9509 0.9388

F1 0.9372 0.9282 0.9291 0.9243 0.9462 0.9489

5X precision 0.9637 0.9654 0.9326 0.9223 0.9379 0.962

recall 0.861 0.6964 0.8776 0.8784 0.8784 0.8414

F1 0.9095 0.8091 0.9043 0.8998 0.9072 0.8977
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network to mine the relationships among sub-regions to call SVs.
We validate LSnet on several well researched datasets and found that
it can achieve better performance than other SV callers on data with
different coverages.

However, LSnet still has some limitations, which will be
important to address in future work to further improve the
method. First, LSnet can detect only deletions; however, there
are also other types of SVs, such as insertions and
translocations. In addition, the run time is a problem to be
solved. LSnet needs to extract the features of the data, which
takes a long time.
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