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Genomic selection can accelerate genetic progress in aquaculture breeding
programmes, particularly for traits measured on siblings of selection candidates.
However, it is not widely implemented in most aquaculture species, and remains
expensive due to high genotyping costs. Genotype imputation is a promising strategy
that can reduce genotyping costs and facilitate the broader uptake of genomic
selection in aquaculture breeding programmes. Genotype imputation can predict
ungenotyped SNPs in populations genotyped at a low-density (LD), using a reference
population genotyped at a high-density (HD). In this study, we used datasets of four
aquaculture species (Atlantic salmon, turbot, common carp and Pacific oyster),
phenotyped for different traits, to investigate the efficacy of genotype imputation
for cost-effective genomic selection. The four datasets had been genotyped at HD,
and eight LD panels (300–6,000 SNPs) were generated in silico. SNPs were selected
to be: i) evenly distributed according to physical position ii) selected to minimise the
linkage disequilibrium between adjacent SNPs or iii) randomly selected. Imputation
was performed with three different software packages (AlphaImpute2, FImpute
v.3 and findhap v.4). The results revealed that FImpute v.3 was faster and achieved
higher imputation accuracies. Imputation accuracy increased with increasing panel
density for both SNP selectionmethods, reaching correlations greater than 0.95 in the
three fish species and 0.80 in Pacific oyster. In terms of genomic prediction accuracy,
the LD and the imputed panels performed similarly, reaching values very close to the
HD panels, except in the pacific oyster dataset, where the LD panel performed better
than the imputed panel. In the fish species, when LD panels were used for genomic
prediction without imputation, selection of markers based on either physical or
genetic distance (instead of randomly) resulted in a high prediction accuracy,
whereas imputation achieved near maximal prediction accuracy independently of
the LD panel, showing higher reliability. Our results suggests that, in fish species, well-
selected LDpanelsmay achievenearmaximal genomic selectionprediction accuracy,
and that the addition of imputation will result in maximal accuracy independently of
the LD panel. These strategies represent effective and affordable methods to
incorporate genomic selection into most aquaculture settings.
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1 Introduction

Aquaculture has been the fastest-growing food production
sector in recent decades, with a 609% rise in the total annual
output from 1990 to 2020 (FAO, 2022). This growth has
revolutionised the supply of seafood products across the planet,
providing nutritious seafood to a growing human population and
significantly contributing to meeting food security objectives in
many regions. However, the development of aquaculture in
different countries has been uneven, and seafood production still
needs to be increased to ensure food security and reduce the effect of
fishing on wild populations, offsetting the environmental impacts of
overexploitation (Cottrell et al., 2021).

In 2016 over 95% of the global aquaculture output originated
from low and middle-income countries (Stentiford et al., 2020). The
rapid expansion of aquaculture in these countries is primarily due to
the adoption of aquaculture by small and medium-sized enterprises,
but there are still challenges that hold back the development of
smaller aquaculture settings (Kumar et al., 2018; FAO, 2020). A
significant restriction is the lack of well-managed breeding
programmes for directional selection and improvement of
desirable traits. In addition, the establishment of breeding
programmes for small farms is expensive. Therefore, where basic
breeding programmes exist, they lag behind in the implementation
of the available genomic tools utilised by modern breeding
programmes due to the high cost compared to their relatively
small production. The use of genomics can improve selection
intensity and breeding value prediction accuracy, particularly for
traits not possible to measure directly on selection candidates. In
turn, this can then lead to a more efficient production, benefiting the
entire supply chain, which is essential to unlock the potential of
aquaculture stocks and ensure food security (Houston et al., 2020;
FAO, 2022).

Genomic selection uses genetic markers to more accurately
predict the breeding values of individuals compared to pedigree-
based approaches, leading to higher rates of genetic gain and better
management of inbreeding (Houston et al., 2020; Boudry et al., 2021;
Regan et al., 2021). Despite its potential, genomic selection has only
been implemented in the most advanced aquaculture sectors, and
only for a small number of aquatic species, such as Atlantic salmon,
rainbow trout, American catfish, whiteleg shrimp or Nile tilapia
(Lillehammer et al., 2020; Yáñez et al., 2020; Boudry et al., 2021;
Houston et al., 2022). One of the barriers to the widespread adoption
of genomic selection is the high cost of genotyping. Genotyping can
be prohibitively expensive for small and medium aquaculture
operations, making it more challenging for them to adopt
genomic selection practises (Boudry et al., 2021). For these
industries to benefit from genomic selection, low-cost genotyping
strategies that do not significantly compromise the prediction
accuracy of breeding values are required.

Several studies have looked into the use of low-density (LD) SNP
panels as a cost-effective alternative, with only a few thousands or
even hundreds of SNPs used for genomic selection, in contrast to
high-density (HD) panels, usually containing tens of thousands
SNPs. Generally, studies on aquaculture species have reported
that SNP densities can be reduced from tens of thousands to
thousands without a significant loss of prediction accuracy (Tsai
et al., 2016; Palaiokostas et al., 2018; 2019; Robledo et al., 2018;

Yoshida et al., 2019; Gutierrez et al., 2020; Kriaridou et al., 2020;
Tsairidou et al., 2020; Al-Tobasei et al., 2021). Additionally,
complementary strategies such as genotype imputation can be
used to further reduce the cost and improve the accuracy of low-
cost genomic selection.

Genotype imputation is a method that can be used to predict
missing genotypes in an individual based on the genotypes of other
individuals of the same species. A common imputation strategy is to
use a group of individuals genotyped with a HD panel (reference
population) to infer the missing genotypes of other individuals
(target population) genotyped with a LD panel, which is
composed of a subset of markers from the HD panel (Marchini
and Howie, 2010; Sargolzaei et al., 2010). The reference and target
populations need to be related to some degree as imputation relies
on linkage and linkage disequilibrium within those populations. The
general idea of genotype imputation is that related individuals share
long haplotype blocks (set of markers in linkage disequilibrium
segregating together). These haplotype blocks are broken by
recombination events occurring from one generation to the next;
hence two animals will share longer haplotypes the more related
they are.

Imputation algorithms can use a combination of population
and pedigree-based methods (Browning, 2008; Bouwman et al.,
2014; Sargolzaei et al., 2014; Wang et al., 2016; Antolín et al.,
2017; Lashmar et al., 2019; Phocas, 2022). FImpute (Sargolzaei
et al., 2014) and AlphaImpute (Whalen and Hickey, 2020) are
popular algorithms developed for animals and plants, combining
population and pedigree-based imputation methods. Population-
based methods utilise linkage disequilibrium information
between markers in various ways. Generally, they use Hidden
Markov Model (HMM) approaches to model genotype and
underlying haplotype variation relying on population-wide
linkage disequilibrium between markers (short shared
haplotypes) (Sargolzaei et al., 2014; Whalen et al., 2018).
Pedigree-based methods incorporate information from linkage
and pedigree relationships for imputation. These methods take
advantage of the long-haplotypes shared by closely related
individuals, such as parent-offspring or full-sibs, as well as
using Mendelian inheritance rules to infer missing genotypes
(Antolín et al., 2017). Pedigree information increases in
importance as the LD panel becomes sparser, because it
enables capturing the long-range haplotype blocks shared
between relatives. Studies where imputation is applied to a
population of related individuals (family studies) are more
powerful and effective in identifying low-frequency variants
(Sargolzaei et al., 2014; Liu et al., 2019). The choice of
software can also impact the results; different algorithms make
use of the available information differently, so the optimal
imputation software may differ depending on the population
of interest.

In addition to the imputation method, there are several other
factors affecting genotype imputation accuracy, namely, SNP minor
allele frequency (MAF), the selection of SNPs for the LD panel
(number of SNPs and their chromosomal distribution), the number
of individuals in the reference population and the population
structure. MAF significantly impacts imputation accuracy for all
imputation methods; as MAF increases, the accuracy of imputation
of the minor allele increases (Wang et al., 2016). Imputation of rare
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alleles is important because variants with low frequency may have
large effects, linked to the “missing heritability” in some complex
traits (Manolio et al., 2009; Sargolzaei et al., 2014; Gonzalez-Recio
et al., 2015). The size of the reference population also affects
imputation; the greater the number of individuals in the
reference panel, and the more closely related they are to the
target individuals, the more accurate is genotype imputation
(Garcia et al., 2022). Finally, one aspect that requires further
investigation is the impact of SNP selection strategy for the LD
panel. Various methods have been proposed for the design of LD
SNP panels, such as: i) randomly selected SNPs across the genome or
within the chromosome (Tsairidou et al., 2020), ii) evenly spaced
according to position and chromosome size (Yoshida et al., 2021),
iii) based on linkage disequilibrium patterns (Yoshida et al., 2021),
iv) selection of highly polymorphic SNPs explaining most of the
phenotypic variance of a trait (Aliloo et al., 2018; Wu et al., 2020), v)
or even the design of multi-trait-specific SNP panels (He et al., 2018)
and family-specific SNP panels (Whalen et al., 2019). These studies
have shown that for some traits, the SNP selection method for the
LD panel plays an important role.

Several studies have compared the performance of imputation
software and the different parameters affecting genotype imputation
in human, plant and livestock populations. However, aquaculture
broodstock populations are typically comprised of relatively few (but
large) full and half sib families, with limited population structure
and, as such, might be expected to show a different response to
imputation strategies. Despite this, the number of studies testing
imputation performance in aquaculture species is limited and they
mainly use either FImpute or AlphaImpute software in Atlantic
salmon (Kijas et al., 2017; Tsai et al., 2017; Yoshida et al., 2018;
Kjetså et al., 2020; Tsairidou et al., 2020), rainbow trout (Vallejo
et al., 2021; Yoshida et al., 2021) and Nile tilapia (Yoshida et al.,
2019; Garcia et al., 2022). Only one recent study has tested Beagle
imputation software in Atlantic salmon, common carp, sea bream
and rainbow trout (Song and Hu, 2022). The promising results of
these studies suggest that the combination of LD SNP panels with
genotype imputation can achieve similar genomic prediction
accuracies to HD panels. This combination can decrease the
genotyping cost in aquaculture species, enabling the broader
implementation of genomics in breeding programmes. However,
in many cases the results of these studies are not directly comparable
because they use different metrics to assess results and test different
parameters. Therefore, further testing and optimisation of
imputation algorithms and SNP selection methods is needed,
across a range of aquaculture species and traits with the use of
common assessment methods for genotype imputation to be
routinely implemented in aquaculture selection programmes
worldwide.

The objectives of this study were to i) evaluate the performance
of three imputation software packages, FImpute v.3,
AlphaImpute2 and findhap v.4 in breeding populations from four
diverse aquaculture species; ii) investigate the impact of the number
of markers in the LD panel and their selection method on
imputation accuracy; and iii) evaluate the genomic prediction
accuracy of imputed vs. LD genotypes for different traits in the
four species. Our results contribute towards the definition of best
practices for the broader application of genotype imputation and
cost-effective genomic selection in aquaculture.

2 Materials and methods

2.1 Datasets

This study used previously published datasets from four species.
Specifically:

• A farmed Atlantic salmon (Salmo salar) population of
624 individuals (90 parents and 534 offspring), belonging
to 61 full-sib families as described in (Tsai et al., 2015).
This population was challenged with Lepeophtheirus
salmonis and sea lice counts on the fish were recorded for
all the offspring. This trait had a positively skewed distribution
and was logarithmically transformed. All individuals were
genotyped with a 132 K SNP array, and 78,035 SNPs
distributed across 29 pairs of chromosomes were retained
after quality control for further analysis.

• A turbot (Scophthalmus maximus) population of 1,445 fish
(47 parents and 1,398 offspring), distributed across 36 full-sib
families as described in (Anacleto et al., 2019). The gonads of
the fish were checked for the presence or absence of a parasite
causing Scuticociliatosis (Philasterides dicentrarchi).
Individuals were genotyped using RAD-seq and after
quality control 11,069 SNPs were successfully mapped to
the 22 pairs of chromosomes.

• A common carp (Cyprinus carpio) population of
1,319 individuals (60 parents and 1,259 offspring),
comprising 195 full-sib families. This population was
challenged with koi herpesvirus as described in Palaiokostas
et al. (2018) and phenotypic records of body weight were
obtained. Individuals were genotyped using RAD-Seq
sequencing method and 15,615 SNPs were retained for
downstream analysis (Palaiokostas et al., 2019). The
positions of these markers were updated according to the
latest reference genome (GenBank assembly accession number
GCA_018340385.1) by using standard nucleotide BLAST
(Altschul et al., 1990) and 8,506 SNPs were successfully
assigned to 50 pairs of chromosomes from which
8,103 SNPs were retained after quality control.

• A Pacific oyster (Crassostrea gigas) population of
762 individuals (44 parents and 718 offspring), belonging
to 30 full-sib families. Individuals in this study were
challenged with ostreid herpesvirus (OsHV-1), measured
for time to death, and genotyped using a SNP array with
~27 K informative Pacific oyster SNPs (Gutierrez et al., 2020).
After updating the SNP positions according to the latest
genome assembly (Peñaloza et al., 2020) and quality
control, 16,447 SNPs remained, distributed across the 10
chromosome pairs.

2.2 Quality control

All datasets were filtered using PLINK v.1.9 (Purcell et al., 2007).
Individuals with just one of their two parents genotyped or >20%
missing genotypes were excluded from the analysis. SNPs with >10%
missing genotypes; significant deviation from Hardy–Weinberg
Equilibrium (p-value < 10−6); MAF <0.05; or Mendelian error
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rates >10% were also excluded from subsequent imputation
analyses. A summary of the data for the different species before
and after quality control can be found in Table 1. After imputation,
all the datasets were filtered again for MAF (<0.05).

2.3 SNP selection methods for the low-
density panels

The LD SNP panels were generated in silico by selecting 300,
500, 700, 1,000, 2,000, 3,000, 5,000 and 6,000 SNPs using the two
methods described below. The LD panels were created by masking
(i.e., setting to missing) all the SNPs not selected by each method.

2.3.1 Physical-distance-based method
The selection of SNPs for the LD panels was implemented with a

custom R script (available in https://github.com/Roslin-Aquaculture/
Select-SNPs-to-generate-low-density-panels), considering the total
number of SNPs and the length of each chromosome. For each
density, a single panel was created with the number of markers
selected being proportional to chromosome length and evenly
distributed across the chromosomes according to position (physical
distance). For this SNP selection method, the first and the last SNP on
each chromosome were always selected and included in the LD panel.
When no SNPs were available in the required position to achieve an
even distribution, the closest available SNP was selected to obtain a LD
panel with the desired number of markers. If a chromosome did not
have enough SNPs (e.g., for densities ≥5,000 SNPs), all of the SNPs on
that chromosome were selected and the final panel density was allowed
to be slightly lower than expected (i.e., no additional SNPs were selected
on the other chromosomes).

2.3.2 Genetic-distance-based method
For the SNP selection method based on linkage disequilibrium,

PLINK 1.9 (Purcell et al., 2007) was used to generate pruned SNP
subsets based on variable window size, step size and squared
correlation (r2) threshold values, to achieve the desired number
of SNPs for each density. SNP pruning was performed using the
“--indep-pairwise” command. In brief, at each step, squared
correlation was calculated between each pair of SNPs within a
genomic window, specified using SNP count (“variant ct”). All
SNPs with squared correlation greater than the given r2 threshold
were removed from the window until there were no such pairs. At
the end of each step, the window was shifted forward by a “step size
(variant ct),” and the procedure was repeated. A single LD panel was
created for each target density.

2.3.3 Randomly selected SNPs
Additionally, four LD panels were generated by randomly

choosing 300, 500, 700 and 1,000 SNPs throughout the genome
to test prediction accuracy before and after imputation with
FImpute v.3.

2.4 Genotype imputation

Imputation of the offspring’s LD genotypes was performed using
their parents as reference population (genotyped for the HD panels)TA
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with three software packages: AlphaImpute2 (Whalen and Hickey,
2020), FImpute v.3 (Sargolzaei et al., 2014) and findhap v.4
(VanRaden et al., 2013); a two-generation pedigree was available
for all datasets, therefore pedigree and population-based imputation
were performed.

AlphaImpute2 (Whalen and Hickey, 2020) imputation was
performed separately for each chromosome using the default
parameters, which are listed below, and SNPs in the genotype
input file were ordered according to position on the
chromosome. In the first step of pedigree imputation, five rounds
of multi-locus iterative peeling were performed. The genotype
calling threshold for the first round of peeling before phasing
was 0.9. In the second step, where the algorithm builds the
reference haplotype library, five rounds of phasing were
conducted. Finally, for the third step of pedigree imputation
another five rounds of multi-locus iterative peeling were
performed, using the phased genotypes in the second step, and
genotypes were set to the best-guess.

FImpute v.3 (Sargolzaei et al., 2014) uses a single genotype file
with all the chromosomes present, and also requires information of
the genomic location of the SNPs, provided in a map file, to model
recombination. The “parentage_test” parameter was used to check
for parentage errors with an error rate threshold of 0.05 to find
progeny-parent mismatches. When a progeny-parent Mendelian
inconsistency was detected, in most cases, genotypes of progeny and
parents were set to missing and re-imputed. For this analysis, the
conflicting parents were set to missing and original genotypes were
not adjusted. In the results presented here, random filling of
genotypes based on allele frequency was used to allow for a
better comparison with AlphaImpute2.

For Findhap v.4 (VanRaden et al., 2013), the maximum and
minimum length of haplotype segments were defined as 600 and 65,
respectively, with an overlapping length of 10 and an error rate of 0.004.
The number of different haplotypes within any segment was set to
1,000 for the lower densities, and it was increased to 2,000 for the
5,000 and 6,000 SNPs densities to consider all the possible haplotypes.

For all three methods, imputation accuracy was measured as the
average Pearson correlation between the original and the imputed
genotypes for each test individual. To test the effect of MAF on
imputation accuracy, we calculated minor allele frequencies with
PLINK v.1.9 and divided the SNPs into five MAF bins: (0–0.1],
(0.1–0.2], (0.2–0.3], (0.3–0.4] and (0.4–0.5].

2.5 Estimation of genetic parameters

For each trait in the different datasets, heritabilities were
estimated using ASReml 4.2 (Gilmour et al., 2021) using a linear
mixed model as follows:

y � μ + Xb + Za + e

where y is a vector of observed phenotypes, μ is the overall mean of
phenotype records, b is the vector of fixed effects, a is a vector of
additive genetic effects distributed as a ~ N(0,Gσ2a), where σ2a is the
additive genomic variance and G is the genomic relationship matrix,
while X and Z are the corresponding incidence matrices for fixed
and additive effects, respectively, and e is a vector of residuals.

Gonad parasite trait in the turbot dataset was binary, thus we
used the generalized linear mixed model with the logit link function
that links the probability of observing an event to the underlying
linear model:

P yi � 1( ) � exp μ + Xbi + Zai + ei( )
1 + exp μ + Xbi + Zai + ei( )

The fixed effects included in the different models for each
species were i) body weight in Atlantic salmon, ii) factorial-cross
group (four levels) in carp, iii) box (36 levels) in turbot, and iv) tank
(two levels) in oyster.

The genomic relationship matrix between pairs of individuals j
and k (gjk) was calculated using the GCTA software (Yang et al.,
2011) as follows:

gjk � 1
N

∑
N

i�1

xij − 2pi( ) xik − 2pi( )
2pi 1 − pi( )

where N is the total number of SNPs, xij and xik are the number of
copies of the reference allele for the ith SNP for the jth and kth fish,
respectively, and pi is the frequency of the reference allele estimated
from the markers.

2.6 Cross-validation for genomic -based
prediction accuracy

The accuracy of genomic prediction was estimated by
20 replicates of fivefold cross-validation analysis (80% of
individuals in the training set and 20% in the validation set;
“CVrep” GitHub statistical R package (Tsairidou 2019), available
at https://github.com/SmaragdaT/CVrep). The phenotypes in the
validation set were masked, and genomic best linear unbiased
prediction (GBLUP) was applied to predict the breeding values
of the validation set individuals in ASReml 4.2 (Gilmour et al., 2021),
using the linear mixed model described above. Prediction accuracy
was calculated as the correlation between the predicted breeding
values of the validation set and the actual phenotypes divided by the
square root of heritability, estimated from the full dataset for each
trait [≈ r(y,ŷ)

h ].

3 Results

3.1 Trait summary and genetic parameters

A different phenotype was used in each dataset (Table 2): i) In
Atlantic salmon, log-transformed sea lice counts were used as
phenotype. Log-transformed sea lice counts had a mean of 3.11 ±
0.56 and a genomic heritability estimate of 0.19 ± 0.07. ii) In
turbot, the binary trait of absence or presence of gonad parasites
was used. Gonad parasites were present in 881 individuals, while
441 individuals were free of parasites. The estimated
genomic heritability for this trait was 0.27 ± 0.08. iii) In
Pacific oyster, we used the phenotype of days to death after
infection with OsHV-1-μvar, with survivors being assigned a
value of 8 days (end of the challenge). The mean and standard
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deviation of surviving days was 6.91 ± 1.82, and the estimated
genomic heritability was 0.64 ± 0.05. iv) In common carp, the
mean value for body weight was 16.36 ± 4.65 g, and the
heritability estimate was 0.22 ± 0.04.

3.2 Accuracy of imputation

Imputation accuracy increased with increasing panel density
for all software (Figure 1). Overall, the results revealed that
FImpute v.3 was more accurate for most of the densities in all the
species, and findhap v.4 was mostly second in the ranking.
Although AlphaImpute2 was generally ranked last between
the three software, it outperformed findhap v.4 in terms of
accuracy for the five lowest densities (300–2,000 SNPs) in the
Atlantic salmon dataset. It also outperformed FImpute v.3 at the
lowest density of 300 SNPs (Figure 1A). Imputation accuracy for
the lowest density of 300 SNPs, when imputing with FImpute
v.3, ranged between 0.61 (Pacific oyster) and 0.76 (Atlantic
salmon and turbot). For the 6,000 SNPs density, the fish
species reached very high imputation accuracies (0.95–0.98),
but the accuracy value was noticeably lower for Pacific oyster
(0.80) (Figure 1).

Regarding computing time, FImpute v.3 was faster than the
other two software tested. Running time results of the three software
when imputing the 300 SNPs panel density for each species are
shown in Table 3. The average computational time across the four
species for the LD panel of 300 SNPs when imputing with FImpute
v.3 was 1 min and 13 s, with findhap v.4 showing a similar average
running time of 1 min 55 s, and AlphaImpute2 considerably longer
running times of 24 min 56 s in average.

In Figure 2, the genetic distance method based on linkage
disequilibrium slightly increased the accuracy of imputation for
most of the very low densities in Atlantic salmon, turbot and
Pacific oyster (300–2,000 SNPs), while in the common carp
dataset it improved the imputation accuracy of the higher
densities (2,000–6,000 SNPs) (Figure 2). However, the
differences observed in imputation accuracy between the two
LD panel SNP selection methods were mostly non-significant.
Since both the imputation and prediction accuracy results of the
imputed panels were similar when the SNPs were selected with
the genetic or the physical-distance-based method, the results we
present below are with the physical-distance-based-method and
imputed with FImpute v.3 software package.

There is a visible pattern of slightly decreased imputation
accuracy at the ends of the chromosomes of the four species
(Figure 3), but this was not consistent for all chromosomes
(Supplementary Material). This phenomenon is clearer in
Atlantic salmon (Figures 3A, B), possibly due to the higher
number of SNPs in the HD panel. Increasing the SNP density of
the LD panel from 300 SNPs to 6,000 SNPs substantially improved
imputation accuracy throughout the chromosome and especially at
chromosomal ends (Figure 3). In the oyster dataset, there were
poorly imputed SNPs throughout the chromosome, and for some of
these SNPs accuracy did not improve when the panel density was
increased (Figures 3G, H).

Figure 4 shows the effect of MAF on imputation accuracy
using FImpute v.3. The density of the LD panel did not seem to
have a MAF-dependant impact on the imputation accuracy.
However, there is a wider distribution of imputation accuracy
values in the (0–0.1) MAF bin compared to the other bins,
suggesting that there were more SNPs with very low MAF that
were poorly imputed.

3.3 Genomic prediction using imputed SNP
panels

The HD panel was used to estimate the genomic heritability
and obtain genomic prediction accuracies for each species
(Table 2), which were compared to those obtained using the
LD panels (Figure 5). Prediction accuracies were estimated for
the LD panels with and without imputation. For Atlantic salmon,
turbot and common carp, genomic prediction using the LD and
the imputed panels gave comparable accuracies, which were very
close to the accuracies obtained with the HD panel (Figures
5A–C). However, in the Pacific oyster, all the LD panels
(300–6,000 SNPs) outperformed the imputed panels
(Figure 5D), reaching maximal prediction accuracy when the
LD panel consisted of 2,000 SNPs.

Since these results were unexpected according to previous
reports, which showed that the accuracy of genomic prediction post
imputation was higher than using the LD panels, we wanted to further
investigate whether the SNP selection methods were responsible for the
high prediction accuracy of the LDpanels without imputation. Therefore,
we randomly sampled SNPs throughout the genome to generate LD
panels and perform imputation to compare their prediction accuracy
with the other SNP selection methods. Figure 6 shows the prediction

TABLE 2 Genomic heritability and prediction accuracy using HD panels.

Species Phenotypes Genomic heritability
estimates

HD panel genomic prediction accuracy
(mean ± sd)

Atlantic
salmon

Log transformed sea lice (Lepeophtheirus salmonis) count 0.19 ± 0.07 0.54 ± 0.05

Turbot Presence/absence of gonad parasites (Philasterides
dicentrarchi)

0.27 ± 0.08 0.34 ± 0.02

Common carp Body weight 0.22 ± 0.04 0.69 ± 0.02

Pacific oyster Resistance to oyster herpesvirus (OsHV-1) measured as
time to death

0.64 ± 0.05 0.62 ± 0.03
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accuracy of four LD panels (300, 500, 700 and 1,000 SNPs) with and
without imputation. For all four species, the prediction accuracy of the
randomly designed LD SNP panels was considerably lower than the
accuracy achieved with the HD SNP panel. Imputation of these LD SNP
panels improved the predictive ability for Atlantic salmon, turbot and

common carp with accuracy values very close to the maximal. However,
the imputation of the Pacific oyster’s random LD SNP panel did not
improve prediction accuracy. Both the randomly designed LD panel and
the imputed one achieved similar results that were lower than the
accuracy of the HD panel (Figure 6D).

FIGURE 1
Genotype imputation accuracy in four aquaculture species. Average genotype imputation accuracy (correlation between true and imputed
genotypes) for the three imputation software in each of the four species. The ribbons represent the standard deviation of the average imputation accuracy
across all individuals. The SNP selection method based on physical distance was used to impute the LD panels in these graphs. The Atlantic salmon LD
panels (A)were imputed to 78,035 SNPs, the turbot (B) to 11,069 SNPs, the common carp (C) to 8,103 SNPs and the Pacific oyster (D) to 16,447 SNPs.

TABLE 3 Computational time for each software to impute from the 300 SNPs density panel.

Species FImpute v.3 Findhap v.4 AlphaImpute2

Salmo salar 1 min 16 s 2 min 49 s 30 min 36 s

Scophthalmus maximus 47 s 1 min 45 s 16 min 46 s

Cyprinus carpio 27 s 1 min 17 s 44 min 01 s

Crassostrea gigas 1 min 1 min 7 s 7 min 41 s
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4 Discussion

Genotype imputation is a powerful tool that has the potential to
reduce the genotyping cost of genomic selection in aquaculture
breeding programmes without a dramatic loss of prediction
accuracy. In this study, we investigated some of the main factors
affecting the accuracy of imputation and genomic prediction to
contribute towards the establishment of best practices for the wider
application of this method in the aquaculture sector.

4.1 Choice of imputation software

Three genotype imputation software were tested for their
performance and compared between four populations of

different aquatic species. All three software packages used a
combination of population and pedigree-based imputation
methods, and both parents’ genotypes were present for all
individuals in the datasets. The existence of pedigree
information and close relatives in the dataset becomes more
important as the number of markers in the LD panels
decreases, as it becomes difficult to find the truly shared
haplotypes between the reference and the target individuals.

FImpute showed the best performance across the four species in our
study, with highest imputation accuracies for most LD panels and a
shorter running time. FImpute shows extremely fast computational
times when compared to other imputation software (e.g., Beagle,
findhap, AlphaImpute, PHASEBOOK, Eagle-Minimac4 approach)
for populations where pedigree information was available (Johnston
et al., 2011; Chud et al., 2015; Ventura et al., 2016; Wang et al., 2016;

FIGURE 2
Influence of LD SNP panel design on imputation accuracy. Average genotype imputation accuracy (correlation between true and imputed
genotypes) using FImpute v.3 in each of the four species for the two SNP selectionmethods: physical and genetic distance-based. The ribbons represent
the standard deviation of the average imputation accuracy across all individuals. The y-axis in these graphs ranges from 0.5 to 1 to facilitate the
comparison of the two methods.
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FIGURE 3
Percentage of correctly imputed genotypes with FImpute v.3 for each SNP of chromosome 1 in each of the four species, using the LD panels of 300
(A,C,E,G) and 6,000 (B,D,F,H) SNPs (selectedwith the physical-distance-basedmethod). The blue dots indicate the physical position of the SNPs in the LD
panel, whereas the black dots indicate the imputed SNPs.
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Pausch et al., 2017; Ye et al., 2018; Fernandes Júnior et al., 2021).
Compared to AlphaImpute2, which uses a probabilistic algorithm
(Whalen and Hickey, 2020), FImpute and findhap are faster in
speed because they directly search for haplotypes in descending size
and frequency order (Vanraden et al., 2011). FImpute is also known to
infer rare alleles with higher accuracy (Ma et al., 2013;Wang et al., 2016;
Fernandes Júnior et al., 2021) because the process starts by effectively
matching long haplotypes between closely related individuals
(Sargolzaei et al., 2014). This is pertinent because in a population
with closely related individuals, the long haplotypes shared between
them usually carry rare alleles (Kamatani et al., 2004) which can be
frequent in families with a common ancestor who had the variant (Liu
et al., 2019).

4.2 Composition of the low-density panels

The number of SNPs in the LD panel and the linkage
disequilibrium between adjacent SNPs was found to substantially

affect imputation accuracy; by increasing the number of SNPs in the
LD panels, we observed an increase in imputation accuracy
(Figure 1). As previously discussed by Sargolzaei et al. (2014) this
is because it becomes more likely to find shorter haplotype segments
shared between related individuals due to the improved crossover
resolution (Sargolzaei et al., 2014). However, there was a number of
SNPs in the LD panel above which imputation accuracy improved
only slightly (Figure 1). For Atlantic salmon, turbot and Pacific
oyster the number of SNPs to reach this plateau was between
2,000 and 3,000.

In Pacific oyster, imputation accuracy was lower for all the LD
panels compared to the fish species. Previous studies have found that
some Pacific oyster populations exhibit rapid decay of linkage
disequilibrium (Gutierrez et al., 2017; Zhong et al., 2017). This
means that recombination between markers at each generation is
high and therefore higher SNP densities might be required to
achieve the same imputation accuracy results achieved in the
other species. Additionally, the oyster genome, and in general
bivalves’ genomes, is highly polymorphic. Studies have shown

FIGURE 4
Correlation between the original and the imputed genotypes for each SNP plotted against MAF, for the two LD panels of 300 and 3,000 SNPs.
Genotypes of the Atlantic salmon (A), turbot (B), common carp (C) and Pacific oyster (D) dataset were imputed with FImpute v.3.
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that the Pacific oyster genome exhibits high levels of heterozygosity
and is abundant in repetitive sequences, with some active
transposable elements shaping this genomic variation (Zhang
et al., 2012; Hedgecock et al., 2015; Gutierrez et al., 2017). These
highly polymorphic regions hinder the construction of the genome
assembly (Gutierrez et al., 2020) and can lead to a pronounced
decrease in imputation accuracy (Fernandes Júnior et al., 2021),
possibly due to errors in marker order. Other characteristics of their
genome that may be impairing mapping and consequently
imputation accuracy are the putative high rate of de novo
mutations during meiosis or larval development, which
contribute to unusual segregation patterns and deviations from
Mendelian inheritance patterns (Hedgecock et al., 2015; Soledad
Peñaloza Navarro, 2017). Imputation of bivalve genomes requires
further research in different populations and species to discover
which parameters can contribute towards the improvement of
imputation accuracy and their resulting prediction accuracy.

Regarding chromosomal position, we observed a lower number of
correctly imputed SNPs at the beginning and at the end of Atlantic
salmon chromosome 1. However, this decreased imputation accuracy at
chromosomal ends was not evident in all the species. The lower number
of SNPs available in the HD panel for some species may have had an
effect in our ability to discern drops in imputation accuracy in certain
regions of the genome; recombination and linkage disequilibrium can
also explain the differences in imputation accuracy. Poorly imputed SNPs
can be found in chromosomal regions with high recombination rates
(Hozé et al., 2013), such as the beginning and the end of chromosomes in
some species (Druet et al., 2010; Ventura et al., 2016), or in regions
difficult to assemble, but it can also be related to patterns of linkage
disequilibrium throughout the genome. For example, recombination hot
spots make the precise reconstruction of haplotypes difficult;
consequently, imputation accuracy is low in these regions (Yoshida
et al., 2018). Centromeres also tend to show low imputation
accuracies because they are difficult to assemble, potentially leading to

FIGURE 5
Prediction accuracies estimated for the high-density (HD), the low-density (LD) and the imputed LD panels (LD-imputed) for the four species. The
LD panels were designed with the physical-distance-based method. The ribbons represent the standard deviations over 20 replicates of fivefold cross-
validation analyses. The y-axis in these graphs ranges from 0.2 to 0.8 to facilitate the comparison between the LD and LD-imputed prediction accuracies.
The Atlantic salmon LD panels (A) were imputed to 78,035 SNPs, the turbot (B) to 11,069 SNPs, the common carp (C) to 8,103 SNPs and the Pacific
oyster (D) to 16,447 SNPs with FImpute v.3 software.
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incorrect order of markers. If we exclude centromeres and telomeres,
regions with high imputation errors can be related to the patterns of
linkage disequilibrium throughout the genome. SNPs with incorrect
positions on the genetic map or SNPs wrongly assigned to chromosomes
are challenging to impute, because they are not in linkage disequilibrium
with the neighbouring markers on the map (Druet et al., 2010; Yoshida
et al., 2018).Overall, as the density of the LDpanels increased, imputation
accuracy at the extremes and throughout the chromosomes increased
due to the increased resolution of recombination patterns (Yoshida et al.,
2018; Fernandes Júnior et al., 2021).

4.3 Genomic prediction accuracy

Low-cost genomic selection is successful when the genotype
data of LD panels accurately capture the genetic variation among

the training and prediction individuals, resulting in no or minor loss of
prediction accuracy when compared to HD genotypes. In this study, we
achieved highly accurate genomic breeding value estimates for SNP
densities as low as 300 SNPs for the Atlantic salmon, turbot and
common carp populations. Small numbers of markers were sufficient
probably because the shared haplotypes and linkage blocks between the
reference and target individuals are long (full and half-sibs of the test
population present in the reference population), and therefore their
effects can be captured even with a small number of markers. Further,
the number of families in a standard aquaculture breeding programme
is small (100–200 families). The small effective population size and the
degree of relatedness between individuals can explain the good
performance of extremely low-density SNP panels.

Other studies have shown that a small number of markers and
imputation are sufficient for accurate genomic prediction. For
example, Gorjanc et al. (2017) suggested that 200 SNPs (20 SNPs

FIGURE 6
Prediction accuracies estimated for the high-density (HD), the low-density (LD random) and the imputed LD panels (LD random imputed), when
SNPs were randomly selected for the four species. The y-axis in these graphs ranges from 0.2 to 0.8 to facilitate the comparison. The Atlantic salmon LD
panels (A)were imputed to 78,035 SNPs, the turbot (B) to 11,069 SNPs, the common carp (C) to 8,103 SNPs and the Pacific oyster (D) to 16,447 SNPs with
FImpute v.3 software.
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per chromosome for a 10 chromosome simulated genome of
20,000 SNPs in total) imputed to HD can result in prediction
accuracies comparable to HD panels in plant populations with a
structure similar to that of aquaculture populations. Delomas et al.
(2023), in a simulation study in oysters, achieved nearly maximal
accuracy of genomic estimated breeding values by using 250–500 LD
panels imputed to 40,000 SNPs. However, we did not observe similar
high prediction accuracy results in our study with the Pacific oyster
population we tested. In a study in Atlantic salmon, imputed
genotype data from a ~250 LD SNP panel achieved comparable
genomic prediction accuracy results to the true genotype data in Tsai
et al. (2017); Yoshida et al. (2018) studied a two-generation Atlantic
salmon population and suggested a genotyping strategy which
combines genotyping all the parents and 10% of offspring with a
HD panel, while the rest of the progeny are genotyped with a
500 SNPs panel and imputed to HD to achieve identical genomic
prediction accuracies as with the 50,000 SNP panel. In another
Atlantic salmon study, genotyping offspring at the very LD of
200 SNPs and imputing them with FImpute 2.2 to their parents’
medium-density panel (5,000 SNPs) achieved almost the same
genomic prediction accuracy as the true medium-density panel
(Tsairidou et al., 2020). There is a general consensus that
imputation leads to close to maximal prediction accuracy.

Our findings demonstrate that for three out of the four species
tested, the accuracy of genomic prediction is heavily dependent on
the choice of SNPs when using the LD panels without imputation.
The selection of evenly distributed SNPs in the LD panels resulted
in markedly higher prediction accuracies when compared to that
obtained with randomly selected SNPs. Whilst evenly distributed
SNPs did not benefit from imputation, since the accuracy was
already similar to that obtained with HD panels, imputation
significantly increased the accuracy of randomly selected LD
panels, bringing it in line with HD genotypes. In conclusion,
the choice of SNPs in the LD panel is crucial when they are
used without imputation for genomic selection; however, if
imputation is used the choice of SNPs in the panel is irrelevant.
Considering that the LD panel would have to be designed
specifically for the target population, and that its performance
might decrease as the genetic makeup of the population changes
with each generation of selection, imputation is an exceptional tool
to ensure that near-maximum prediction accuracies are obtained
in every scenario.

Imputation accuracy did not affect prediction accuracy in the three
fish species tested, with imputation accuracies of 0.76–0.98 depending
on the number of SNPs in the LD panel resulting in similar prediction
accuracies. However, this is not true in oysters, where the prediction
accuracy of the imputed LD panel was significantly lower than that
achievedwith the LD panel alone, evenwhen the number of SNPs in the
LD panel was increased to 6,000 (Figure 5D). In this dataset, imputation
accuracy was lower compared to the other species (Figure 1), which can
probably explain why the LD panels outperformed the imputed panels.
Because of the rapid decay of linkage disequilibrium in the Pacific
oyster, breeding candidates require regular testing on close relatives to
preserve high accuracy levels between generations in a breeding
programme (Gutierrez et al., 2020). Nonetheless, more studies in
bivalve species are necessary to determine if this is a general
phenomenon or rather specific to the dataset studied here.

4.4 Cost reduction by using LD panels and
genotype imputation

A significant cost reduction can be achieved by sequencing the
target population with a very low-density panel (300–500 SNPs),
which should still provide maximal prediction accuracy when
combined with imputation to HD, using a reference population
containing relatives of the target population. While using the LD
panels alone could result in a further reduction of the cost of
genomic selection, we consider that the potential risk is not worth
it since the number of animals that have to be genotyped at HD for
imputation is low (i.e., the number of animals in aquaculture
broodstock populations is usually around 100). In any case, if we
estimate the cost of HD genotyping at $15 and the cost of LD
genotyping at $12, for a relatively small population of
5,000 animals, the use of LD panels would result in a reduction
of the cost in the application of genomic selection of 20%
($75,000 vs. $60,000). Considering that the cost of HD
genotyping is usually higher for most aquaculture species and
that most species require the use of genetic tools to reconstruct the
pedigree, LD panels and imputation can play an important role in
the incorporation of genomic selection into aquaculture breeding
programmes worldwide.

5 Conclusion

In this study, we explored the use of LD panels and imputation to
reduce the cost of genomic selection in aquaculture breeding
programmes, exploring different imputation software and SNP
selection methods. Imputation accuracies were very high for the
three fish species tested, while the performance of imputation was
markedly lower in our oyster dataset. FImpute v.3 was the fastest and
most accurate imputation method in almost all scenarios tested.
When the LD panels were used without imputation, LD panels
with the SNPs evenly distributed across the chromosomes achieved
prediction accuracies very similar to the HD panel in the three fish
species, even with just 300 SNPs, while randomly selected LD panels
resulted in markedly lower prediction accuracies. However,
imputation significantly increased the prediction accuracy of the
randomly selected LD panels, reaching values similar to those of
the HD panel in the fish species. Our results indicate that genotyping
cost for the implementation of genomic selection can be reduced by
the use of LD panels or a combination of LD panels and imputation.
While the use of appropriately selected LD SNP panels would be more
cost-effective, we suggest the use of imputation to eliminate the risk
from potential changes in performance of the LD panels. This
manuscript will help facilitate the widespread adoption of genomic
selection in commercial aquaculture, leading to increased production
and stability.
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