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Background: Accumulating evidence suggests that postmenopausal osteoporosis
(PMOP) is a common chronic systemic metabolic bone disease, but its specific
molecular pathogenesis remains unclear. This study aimed to identify novel
genetic diagnostic markers for PMOP.

Methods: In this paper, we combined three GEO datasets to identify differentially
expressed genes (DEGs) and performed functional enrichment analysis of PMOP-
related differential genes. Key genes were analyzed using two machine learning
algorithms, namely, LASSO and the Gaussian mixture model, and candidate
biomarkers were found after taking the intersection. After further ceRNA
network construction, methylation analysis, and immune infiltration analysis,
ACACB and WWP1 were finally selected as diagnostic markers. Twenty-four
clinical samples were collected, and the expression levels of biomarkers in
PMOP were detected by qPCR.

Results:We identified 34 differential genes in PMOP. DEG enrichment was mainly
related to amino acid synthesis, inflammatory response, and apoptosis. The ceRNA
network construction found that XIST—hsa-miR-15a-5p/hsa-miR-15b-5p/hsa-
miR-497-5p and hsa-miR-195-5p—WWP1/ACACB may be RNA regulatory
pathways regulating PMOP disease progression. ACACB and WWP1 were
identified as diagnostic genes for PMOP, and validated in datasets and clinical
sample experiments. In addition, these two genes were also significantly
associated with immune cells, such as T, B, and NK cells.

Conclusion: Overall, we identified two vital diagnostic genes responsible for
PMOP. The results may help provide potential immunotherapeutic targets
for PMOP.
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Introduction

Postmenopausal osteoporosis (PMOP) is a systemic
metabolic phenomenon of low bone density and
microstructural changes in postmenopausal women due to
decreased estrogen levels (Marcus, 2002; Black and Rosen,
2016). The pathogenesis is mainly due to the imbalance of
bone turnover balance caused by the decrease in estrogen
secretion. Specifically, ovarian function and estrogen levels
decreased in postmenopausal women, which resulted in
decreased bone formation and increased bone resorption
during bone remodeling, leading to decreased bone mass,
decreased bone density, and increased fracture risk (Sotozono
et al., 2022). In addition, factors such as poor diet, lack of
exercise, smoking, and alcohol consumption may all play a
role in the pathogenesis of postmenopausal osteoporosis.
Osteoporosis (OP) affects more than 200 million
postmenopausal women worldwide (Zhao et al., 2019), which
is still increasing. OP affects 35 percent of postmenopausal
women in the United States and causes approximately
1.5 million fractures yearly (Kamienski et al., 2011; de Bakker
et al., 2018). When a hip fracture occurs, limb function and
quality of life are significantly reduced, and medical costs and
annual mortality also gradually increase (Zhang et al., 2020).
Globally, postmenopausal women over 50 have a 50% risk of
fracture due to OP, but most of these are preventable (Eastell
et al., 2016). It has been estimated that osteoporotic fractures
cause an excess of mortality of 9% for women and 24% for men at
1 y postfracture, and 24% and 26% 5 y postfracture (Mullin et al.,
2020), respectively. Changes in molecular and cellular regulatory
characteristics and biochemical processes of PMOP patients have
attracted great interest in the discovery of neonatal markers
(Lewiecki, 2011). Despite numerous studies on PMOP, the
molecular mechanism of pathogenesis is still not fully
understood. PMOP with delayed treatment is associated with a
higher fracture risk (Chen et al., 2016). It is known that early
recognition of PMOP is essential for early treatment and can even
change the outcome of OP-induced fractures (Stepan et al., 2019).
Currently, areal bone mineral density measurements obtained by
dual-emission X-ray absorptiometry (DXA) are considered to be
the most important predictor of the fracture risk; bone mineral
density (BMD) only reflects bone mass. In addition, DXA is a
multi-step process that requires demographic information,
patient location, correct image analysis, and human
identification. More than 90% of DXA tests or reports one or
more errors, and approximately 80% of errors are related to
image data analysis. DXA test errors may potentially impact
patient management (Messina et al., 2015). Therefore, using big
data to analyze disease-causing molecular characteristics of
patients is an effective strategy to screen biomarkers for
potential diagnosis and treatment.

PMOP is closely related to the immune system (Arron and Choi,
2000). In addition to the direct negative effects of estrogen deficiency
in bone, the indirect effects of altered immune status in
postmenopausal women may lead to persistent bone destruction
as postmenopausal women often exhibit chronic low-grade
inflammatory phenotypes, altered cytokine expression, and
altered immune cell profiles. Previous studies have shown that

lymphocytes in PMOP patients are significantly reduced,
especially B lymphocytes, and apoptosis may be the primary
mechanism of osteocyte regulation in PMOP patients (Breuil
et al., 2010). At present, many bone protective agents are
undergoing clinical trials for PMOP, such as denosumab,
zoledronate, and teriparatide (Kendler et al., 2018; Reid et al.,
2018; Tsai et al., 2019), but there are still bone loss, secondary
fractures, and other events after the treatments. At the same time, a
large number of studies (Reppe et al., 2017) have confirmed that
epigenetics is involved in the occurrence and development of
PMOP, participating in the differentiation of various bone cells
by affecting the expression of multiple signaling pathways and
related regulatory proteins, and epigenetics may be used as a
diagnostic marker.

Due to the heterogeneity of tissues or samples in independent
studies, most gene array results were either limited or inconsistent,
particularly focused on a single cohort study or the algorithm needed
to be updated, resulting in poor repeatability and consistency of the
results. The goal of the treatment of PMOP is to prevent and reduce
the risk of fracture and improve the quality of life of patients. There
is an urgent need to find the methods of early diagnosis and
treatment to improve the prevention and control measures of
PMOP, and reduce the burden of medical costs associated with
the occurrence and progression of PMOP. Multiple machine
learning methods and expression spectrum analysis techniques
were used to optimize these shortcomings. In this study, a
comprehensive bioinformatics was used to explore biomarkers
and potential therapeutic targets related to PMOP, and clinical
specimens were collected for experimental verification.

Materials and methods

Data sources

The postmenopausal osteoporosis (PMOP) data were collected
from the Gene Expression Omnibus (GEO) database (http://www.
ncbi.nlm.gov/geo/). The array-based gene expression profiles of
monocytes from 20 PMOP and 20 normal controls were
included in the GSE56815 dataset. Another profile of monocytes
from 26 PMOP and 16 normal controls was included in the
GSE56814 dataset. The gene expression profiles of B cells in
blood from 10 PMOP and 10 normal controls were included in
the GSE7429 dataset. The raw data in these four datasets were
removed of their background and normalized using the RMA
algorithm affy package (Gautier et al., 2004).

Clinical specimens

A total of 24 female participants aging from 48 to 59, including
12 PMOP patients and 12 control volunteers, were recruited from
Jingzhou No. 1 People’s Hospital. The PMOP patients were
diagnosed based on the fragility of the fractures in the
postmenopausal women (Camacho et al., 2016), who were
excluded if they had the following diseases: cancer, thyroid,
rheumatoid arthritis, diabetes, oral bisphosphonate treatment, use
of hormonal treatment, or other metabolic diseases.
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Analysis of differential gene expression

First, the gene expression profiles were constructed for each
sample of PMOP and controls. Two gene expression profiles
(GSE56815 and GSE56814) were merged into an independent
dataset. Then, the inter-batch difference was removed with the
removeBatchEffect function, and the differentially expressed
genes (DEGs) between the PMOP and control groups in the
datasets (GSE56815 and GSE56814) were identified using the
limma package in R software (Ritchie et al., 2015). Similarly,
differentially expressed genes in the GSE7249 dataset were
calculated using the limma package in the R environment. A
screening threshold of |log2FC| > 1 and p < 0.05 were set to
obtain DEGs between PMOP and controls. Finally, DEGs in
PMOP were analyzed to obtain the common genes.

Enrichment analysis

The gene set variation analysis (GSVA) software package
was used to identify the gene sets that were differentially
expressed between the PMOP groups and controls in
biological processes and signaling pathways (Hänzelmann
et al., 2013). The two reference gene sets, namely, c5. bp.v7.1.
symbols.gmt and c2. cp.kegg.v7.1. symbols.gmt (Liberzon et al.,
2015), were obtained from the MsigDB v7.1 database. GSEA was
used to define DEGs in the KEGG pathway using the hallmark
gene sets (h.all.v7.2. symbols) (Halvorsen et al., 2019). GSEA
was also used to identify signaling pathways that were positive or
negative correlated hallmarks in the PMOP patients relative to
the controls. The enrichment results of GSEA were displayed by
the fgsea software package in R (Subramanian et al., 2005). The
screening condition with statistical significance enrichment
results was p < 0.05.

LASSO regression

The diagnostic markers for PMOP were screened by the most
minor absolute shrinkage and selection operator (LASSO)
logistic regression. After quality control, two gene expression
matrices (GSE56815 and GSE56814) were merged into an
independent dataset. As a training set, 75% of the samples in
the independent dataset were randomly selected. As λ increases,
LASSO often shrinks the regression coefficient to zero. As a
validation set, 25% of the samples in the independent dataset
were chosen. The model effect of the obtained diagnostic markers
was shown based on this independent dataset. The glmnet
package in R was used for the LASSO algorithm (Friedman
et al., 2010).

Gaussian mixture and logistic regression
models

The DEGs were analyzed using the online site of STRING
(https://string-db.org), and the protein–protein interaction (PPI)
network based on the connected nodes in the network was

displayed. In order to further understand and predict the
cellular function and biological behavior of the identified
genes, we used STRING with a confidence score greater than
0.4 as the significance truncation criteria. DEGs with connected
nodes in the network were used to build a Gaussian mixture
model (GMM) using the mclust package in R (Browne et al.,
2012). The hierarchical aggregation clustering method was used
for classification based on the Gaussian finite mixture model.
GMM was used to classify the mRNA clusters. The combined
models used to predict PMOP were constructed using the logistic
regression analysis. The receiver operating characteristic (ROC)
curves were constructed to evaluate the predictive value of the
models using the area under the curve (AUC). The optimal model
was selected for further analysis. Finally, the common
intersection of genes in LASSO and GMM was considered.

Prediction of target miRNAs

miRNAs targeted in the aforementioned cross genes were
predicted with mirDIP. The top 1% of miRNAs scores (Tokar
et al., 2018) were processed by Cytoscape V 3.7.1., and miRNAs
targeting more than two genes were selected.

Construction of ceRNA networks

In order to study the interaction and target-binding
relationship among different types of ceRNA in PMOP, the
online tool StarBase (version 3.0) was used to predict
upstream molecules’ lncRNAs interacting with the selected
miRNAs (Li et al., 2014). miRNAs were set as the initial
target, and their corresponding miRNAs and lncRNAs were
connected. The predicted lncRNA, miRNA, and mRNA-
targeted binding relationships were visualized using ceRNA-
targeting relationship analysis results.

Single-sample gene set enrichment analysis
(ssGSEA)

Different marker gene sets of different immune cells types
were identified by Bindea et al. (2013). The ssGSEA function in
the GSVA package was used to predict gene signatures expressed
by the immune cell populations (Hänzelmann et al., 2013).
Correlations between levels of infiltration by different
types of immune cells and genes were identified based on
Pearson’s correlation, and p < 0.05 was regarded as
statistically significant.

Methylation analysis

The GSE99624 dataset included array-based gene methylation
profiles of whole blood from 28 patients and 10 healthy controls.
The ChAMP package in R was used to display the data results (Tian
et al., 2017). The limma package in R was used to assess the
methylation levels in PMOP and healthy controls.

Frontiers in Genetics frontiersin.org03

Huang et al. 10.3389/fgene.2023.1198417

https://string-db.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1198417


Quantitative reverse transcription
polymerase chain reaction (qPCR)

Bone tissue samples were collected from participants using
aseptic techniques. After the bone tissue sample was flattened, it
was put into a mortar and ground to powder at low temperature with
appropriate liquid nitrogen. The bone meal was collected in the
centrifuge tube, 1 mL TRIzol was added, thoroughly mixed, and
refrigerated at 4°C overnight. After centrifugation at 12,000 rmp at
4°C for 5 min, the supernatant was absorbed. Then, 0.2 mL
chloroform was added, centrifuged again for 15 min, followed by
addition of isopropyl alcohol of equal volume for 15 min, and
retained precipitation. Add 1 mL 75% ethanol to the precipitate and
centrifuge for 5 min to maintain the sediment. The aforementioned
steps were repeated twice, dried until translucent, and DEPC water
was added to dissolve the RNA precipitates. Total RNA from each
sample was isolated from the bone tissue using the TRIzol® reagent
(Ambion Life Technologies, Carlsbad, CA, United States). The
sample RNA was used as a template for reverse transcription
into cDNA using the HiScript II Q RT SuperMix in the qPCR
Kit (Vazyme, Nanjing, China). Quantitative real-time PCR (qPCR)
was performed using SYBR Green® Premix Ex Taq™ (Vazyme,
Nanjing, China). The cycle length of the two PCR groups was 40
cycles to amplify DNA products, and the annealing temperature was
58 °C. GAPDH was used as internal reference, and the 2−ΔΔCT

method was used to analyze the qPCR results. The used specific
primer sequences are as follows: the ACACB-forward primer (ATG

TTCAGGCAGGCTCTCTT), reverse primer (ATTTCCACCAGG
AAGTCGGT); WWP1-forward primer (CCCGGCAGACATTGT
TTGAA), reverse primer (CTCTCGCTAGGCCACCATAA); and
GAPDH-forward primer (GGGAAACTGTGGCGTGAT), reverse
primer (GAGTGGGTGTCGCTGTTGA).

Statistical analysis

The gene expression difference between the two groups was
statistically analyzed by the ggpubr package of R software. Gene
expression data and all statistical analyses used R 4.0.0 (https://www.
r-project.org/), GraphPad Prism 7.0 statistical software, and SPSS
22.0. When it conforms to the normal distribution, the two groups
were compared by two independent sample t-tests. The Wilcoxon
test was used for comparison between the two groups when it did not
conform to the normal distribution. p < 0.05 was regarded as
statistically significant.

Results

Data preprocessing and DEG screening

The flowchart of this study is shown in Figure 1. The
removeBatchEffect method was used to remove the batch effect
between the datasets. The merged datasets were normalized and

FIGURE 1
Flowchart of this study. The following datasets were used for identification of the potential diagnostic genes and mechanisms associated with the
development of osteoporosis (PMOP): GSE56815, GSE56814, and GSE7429. Abbreviations: AUC, area under the receiver operating characteristic curve;
GSVA, gene set variation analysis; PPI, protein–protein interaction; GSEA, gene set enrichment analysis; LASSO, least absolute shrinkage and selection
operator.
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presented in the form of the PCA cluster plot before and after
normalization (Figures 2A,B).

DEGs in PMOP

To identify PMOP associated genes, we analyzed genes
differentially expressed between PMOP and control groups. A
total of 476 DEGs in PMOP were obtained from the
GSE56815 and GSE56814 datasets (Figure 2C; Supplementary
Table S1) and 926 DEGs in PMOP from the GSE7429 dataset
(Figure 2D; Supplementary Table S2). A total of 34 consistent
DEGs were identified from the three gene expression profile
datasets (Figure 2E; Supplementary Table S3).

Enrichment of DEGs

Based on the analysis of the GO enrichment, and KEGG
pathway and GSVA of module genes, we found that intracellular
calcium-activated chloride channel activity, actin-based cell
projection, and anion channel activity of biological processes
were enriched in the PMOP patients compared with the controls
(Figure 3A). Among KEGG pathway results, valine, leucine, and
isoleucine biosynthesis; arachidonic acid metabolism; and nitrogen
metabolism were enriched in PMOP compared with controls.

Conversely, protein export, Notch signaling pathway, and
ribosomes were enriched in controls (Figure 3B). GSEA was used
to study the potential biological processes and mechanisms of
PMOP in different clusters (Figure 3C). The results revealed that
the hallmarks of PMOP, including the inflammatory response
(normalized enrichment score (NES) = 1.62), the estrogen
response rate (NES = 1.26), KRAS signaling up (NES = 1.19),
apoptosis (NES = 1.34), and TNFα signaling via NF-κB (NES =
1.37), were significantly and positively associated with PMOP.
However, E2F targets (NES = −1.60) and MTORC1 signaling
(NES = −1.43) were significantly and negatively associated
with PMOP.

Identification of genes with LASSO
regression

We randomly split the independent datasets (GSE56815 and
GSE56814) into training (75%) and validation sets (25%). In the
training set, common genes were used to construct the LASSO
model. A λ value of 18 was selected as the best variable screening to
determine the model gene that most accurately predicted PMOP
(Figure 4A). Then, we drew a non-zero coefficient of 18 gene
signatures (Figure 4B). The AUC values of gene signature in the
training and validation sets were 0.931 and 0.741, respectively
(Figure 4C).

FIGURE 2
Two-dimensional PCA cluster plot before and after sample correction. (A) Two-dimensional PCA cluster plot of the GSE56815 and
GSE56814 datasets before sample correction. (B) Two-dimensional PCA cluster plot of the GSE56815 and GSE56814 datasets after sample correction;
yellow represents the osteoporosis (PMOP) group, and sky blue represents the normal control group. Volcano map and Venn diagram of differentially
expressed genes (DEGs). (C) Genes differentially expressed between PMOP and controls in the GSE56815 and GSE56814 datasets. (D) Genes
differentially expressed between PMOP and controls in the GSE7429 dataset. (E) Intersection of differentially expressed genes (DEGs) in the GSE56815,
GSE56814, and GSE7429 datasets. The count on the left refers to DEGs unique to GSE56815 and GSE56814; the count in the middle, DEGs common to
both datasets; and the count on the right, DEGs unique to GSE7429. DEGs were selected by |log2FC| > 1 and p < 0.05. Red represents upregulated
differential genes, purple represents no significant difference genes, and blue represents downregulated differential genes. FC, fold change.
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Identification of key genes associated with
PMOP

First, we performed PPI network analysis of the DEGs with
connection points (Figure 5A). The correlation between the
expression values of 12 candidate mRNAs and the AUC values
screened in PMOP analysis was evaluated by logistic regression
analysis. The logistic regression model of 12 mRNA candidates
produced 8,191 formulas. More importantly, decisive GMM-based
clustering was used, with superior clustering performance (Li et al.,
2008; Liu et al., 2016; Ficklin et al., 2017). Then, the gene sets were
clustered using the GMM (instead of the 8191 formulas) and AUC
algorithms into eight clusters. Afterward, among the eight clusters,
the cluster with the highest AUC was selected as the signature for
predicting the occurrence of PMOP. Hence, ACACB (acetyl-CoA
carboxylase beta), ADORA3, BUD31, CCL13, RBCK1, WWP1
(WW domain-containing E3 ubiquitin protein ligase 1),
SLC39A8, KCNC1, and RPL27A signatures showed an average
accuracy of 0.85 using the GMM classifier in one of the

8,191 formulas (Figure 5B). The common genes ACACB,
ADORA3, BUD31, CCL13, RBCK1, and WWP1 obtained by
LASSO and GMM were selected (Figure 5C). Among them,
ACACB, ADORA3, and CCL13 were upregulated in PMOP,
while BUD31, RBCK1, and WWP1 were downregulated
(Figure 5D). The expression values of these genes were validated
based on samples from independent datasets (GSE56815 and
GSE56814).

Prediction of target miRNAs and
construction of the co-expressed network

The target miRNAs of hub genes were predicted using the
mirDIP database. Finally, 101 target miRNAs of six specifically
expressed hub genes were selected and 102 mRNA–miRNA pairs
were determined. An mRNA and miRNA co-expression network
consisting of 98 nodes and 102 edges was constructed by Cytoscape
(Figure 6).

FIGURE 3
Biological functions and KEGG pathways enriched in DEGs. GSVA identified the biological processes (A) and KEGG pathways (B) between the DEGs
of patients with PMOP. (C) DEGs involved in upregulated or downregulated KEGG pathways of GSEA results in PMOP patients relative to controls. p <
0.05 was considered statistically significant.
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Prediction of target lncRNAs and
construction of ceRNA networks

The lncRNAs that interacted with selected miRNAs were
predicted using starBase 3.0. The selection conditions were the
human h19 genome and the highest reliability (very high
stringency ≥5). Finally, we obtained five target lncRNAs of the
target miRNAs of RBCK1, six target lncRNAs of the target
miRNAs of ACACB, and two target lncRNAs of the target
miRNAs of WWP1. Cytoscape software was used to construct
and show ceRNA networks based on the prediction results
(Figure 7A). Subsequently, we conducted literature retrieval
and selected four reported miRNAs and two lncRNAs in bone
metabolism for further analysis. We propose that XIST-miR-15a-
5p/miR-15b-5p/miR-497-5p and miR-195-5p-ACACB/
WWP1 might be potential RNA regulatory pathways to
regulate the disease progression of PMOP (Figure 7B). Among
them, ACACB and WWP1 were recognized as key genes and may
be able to diagnose PMOP.

Methylation marks in PMOP

To identify key genes that may be modified by methylation in
patients with PMOP, we identified differentially methylated
positions (DMPs) between PMOP and control groups in
GSE99624 (Supplementary Figure S1A). DMPs were acquired
and identified as methylation markers when the direction of delta
beta values differed from that of normal DEG expression values.

There were a total of 412,481 methylation markers that were
identified (Supplementary Figure S1B). Among them the
methylation levels of RBCK1 (cg25635139) were lower in PMOP
than that in the control and that of ADORA3 (cg0054397) was
higher in PMOP (Supplementary Figure S1C,D).

Immune cell infiltration in PMOP

On one hand, the correlations between key genes and 24 types of
immune cells were analyzed based on the ssGSEA function
(Figure 8A). Correlation analysis showed that the level of
ACACB was positively correlated with Tfh cells, the level of
WWP1 was positively related to B cells and NK cells, and the
level of ADORA39 was positively related to macrophages and T
helper cells. In contrast, the level of RBCK1 was negatively related to
Th1/Th2 cells. Therefore, hub genes might play an important role in
the function of the immune cells. On the other hand, ssGSEA scores
were calculated for these subtypes to generate immune cell
interaction networks. The results showed that the differentially
infiltrated immune cells were divided into four clusters
(Supplementary Figure S2). In addition, significant cross-talks
among the four clusters were found. They were further validated
using qPCR analysis. Consistent with the prediction, the qPCR
results showed that the expression levels of ACACB in bone
tissue of the PMOP patients were higher than that of the healthy
controls. The protein levels of WWP1 in the PMOP group were
significantly decreased compared with that of the control group
(Figures 8B,C).

FIGURE 4
Potential key genes for the diagnosis of PMOP. (A) Gene signature selection of optimal parameter (lambda) in the LASSO model. (B) LASSO
coefficient profiles of the 18 differentially expressed genes selected by the optimal lambda. (C) Receiver operating characteristic (ROC) curves of the gene
signature in the training and testing sets of GSE56815 and GSE56814, respectively.
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Discussion

The main feature of PMOP is that the rapid decline of the
ovarian function and estrogen content in postmenopausal women
leads to rapid bone loss and an increased risk of fracture, a systemic
bone metabolic disease. Early recognition of PMOP can effectively
prevent bone damage, which is the key to timely treatment and
improving life quality. Clinicians have a great subjective initiative in
diagnosing PMOP, and the operation process of DXA is tedious,
especially in the aspects of patient positioning, correct image
analysis, and manual recognition; there are significant errors,
which becomes a problem for the accurate diagnosis of POMP.
Clinically, bone markers, such as serum procollagen type I
N-terminal propeptide (s-PINP), serum C-terminal telopeptide
type I collagen (s-CTX), and urinary N-telopeptide (NTX), are
commonly used to assess the bone level in bone diseases.
However, S-CTX and S-P1NP have limitations due to the lack of
normative reference population database and inadequate quality
control standardization (Hackl et al., 2016). Moreover, these
markers were influenced by multiple sources of variability,
including daily intake and recent fractures (Eastell and Szulc,
2017). The diagnosis of PMOP is difficult due to the difference
of the medical diagnosis level and the lack of effective biomarkers. In

this context, studying new potential biomarkers for PMOP,
especially early and effective diagnosis before the occurrence of a
fracture, will prove important for both clinical practice and
translational research.

In this study, we conducted extensive bioinformatic analysis of
PMOP sequencing data to explore the molecular regulatory
mechanism of PMOP. Importantly, a combination of the LASSO
and Gaussian mixture models is used to identify potential diagnostic
markers for PMOP. We further determined the potential
biomarkers and methylation statuses associated with PMOP. We
identified ADORA3, RBCK1, ACACB, WWP1, BUD31, and
CCL13 as having a potential diagnostic role in PMOP, and the
relationship between these potential diagnostic markers and
immune cells. Moreover, ADORA3 and RBCK1 are modified by
methylation, which may facilitate the diagnosis of PMOP.

Based on analysis of differential expression genes between
PMOP and control samples, we identified 34 DEGs. GO
enrichment analysis revealed that the intracellular calcium-
activated chloride channel activity and actin-based cell projection
were stronger in the PMOP samples than those in the control
samples. KEGG pathway analysis of DEGs indicated that the
amino acid metabolism, such as valine, leucine, and isoleucine
biosynthesis, and the regulation of arachidonic acid metabolism,

FIGURE 5
Screening and verification of diagnostic markers. (A) Protein–protein interaction (PPI) network of 12 genes; (B) pattern of the logistic regression
model correlated with the AUC scores and was identified by a Gaussian mixture. There are eight clusters of 8,191 combinations. (C) Venn diagram shows
the intersection of diagnostic markers obtained by the two algorithms. (D) Differential expression of key genes between PMOP patients and controls in
GSE56815 and GSE56814, respectively. *p < 0.05; **p < 0.01.
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were stronger in the PMOP samples than those in the control
samples. Conversely, protein export and ribosomes were enriched
in controls. GSEA enrichment analysis also showed that DEGs were
primarily enriched in the inflammatory response, immune response,
and signal transduction. GO, KEGG, and GSEA enrichment
analyses all showed that PMOP had strong inflammatory
activation and signal transduction, which were the main causes
of bone destruction caused by inflammation and estrogen
imbalance. It is well known that bone destruction is the primary
clinical manifestation of PMOP (Wehmeyer et al., 2016; Xu et al.,
2017).

Based on the STRING website, we selected the differentially
related genes for Gaussian mixture model analysis, nine genes were
identified, and ROC analysis showed that they had a high diagnostic
value. We combined the 18 genes analyzed by the LASSO model
with the aforementioned genes, and the common genes selected are
as follows: ADORA3, RBCK1, ACACB,WWP1, BUD31, and CCL13.
Among them, ADORA3 and RBCK1 expression may be modified by
methylation.

At present, ADORA3 has not been reported in PMOP-related
studies. However, in our research, ADORA3 was upregulated in the
PMOP. The gene ADORA3 (also called A3AR) is a subtype of the
adenosine receptor family (Guzman-Aranguez et al., 2014).

Adenosine is called a retaliatory metabolite because it is
expressed in response to injury or stress, when ATP is typically
released outside the cell and metabolized to adenosine (Della Latta
et al., 2013). The study found that ADORA3, an adenosine receptor
regulated by pulsed electromagnetic field (PEMF), underwent
CRISPR Cas9-mediated gene disruption. The mRNA and protein
levels of osteocalcin and alkaline phosphatase in mouse
preosteogenic cells were significantly decreased during the whole
PEMF stimulation period (Kar et al., 2021). These results lead us to
propose that the adenosine receptor ADORA3 plays an important
role in PEMF-mediated osteoblast differentiation. A3AR is highly
expressed in inflammatory cells and manifested in peripheral blood
mononuclear cells in rheumatoid arthritis (Fishman and Cohen,
2016). Elevated extracellular adenosine levels are closely related to
inflammatory conditions. Adenosine can regulate TLR-induced
cytokine expression. A study of IL-12 expression in human
myeloid APC found that both TLR and IL-12 expression were
reduced in dendritic cells when adenosine receptor-mediated
signal transduction was blocked. Both IFN-γ and IL-17, produced
by T cells, were also significantly inhibited (van der Putten et al.,
2019). In a rat model of diabetic nephropathy, ADORA3, as an
upstream factor, when antagonized, can significantly inhibit the
expression of downstream inflammatory cells and block the nuclear

FIGURE 6
Co-expressed network ofmRNAs and targetmiRNAs. ThemRNA–miRNA co-expressed network was constructed by Cytoscape including 98 nodes
and 102 edges. One node represents mRNA or miRNA, while one edge represents one interaction of mRNA and miRNA. Green diamonds represent the
hub genes, and purple circles represent miRNAs.
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FIGURE 7
Potential RNA regulatory pathway for a ceRNA network. (A) ceRNA network of WWP1, RBCK1, and ACACB. (B) ceRNA network of WWP1 and ACACB.
Blue diamonds represent the hub genes, purple circles represent miRNAs, and the green triangles represent lncRNAs.

FIGURE 8
Immune cell situation in PMOP patients. (A)Correlation between key genes and immune infiltrating cells, based on Pearson correlation analysis. Red
nodes represent positive correlations, and blue nodes, negative correlations. mRNA expression in PMOP patients. (B–C) QPCR results show that the
expression levels of ACACB in PMOP patients were obviously higher than that of the healthy controls. However, the expression levels of WWP1 in PMOP
patients were obviously lower than that of the healthy controls. Three independent experiments were performed. Similar results were obtained in
each experiment, and the result of the representative experiment was presented. *p < 0.05; **p < 0.01. PMOP group versus the control group.
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localization of nuclear factor kappa B (NF-κB) (Garrido et al., 2019).
In chronic inflammatory diseases, PMOP is a common complication
(Rao et al., 2018) and further bone destruction can be prevented by
downregulating inflammatory cytokines. A3AR is highly expressed
in inflammatory cells (Fishman and Cohen, 2016), so we believe that
A3AR is a very effective biomarker for diagnosis, prevention, and
treatment of PMOP.

RBCK1 interacts with two other ubiquitin ligases, namely, HOIP
and SHARPIN, to form a linear ubiquitin chain assembly complex
(LUBAC), which is a multi-immune signaling pathway (MacDuff
et al., 2018). The NF-κB pathway is strictly regulated by various
mechanisms including ubiquitination. Mutations in these regulatory
pathways can lead to diseases (Steiner et al., 2018). As a key signaling
pathway of inflammation and immune response, NF-κB signaling is
attenuated and induces cell apoptosis and inflammation without
RBCK1, HOIP, and SHARPIN (Tokunaga and Iwai, 2012). In breast
cancer, the upregulated expression of RBCK1 mRNA is positively
correlated with the expression of the estrogen receptor, and it is
proposed that RBCK1 can be used as a diagnostic biomarker for
breast cancer (Kharman-Biz et al., 2018). RBCK1 binds to ERα at the
promoter of the estrogen-responsive gene PS2 and regulates PS2
levels (Donley et al., 2014). Our study found that RBCK1 expression
was downregulated in PMOP patients, and the decrease of estrogen
in the patients after menopause may be one of the factors. It was
further demonstrated that RBCK1 positively correlated with the
estrogen level. We believe that RBCK1 is a new biomarker for the
diagnosis of PMOP.

In addition, we constructed mRNA–miRNA co-expression
networks and ceRNA networks of common genes to discuss the
molecular pathogenesis of PMOP at the transcriptome level. Based
on the ceRNA hypothesis, miRNAs in PMOP were screened out for
further analysis. Between the target miRNAs of WWP1 and
ACACB, the hsa-miR-497-5p expression was upregulated in stem
cells from apical papilla. The hsa-miR-195-5p expression was
downregulated in femoral head collapse (Li et al., 2017).
Additionally, although miRNAs hsa-miR-15a-5p and hsa-miR-
15b-5p have not been reported in PMOP, they have been
reported to be upregulated in another bone disease, multiple
myeloma (Li Z. et al., 2020).

Moreover, it has been reported that lncRNA XIST is upregulated
in plasma andmonocytes of patients with PMOP (Chen et al., 2019).
Therefore, we propose that XIST - hsa-miR-15a-5p/hsa-miR-15b-
5p/hsa-miR-497-5p and hsa-miR-195-5p - WWP1/ACACB might
be potential RNA regulatory pathways to regulate the disease
progression of PMOP.

WWP1 is an important regulatory factor related to human aging
(Martin-Broto and Hindi, 2016). It has been shown that the exosome
miR-19b can promote the differentiation of human bone marrow
mesenchymal stem cells into osteoblasts by targeting WWP1
(Huang et al., 2021). It has been reported that WWP1 expression is
decreased during osteogenic differentiation (Li Y. et al., 2020). As a
negative regulator of the osteoblastic function,WWP1, when disrupted,
may increase bone precipitation in osteoporosis patients (Tucker et al.,
2018). It is suggested thatWWP1 plays a vital role in the pathogenesis of
osteoporosis. Consistent with this study, our study also found that
WWP1was downregulated in PMOP. ACACB, also known asACC2, is
an effective drug target for non-alcoholic steatohepatitis (Gao et al.,
2020) and plays an essential role in regulating fatty acid oxidation (Wei

et al., 2018). Some scholars point out that fatty acid metabolism is
significantly related to changes in bone mineral density, and excessive
intake of fatty acids will cause serious bone loss (Gong et al., 2021). In
addition, the prevalence of osteoporosis in patients with the liver disease
is increasing annually (Yang and Kim, 2021). Therefore, we believe that
ACACBmay play an essential role in the disease progression of PMOP
and is considered a potential neonatal marker. As a splicing factor,
BUD31 regulates gene expression through selective splicing (Hsu et al.,
2015). This is consistent with several studies in which multiple splicing
factors and events are associated with the development of osteoporosis
(Fan and Tang, 2013; Shirakawa et al., 2016; Jia et al., 2019). CCL13 is a
CC family chemokine also involved in many chronic inflammatory
diseases (Mendez-Enriquez and García-Zepeda, 2013). The serum and
synovial fluid levels of CCL13 in patients with knee osteoarthritis were
higher than those in the control group. Moreover, the expression level
was positively correlated with the imaging severity of OA, and the
research team has proposed CCL13 as a biomarker for the progression
of OA (Gao et al., 2015).

Bone immunology focuses on the relationship between the immune
and skeletal systems. Postmenopausal women often exhibit chronic
low-grade inflammatory phenotypes, altered immune cell profiles, and
activated T cells that lead to elevated levels of pro-inflammatory
cytokines, which may indirectly lead to bone destruction (Fischer
and Haffner-Luntzer, 2021). For example, Th17 cells, a subtype of
CD4 T cells, are bone-destroying cytokines (Tang et al., 2020). Studies
have shown that estrogen regulates the abundance of dendritic cells
(DCs) expressing IL-7 and IL-15 by inducing the apoptosis of Fas
ligands and DCs (Cline-Smith et al., 2020). Estrogen induced antigen-
independent production of IL-17A and TNF-α in memory T-cell
subsets (Cline-Smith et al., 2020). Our immune infiltration analysis
found that key genes were significantly correlated with some immune
cells, such as DCs, macrophages, and T cells. In our cluster of immune
cell types based on differential infiltration, the four clusters we identified
showed obvious cross-talk relationships.

Our study is the first to study PMOP using a combination of
LASSO and GMM. Further qPCR results showed that ACACB
expression was upregulated in PMOP patients, whereas
WWP1 expression was downregulated in the control group
compared with the PMOP group. Our research also has some
limitations. First, the sample size of the public database is small,
which may lead to the deviation of the results. Second, it is
necessary to further study whether the methylation of core genes is
related to the occurrence and development of PMOP. In addition, we
can study the correlation of key genes in immune cells, but we need to
further study the content changes of immune infiltration between the
two groups. Third, this study only verified the mRNA expression of key
genes, and further study on the cell function of PMOP is needed.

Conclusion

Multiple machine learning and experimental analysis revealed
ACACB and WWP1 differential expression in postmenopausal
osteoporosis bone tissues and infiltrated T, B, and NK cells. Our
work identifies two genes that may be important for diagnosing
PMOP. The mechanism of disease development of PMOP was
further explored at the transcriptome level. With methylation
analysis, ADORA3 and RBCK1 were identified as differentially
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methylated genes. All of them may serve as potential biomarkers to
provide new insights into the diagnosis of PMOP. In addition, we
propose that XIST - hsa-miR-15a-5p/hsa-miR-15b-5p/hsa-miR-
497-5p and hsa-miR-195-5p–WWP1/ACACB were potential
RNA regulatory pathways that control disease progression
in PMOP.
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