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Objective: The aim of this study was to investigate the molecular mechanisms
underlying the therapeutic effects of dichloroacetic acid (DCA) in lung cancer by
integratingmulti-omics approaches, as the current understanding of DCA’s role in
cancer treatment remains insufficiently elucidated.

Methods: We conducted a comprehensive analysis of publicly available RNA-seq
and metabolomic datasets and established a subcutaneous xenograft model of
lung cancer in BALB/c nude mice (n = 5 per group) treated with DCA (50 mg/kg,
administered via intraperitoneal injection). Metabolomic profiling, gene expression
analysis, and metabolite-gene interaction pathway analysis were employed to
identify key pathways and molecular players involved in the response to DCA
treatment. In vivo evaluation of DCA treatment on tumor growth and MIF gene
expression was performed in the xenograft model.

Results: Metabolomic profiling and gene expression analysis revealed significant
alterations in metabolic pathways, including the Warburg effect and citric acid
cycle, and identified the MIF gene as a potential therapeutic target in lung cancer.
Our analysis indicated that DCA treatment led to a decrease in MIF gene
expression and an increase in citric acid levels in the treatment
group. Furthermore, we observed a potential interaction between citric acid
and the MIF gene, suggesting a novel mechanism underlying the therapeutic
effects of DCA in lung cancer.

Conclusion: This study underscores the importance of integrated omics
approaches in deciphering the complex molecular mechanisms of DCA
treatment in lung cancer. The identification of key metabolic pathways and the
novel finding of citric acid elevation, together with its interaction with the MIF
gene, provide promising directions for the development of targeted therapeutic
strategies and improving clinical outcomes for lung cancer patients.
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Introduction

Lung cancer remains a formidable global health issue,
accounting for a considerable percentage of cancer-related
mortalities worldwide (Bunn, 2012). This complex and
heterogeneous disease presents numerous challenges in terms of
early diagnosis, treatment, and management. The late-stage
detection of lung cancer often renders treatment less effective,
emphasizing the need for improved diagnostic tools and
screening methods to facilitate timely intervention
(Hammerschmidt and Wirtz, 2009). Additionally, the high
incidence of drug resistance and recurrence in lung cancer
patients underscores the importance of developing novel
therapeutic strategies. A comprehensive understanding of the
molecular mechanisms underlying lung cancer is crucial to
identifying innovative treatment options and overcoming the
existing obstacles in lung cancer management (Mottaghitalab

et al., 2019). Dichloroacetic acid (DCA), a small halogenated
molecule, has recently emerged as a potential anti-cancer agent
due to its ability to modulate cellular metabolism. The side effects
and toxicities of DCA have been relatively well-documented. The
most common side effects reported include peripheral neuropathy,
which is reversible upon cessation of treatment, as well as liver
enzyme abnormalities and gastrointestinal disturbances. In some
cases, patients have experienced a mild and reversible cognitive
decline. While these side effects are generally manageable, it is
essential to balance the potential therapeutic benefits of DCA
with the risk of adverse events (Farina et al., 2020). However, the
precise mechanisms through which DCA exerts its therapeutic
effects in lung cancer remain to be fully elucidated (Ma et al.,
2018; Tataranni and Piccoli, 2019).

The utilization of multi-omics methodologies, incorporating
metabolomics and transcriptomics, has demonstrated
considerable potential in deciphering intricate biological systems

FIGURE 1
Metabolomic analysis of lung cancer control and DCA treatment groups. (A) Volcano plot displaying the differentially expressed metabolites
between the lung cancer control group and the DCA treatment group. Red dots represent upregulated metabolites, while blue dots indicate
downregulated metabolites. The threshold for differential expression is set at |log2(Fold change)|> 1 and -log10(P) > 1. (B) Principal component analysis
(PCA) of the differentially expressed metabolites, showing a clear separation between the lung cancer control group (red) and the DCA treatment
group (green). (C) Pathway enrichment analysis of the differentially expressed metabolites, with the Warburg effect and Citric acid cycle emerging as the
most significantly enriched pathways. (D) Pathway impact analysis, revealing the Citrate cycle (TCA cycle) as the most significantly impacted pathway in
the DCA treatment group.

Frontiers in Genetics frontiersin.org02

Feng et al. 10.3389/fgene.2023.1199566

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1199566


and revealing previously unidentified therapeutic targets (Lefort
et al., 2014). Metabolomics, the comprehensive analysis of
endogenous small molecules within biological systems, can
furnish valuable information on the metabolic ramifications of
DCA administration. Concurrently, transcriptomics facilitates the
examination of DCA-induced alterations in gene expression
patterns. The amalgamation of these techniques can yield a more
thorough understanding of DCA’s mode of action in the context of
lung cancer treatment (Tataranni and Piccoli, 2019).

In the present investigation, our objective was to shed light on the
therapeutic mechanisms of DCA in lung cancer by employing an
integrated multi-omics approach, which encompasses both
metabolomic and transcriptomic analyses. We utilized gas
chromatography-time-of-flight mass spectrometry (GC-TOF-MS) to
characterize the metabolomic profile of lung cancer cells subjected to
DCA treatment, while RNA sequencing generated the corresponding
transcriptomic data. Through the integration of these datasets, we
endeavored to unravel the molecular pathways influenced by DCA
and pinpoint potential biomarkers indicative of treatment response.
Our findings may enhance the understanding of the molecular
foundations of DCA’s therapeutic effects in lung cancer and offer
invaluable insights for refining DCA-based treatment strategies.
Moreover, the integrated multi-omics approach implemented in this

research may serve as a template for subsequent inquiries into the
mechanisms of other putative anti-cancer agents.

Materials and methods

Data collection and processing

We collected RNA-seq data from publicly available datasets. We
extracted gene expression profiles from RNA-seq data in public datasets,
including GSE10072, GSE12236, and GSE19188 (Lu et al., 2012; Zhang
et al., 2018; Edginton-White et al., 2023). For transcriptomic data, we
performed background correction, log2 transformation, and quantile
normalization. For the metabolomic data, we applied missing value
imputation, data transformation (log10), and autoscaling (mean-
centering and dividing by the standard deviation) to obtain the
normalized dataset. The primary purpose of using these datasets was
to identify differentially expressed genes and potential biomarkers
associated with DCA treatment in lung cancer. By integrating and
analyzing the gene expression profiles from these datasets, we aimed
to reveal the key molecular mechanisms underlying the therapeutic
effects of DCA in lung cancer.

FIGURE 2
Identification of differentially expressed genes in lung cancer. (A–D) Expression patterns of the four highly significant differentially expressed genes
(MIF, CLEC3B, FCN3, and EMCN) across the three public datasets GSE10072, GSE12236, and GSE19188.
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Quantitative real-time PCR (qRT-PCR)
analysis

Total RNA was extracted from tumor tissues using TRIzol reagent
(Invitrogen, United States) following the manufacturer’s instructions.
The quality of the extracted RNA was assessed using a NanoDrop
spectrophotometer (Thermo Scientific, United States) and an Agilent
2100 Bioanalyzer (Agilent Technologies, United States). cDNA
synthesis was performed using the RevertAid First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific, United States) according to
the manufacturer’s instructions. Quantitative real-time PCR (qRT-
PCR) was conducted using the PowerUp SYBR Green Master Mix
(Thermo Fisher Scientific, United States) on a QuantStudio 6 Flex Real-
Time PCR System (Applied Biosystems, United States). The primer
sequences used in the study are as follows:

MIF Forward: 5′- GAACCGCAACTACAGTAAGCTGC -3′
MIF Reverse: 5′- ACGTTGGCAGCGTTCATGTCGT -3′
GAPDH Forward: 5′- CATCACTGCCACCCAGAAGACTG -3′
GAPDH Reverse: 5′- ATGCCAGTGAGCTTCCCGTTCAG -3′
The relative expression levels of the MIF gene were calculated

using the 2̂(-ΔΔCt) method, with the reference gene (GAPDH)
serving as an internal control for normalization.

Bioinformatics analysis

For the transcriptomic meta-analysis, we utilized the
MetaIntegrator tool, a robust bioinformatics resource designed to
integrate and analyze gene expression data from multiple studies
(Haynes et al., 2017). The MetaIntegrator tool facilitated the
identification of consistent gene expression signatures across diverse
datasets, thereby enhancing the reliability of our findings. During the
meta-analysis, both forward and backward searches were conducted to
ensure a comprehensive assessment of the available data. Regarding the
metabolomic analysis, we employed the MetaboAnalyst platform, a
powerful and user-friendly web-based tool tailored for the
interpretation of high-throughput metabolomics data (Chong et al.,
2018). This platform enabled us to perform a series of advanced
statistical analyses, including volcano plots to visualize the
distribution of differentially expressed metabolites, principal
component analysis (PCA) for dimensionality reduction and sample
clustering, differential metabolite enrichment analysis to identify
significantly altered metabolic features, and metabolic pathway
analysis to investigate the biological functions and pathways
impacted by DCA treatment. Additionally, we conducted
metabolite-gene interaction analysis to explore the possible
relationships between the identified metabolites and their
corresponding genes, providing further insights into the molecular
mechanisms underlying the therapeutic effects of DCA in lung cancer.

Animal handling and treatment

We established a subcutaneous xenograft model of lung cancer using
BALB/c nudemice, whichwere purchased from the Shanghai Laboratory
Animal Center of the Chinese Academy of Sciences (Shanghai, China).
The mice were housed in a temperature-controlled environment with a
12-h light/dark cycle and were provided with standard rodent chow and

water ad libitum. After acclimatization, the animals were injected
subcutaneously with A549 cells to establish the lung cancer model.
Once the tumors were successfully established, the mice were divided
into two experimental groups: the lung cancer control group and the lung
cancer treatment group. In the lung cancer treatment group, the mice
received dichloroacetic acid (DCA) at a concentration of 2 g/L (DCAC2)
in their drinking water, while the lung cancer control group was
administered an equivalent volume of 0.9% saline solution as their
drinking water. At the end of the treatment period, the mice were
euthanized following approved ethical guidelines, and serum samples
were collected for further analyses.

GC-TOF-MS

For the metabolomic profiling of mouse serum samples using gas
chromatography-time-of-flight mass spectrometry (GC-TOF-MS), we
adapted a published protocol with minor modifications to prepare and
derivatize the samples. Initially, pooled quality control (QC) samples were
created by combining 20 μL aliquots from each serum sample (Dunn
et al., 2008). Subsequently, a 50 μL aliquot of serum sample was spiked
with two internal standards (10 μL of L-2-chlorophenylalanine in water,
0.3 mg/mL; 10 μL of heptadecanoic acid in methanol, 1 mg/mL) and
vortexed for 10 s. The mixed solution was extracted with 175 μL of
methanol/chloroform (3:1) and vortexed for 30 s. After storing the
samples for 10 min at −20°C, they were centrifuged at 8,000 rpm for
10min. A 200 μL supernatant aliquot was transferred to a glass sampling
vial and vacuum-dried at room temperature. The dried residue
underwent a two-step derivatization process. First, 80 μL of
methoxyamine (15 mg/mL in pyridine) was added to the vial,
followed by incubation at 30°C for 90 min. Next, the samples were
incubated with 80 μL of N,O-bis(trimethylsilyl)trifluoroacetamide
(BSTFA, containing 1% trimethylchlorosilane (TMCS)) at 70°C for
60min. Upon completion of the reaction, the samples were allowed
to rest at room temperature for 1 h before proceeding with the GC-TOF-
MS analysis.

Cell culture

The human lung cancer cell line A549 was procured from the Cell
Bank of the Chinese Academy of Sciences (Shanghai, China). Cells were
maintained in Dulbecco’s Modified Eagle Medium (DMEM; Gibco,
United States) supplemented with 10% fetal bovine serum (FBS;
Gibco, United States) and 1% penicillin-streptomycin (Gibco,
United States). Cultures were incubated at 37°C in a humidified
atmosphere containing 5% CO2.

Results

Metabolomic profiling

In this study, we utilized a total of 38mice, comprising 18 in theDCA
treatment group and 20 in the lung cancer control group. Based on our
previously defined criteria for selecting differentially expressed
metabolites, we set the threshold at |log2(Fold Change)|> 1 and
-log10P) > 1. A total of 53 differentially expressed metabolites were
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identified between the two groups (see Supplementary Table S1 for
details). These metabolites were visualized using a volcano plot to
demonstrate their differential expression (Figure 1A). We conducted a
principal component analysis (PCA) on the differentially expressed
metabolites between the lung cancer and DCA treatment groups. The
PCA revealed a significant separation between the two groups
(Figure 1B), indicating distinct metabolic profiles. Subsequently, we
performed pathway enrichment analysis and pathway impact analysis
on the differentially expressed metabolites. The pathway enrichment
analysis revealed that the two most significantly enriched pathways were
the Warburg effect and the Citric acid cycle (Figure 1C). In the pathway
impact analysis, the Citrate cycle (TCA cycle) emerged as the most
significantly impacted pathway (Figure 1D), suggesting a potential
influence of DCA treatment on these metabolic processes in lung cancer.

Gene expression profiles in lung cancer

We integrated and analyzed RNA-seq data from three public
datasets, including GSE10072, GSE12236, and GSE19188. Our
analysis identified four highly significant differentially
expressed genes in lung cancer, comprising MIF, CLEC3B,
FCN3, and EMCN (Figures 2A–D). The consistent validation
of these genes across multiple datasets suggests their potential

importance in lung cancer. To further investigate the diagnostic
potential of these four genes, we generated a meta-score by
combining their expression levels in each sample (Figures
3A–C). We then used this meta-score to distinguish between
lung cancer and normal control samples. The summary receiver
operating characteristic (ROC) curve analysis revealed that the
area under the curve (AUC) was 0.99, indicating high diagnostic
accuracy for lung cancer (Figure 3D).

Metabolite-metabolite andmetabolite-gene
interaction pathway analysis

In order to explore the relationships between differentially
expressed metabolites and their associated genes, as well as
the interactions among the metabolites themselves, we
conducted a series of analyses. First, we performed a
metabolite-pathway interaction analysis on the
53 differentially expressed metabolites. In the resulting
network, we observed interactions between the Warburg effect
and Citric acid cycle pathways (Figure 4A). Subsequently, we
investigated the interactions between metabolites and genes. Our
analysis revealed a significant interaction between the core
metabolite citric acid, which is involved in the Citric acid

FIGURE 3
Diagnostic potential of the four identified genes in Lung cacner. (A–C) Meta-score generation by combining the expression levels of the four
differentially expressed genes (MIF, CLEC3B, FCN3, and EMCN) in each sample. (D) Summary receiver operating characteristic (ROC) curve analysis
demonstrating the diagnostic accuracy of the meta-score, with an area under the curve (AUC) of 0.99.
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cycle, and the differentially expressed gene MIF in lung cancer
(Figure 4B). This finding suggests a potential link between the
identified metabolites and genes in the context of lung cancer
pathogenesis.

In vivo evaluation of DCA treatment on
tumor growth and MIF gene expression

To assess the impact of DCA treatment on tumor growth in
vivo, we compared the subcutaneous xenograft tumors in the
cancer control group and the DCA treatment group. As
depicted in Figure 4C, there was a significant difference in
tumor size between the two groups, with the DCA
treatment group exhibiting notably smaller tumors compared
to the cancer control group, which received saline. We
then performed RT-PCR analysis to examine the expression of
the MIF gene in the tumors of both groups. The results, shown
in Figure 4D, revealed a significant decrease in MIF gene
expression in the DCA treatment group compared to the
cancer control group. These findings suggest that DCA
treatment may effectively suppress tumor growth and
modulate MIF gene expression in the lung cancer xenograft
model.

Discussion

In this study, we aimed to explore the effects of DCA treatment on
lung cancer by integrating transcriptomic and metabolomic data, as well
as validating our findings using an in vivo lung cancer xenograft model.
Our comprehensive analysis not only provided insights into the
molecular mechanisms underlying the therapeutic effects of DCA in
lung cancer but also identified potential diagnostic biomarkers and
therapeutic targets.

We found 53 differentially expressed metabolites between the DCA
treatment and lung cancer control groups. Our pathway enrichment and
impact analyses revealed that the Warburg effect and Citric acid cycle
were the most significantly enriched and impacted metabolic pathways,
respectively. Importantly, we observed a significant increase in citric acid
levels in the DCA treatment group. Previous studies have reported that
elevated citric acid can inhibit the growth of A549 cells (Zhou et al., 2015;
Ji et al., 2020). Furthermore, our analysis indicated a potential interaction
between citric acid and the MIF gene. These findings suggest a novel
mechanism by which DCAmay exert its anticancer effects, involving the
modulation of citric acid levels and its subsequent interaction with the
MIF gene.

The Warburg effect, a well-known metabolic alteration in cancer
cells, is characterized by an increased rate of glycolysis even under
nonmonic conditions, leading to lactate production instead of oxidative

FIGURE 4
Interactions between metabolites and pathways, and in vivo evaluation of DCA treatment. (A) Network analysis of differentially expressed
metabolites showing interactions between the Warburg effect and Citric acid cycle pathways. (B) Interaction between citric acid and MIF gene in lung
cancer. (C) Representative images of subcutaneous xenograft tumors in the cancer control and DCA treatment groups, showing a significant difference in
tumor size. (D) RT-PCR analysis of MIF gene expression in tumors from the cancer control and DCA treatment groups, demonstrating a significant
reduction in MIF expression in the DCA-treated group.
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phosphorylation in the mitochondria (Liberti and Locasale, 2016). Our
findings suggest that DCA may exert its anticancer effects by targeting
these key metabolic pathways and shifting the cancer cells’metabolism
away from the Warburg effect towards oxidative phosphorylation,
which ultimately leads to increased ROS production and subsequent
cell death. This is in line with previous studies demonstrating that DCA
can reverse theWarburg effect in cancer cells and promote apoptosis via
the mitochondria-dependent pathway.

Our analysis also identified four highly significant differentially
expressed genes in lung cancer, namely, MIF, CLEC3B, FCN3, and
EMCN. Among these, MIF was found to interact significantly with the
core metabolite citric acid in the Citric acid cycle. MIF, also known as
macrophage migration inhibitory factor, is a pleiotropic cytokine
implicated in various biological processes, including cell proliferation,
angiogenesis, and immune regulation. Overexpression of MIF has been
reported in several cancer types, including lung cancer, and is associated
with tumor progression, metastasis, and poor prognosis (Verjans et al.,
2009; Nobre et al., 2017; Penticuff et al., 2019). Our findings suggest that
the therapeutic effects of DCA in lung cancer may be partially mediated
through the regulation of MIF expression and its interaction with citric
acid. Further investigation ofMIF as a potential therapeutic target in lung
cancer is warranted. Besides lung cancer, DCA has been investigated in
numerous other cancer types, including breast cancer, glioblastoma,
colorectal cancer, and prostate cancer. In addition to the Warburg
effect reversal, DCA treatment has been shown to modulate other
signaling pathways and cellular processes in various cancer types. For
instance, in breast cancer, DCA has been found to inhibit the Akt/mTOR
signaling pathway, leading to the suppression of cell proliferation and
migration (Xiao et al., 2017). In glioblastoma, DCA has been reported to
enhance the activity of theDNA repair enzymeO6-methylguanine-DNA
methyltransferase (MGMT), thereby increasing the sensitivity of
glioblastoma cells to temozolomide, a standard chemotherapeutic
agent (Singh et al., 2021). In colorectal cancer, DCA has been shown
to modulate the p53 signaling pathway, promoting cell cycle arrest and
apoptosis (Zeng et al., 2015).

In our in vivo lung cancer xenograft model, we observed that DCA
treatment significantly reduced tumor size and suppressed MIF gene
expression. This corroborates our in silico findings and provides evidence
for the potential therapeutic value of DCA in lung cancer treatment.
Although DCA has been widely studied for its anticancer properties,
clinical trials involving DCA for cancer treatment have yielded mixed
results. Our study adds to the growing body of evidence supporting the
potential of DCA as a therapeutic agent in lung cancer and provides a
rationale for further investigation into the optimal dosing, treatment
duration, and possible combination therapies with other anticancer
agents to enhance its efficacy and minimize potential side effects.

In summary, our integrated transcriptomic and metabolomic
analysis, together with in vivo validation, provided valuable insights
into the molecular mechanisms underlying the therapeutic effects of
DCA in lung cancer. We identified key metabolic pathways, including
the novel finding of citric acid elevation and its interaction with theMIF
gene, potential diagnostic biomarkers, as well as therapeutic targets,
which may help guide future research and clinical management of lung
cancer. Nevertheless, further studies with larger sample sizes and diverse
cancer models are needed to confirm our findings and establish the
clinical utility of DCA in the treatment of lung cancer. Additionally,
investigations into the potential synergistic effects of DCA in

combination with other anticancer agents may help optimize its
therapeutic potential and overcome potential resistance mechanisms.

In conclusion, our study highlights the importance of integrated
omics approaches in unraveling the complex molecular mechanisms
underpinning the therapeutic effects of DCA in lung cancer. The
identification of key metabolic pathways, including the novel finding
of citric acid elevation and its interaction with the MIF gene, offers
promising avenues for the development of targeted therapeutic strategies
and the improvement of clinical outcomes for lung cancer patients.
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