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Introduction: Spontaneous rupture of tendons and ligaments is common in
several species including humans. In horses, degenerative suspensory ligament
desmitis (DSLD) is an important acquired idiopathic disease of a major energy-
storing tendon-like structure. DSLD risk is increased in several breeds, including
the Peruvian Horse. Affected horses have often been used for breeding before the
disease is apparent. Breed predisposition suggests a substantial genetic
contribution, but heritability and genetic architecture of DSLD have not been
determined.

Methods: To identify genomic regions associated with DSLD, we recruited a
reference population of 183 Peruvian Horses, phenotyped as DSLD cases or
controls, and undertook a genome-wide association study (GWAS), a regional
window variance analysis using local genomic partitioning, a signatures of
selection (SOS) analysis, and polygenic risk score (PRS) prediction of DSLD risk.
We also estimated trait heritability from pedigrees.

Results:Heritability was estimated in a population of 1,927 Peruvian horses at 0.22
± 0.08. After establishing a permutation-based threshold for genome-wide
significance, 151 DSLD risk single nucleotide polymorphisms (SNPs) were
identified by GWAS. Multiple regions of enriched local heritability were
identified across the genome, with strong enrichment signals on
chromosomes 1, 2, 6, 10, 13, 16, 18, 22, and the X chromosome. With SOS
analysis, there were 66 genes with a selection signature in DSLD cases that
was not present in the control group that included the TGFB3 gene. Pathways
enriched in DSLD cases included proteoglycan metabolism, extracellular matrix
homeostasis, and signal transduction pathways that included the hedgehog
signaling pathway. The best PRS predictive performance was obtained when
we fitted 1% of top SNPs using a Bayesian Ridge Regression model which
achieved the highest mean of R2 on both the probit and logit liability scales,
indicating a strong predictive performance.
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Discussion: We conclude that within-breed GWAS of DSLD in the Peruvian Horse
has further confirmed that moderate heritability and a polygenic architecture
underlies the trait and identified multiple DSLD SNP associations in novel
tendinopathy candidate genes influencing disease risk. Pathways enriched with
DSLD risk variants include ones that influence glycosaminoglycan metabolism,
extracellular matrix homeostasis, signal transduction pathways.
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1 Introduction

Spontaneous rupture of tendons and ligaments in response to
trauma or chronic degeneration is a common injury shared across
species. In humans, rotator cuff and Achilles’ tendon injuries are
common diseases that often lead to chronic tendon degeneration
(Thomopoulos et al., 2015). In horses, degenerative suspensory
ligament (SL) desmitis (DSLD) is an idiopathic, devastating disease
of an essential energy-storing tendon-like structure that prevents
hyperextension of the fetlock joint (Mero and Pool, 2002). Typically,
a multi-limb disease, horses affected with DSLD experience progressive
hyperextension of their fetlocks because of degeneration and rupture of
the SL and its distal branches, resulting in lameness and a decreased
quality of life (Mero and Scarlett, 2005). Histologically, collagen
disruption, accumulation of interfibrillar proteoglycans in ligament
matrix, and chondroid metaplasia are key pathological features in
affected horses (Halper et al., 2006; Plaas et al., 2011). Age at
diagnosis is in the range of ~5–10 years and often results in
euthanasia due to the life-limiting lameness associated with dropped
fetlocks (Figure 1). The Peruvian Horse (Peruvian Paso), Paso Fino,
Warmblood, Morgan, and Akhal-Teke breeds are predisposed to
DSLD, whilst ponies and draft breeds have reduced disease risk
(Mero and Scarlett, 2005). In some Peruvian Horse families, the
incidence may be as high as 40%, suggesting familial association
(Mero and Scarlett, 2005). The late onset of the disease means that
DSLD-affected horses have often been used for breeding before clinical
signs of tendon/ligament injury (TLI) develop, causing economic loss.
Clinically, it is recommended not to use affected horses for breeding.

Presently, there is little understood about the mechanism
leading to DSLD. Strong breed disposition suggests a substantial
genetic contribution to risk of DSLD. However, the genetic
architecture of DSLD is unclear. To date, no estimate of DSLD
heritability has been reported in any horse breed. Currently, there is
no genetic test available that could assess a horse’s risk of
developing DSLD.

In the Peruvian Horse, as in other horse breeds, domestication
and breed development has generated selective pressures on the
genome to enable horses to work in agriculture, and transport. More
recently, traits such as morphology and performance have been
considered during selection for breeding (Petersen et al., 2013;
Gouveia et al., 2014). These genetic differentiation events have
been evolutionarily generated by natural and artificial selection.
An unintended consequence of breed development is the increased
incidence of disease within individual breeds or breed groups. Many
spontaneous diseases in horses closely mimic heritable disorders
seen in humans but occur in a model where reduced genetic diversity

within a breed can generate long stretches of linkage disequilibrium
(LD). In this regard equine DSLD is an important spontaneous
model of chronic human TLI that is often related to disturbances in
matrix homeostasis.

During past decades, attempts have been made to discover the
genetic background of DSLD in the Peruvian Horse. These studies
involved investigation of the molecular pathology of DSLD,
disturbances to signaling pathways, a genome-wide association
study (GWAS) with low density markers, and case-control
differential gene expression analysis (Mero and Pool, 2002;
Strong, 2005; Young et al., 2018; Haythorn et al., 2020). Whether
a simple or polygenic architecture explains the genetic contribution
to this important equine disease remains unclear. Earlier work using
low-resolution GWAS in the Peruvian Horse identified candidate
loci on chromosomes 6, 7, 11, 14, 26 that did not meet genome-wide
significance (Strong, 2005; Metzger and Distl, 2020). Improved
understanding of the genetic contribution to DSLD is clearly
needed. Initial observational studies of breed predisposition
suggest that DSLD-associated genetic variants are enriched in the
Peruvian Horse through linkage to desirable phenotypes. From an
evolutionary point of view, selection for a desired phenotype
through careful breeding results in an increased frequency of
haplotypes containing the gene(s) and functional allele(s)
conferring the phenotype at a rate greater than expected under a
null model of neutral evolution (Cutter and Payseur, 2013). GWAS
and detection of signatures of selection (SOS) are two common
genetic analysis approaches for case control association between a
disease phenotype and genetic markers, typically single nucleotide
polymorphisms (SNPs) (Patron et al., 2019; Momen et al., 2022).

Consequently, we recruited a reference population of Peruvian
Horses phenotyped as DSLD cases or controls, undertook a GWAS
and SOS analysis, and used the reference population to undertake
polygenic risk score (PRS) prediction of disease risk. Discovery of
strong DSLD candidate loci and genes influencing disease risk would
represent a significant advance. Furthermore, we estimated
heritability using a population-based pedigree to assess narrow-
sense heritability. Identification of genomic regions that contribute
to the genetic risk of DSLD will permit development of a genetic
screening test to assess risk of DSLD in Peruvian Horses.
Additionally, gene mutations that influence risk of DSLD in the
Peruvian Horse represent important candidate genes for risk of
human and canine spontaneous TLI and rupture. We confirmed
moderate heritability and a complex genetic architecture for DSLD
in the Peruvian Horse and show that PRS prediction using Bayesian
ridge regression (BRR) is highly accurate at predicting risk of DSLD
in this breed.
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2 Materials and methods

2.1 Recruitment and phenotyping

Client-owned Peruvian Horses were recruited at the UW
Madison School of Veterinary Medicine and Texas A&M
College of Veterinary Medicine and through online
advertising. Hair bulb samples pulled from the tail or mane,
nasal swabs, or EDTA blood samples were collected from
183 Peruvian Horses for case control binary GWAS. The data
set consisted of 80 cases and 103 controls. All owners gave
informed consent to participate in the study. All procedures
were performed in accordance with the recommendations in
the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health and the American Veterinary
Medical Association and with approval from the Animal Care
Committee of the University of Wisconsin-Madison (Protocols
V1070, V5463) and Texas A&M University (Protocol AUP
IACUC 2018-0443 CA). Preparation of the manuscript
conformed with the ARRIVE guidelines. If available, a
pedigree was collected from each horse to confirm purebred
status. DSLD cases were diagnosed with information from the
veterinary records, such as physical exam findings, lameness
exam findings and photographs. Physical examination
consisted of palpation of soft tissue structures in all four distal
limbs for pain, swelling, heat, asymmetry or scarring. Range-of-
motion and resistance to manipulation was assessed. Fetlock
flexion after gait evaluation at the walk and trot on hard and
soft surfaces was evaluated. As DSLD develops, the SL
progressively thickens. Over time, the SL mechanically
weakens and ruptures, resulting in a classic sign of dropped
fetlocks in multiple limbs. In the severe case, obvious
thickening and dropping of the fetlocks is evident compared
with the normal standing posture (Figure 1). In horses with
DSLD, the SL progressively weakens causing hyperextension of

the fetlock, hock, and stifle. In some cases, ultrasound
examination further confirmed the disease-status. B-mode
tendon ultrasound examination of the SL using a linear
12 MHz transducer to include both the medial and lateral
branches (Mero and Scarlett, 2005) can provide additional
confirmation of DSLD. If necessary, sedation with xylazine or
detomidine/butorphanol was given to the horse to facilitate the
examination. Control horses were normal on physical exam
and ≥15 years, as onset of DSLD in horses in this age range is
unlikely (Mero and Scarlett, 2005). If a control horse developed
DSLD through follow-up contact with the owner, its phenotype
was updated. Medical records were also reviewed for the presence
of other diseases that could be associated with development of
tendon laxity, although this did not lead to inclusion or exclusion
of a subject horse.

2.2 DNA isolation and SNP genotyping

DNA was isolated from buffy coat, hair bulbs obtained from the
mane or tail, or nasal swabs (Performagene PG-100, DNA Genotek,
Ottawa, Canada). Blood was collected in EDTA-coated tubes. For
genotyping, samples underwent DNA isolation using the Gentra
Puregene kit (Qiagen, Valencia, CA, United States). DNA quantity
and purity were assessed using a Qubit 4 Fluorometer (Thermo
Scientific, Waltham, MA, United States) and a Nanodrop Lite
Spectrophotometer (Thermo Scientific, Waltham, MA, United States).

Isolated DNA samples were stored at −20°C until genotyping.
SNP genotyping was performed using the Axiom Equine
Genotyping Array (Axiom MNEC670K, Thermo Scientific,
Waltham, MA, United States) which includes a total of
670,796 SNPs. Genomic coordinates based on the latest version
of genome assembly, EquCab3.0 SNP collection (https://www.ncbi.
nlm.nih.gov/assembly/GCF_002863925.1/), was used throughout
the study.

FIGURE 1
Degenerative suspensory ligament desmitis (DSLD) is a crippling, painful equine disease. (A) A Peruvian Horse that is severely affected with DSLD and
a (B) phenotype-negative control Peruvian Horse. As the disease develops, the suspensory ligament (SL) progressive thickens. Over time, the SL
mechanically weakens and ruptures, resulting in a classic sign of dropped fetlocks. In the severe case, obvious thickening and dropping of the fetlocks is
evident (inset A) compared with the normal standing posture (inset B). DSLD is typically more evident in the pelvic limbs verses the thoracic limbs,
although in some Peruvian Horses DSLD develops in all four limbs. Reproduced from Momen et al., 2022.
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2.3 Imputation missing genotypes and SNP
filtering

Missing genotypes were imputed using the Beagle software,
version 5.4 (Browning & Browning, 2007). The software uses a
hidden Markov model (HMM) to construct a tree of haplotypes and
summarize it in a direct acyclic graph by joining nodes of the tree
based on haplotype similarity to infer missing markers. Quality
control was performed using PLINK v1.9 (Chang et al., 2015). SNPs
were removed from the dataset if they had minor allele frequency
(MAF) < 0.05, SNP genotyping call rate <95%, individual horse call
rate of <90%, or did not conform to Hardy-Weinberg proportions at
P < 1E-06. After quality control, 177,662 SNPs were removed, and
447,630 SNPs remained for analysis.

2.4 Heritability estimation from pedigrees

The Peruvian Horse dataset included a total of
1,947 individuals of which there were 54 horses with a case
phenotype and 116 horses with control phenotype. Among
these, there were 607 individuals with progeny acting as sires
and 963 individual females with progeny and the rest consisting
of individuals without any recorded progeny. The dataset
consisted of 70 full-sibling groups, with an average family
size of 2.19 individuals per group. The CFC software tool
(Sargolzaei et al., 2006) was used to analyze the structure of
the pedigree. Inbreeding was determined by the pedigree
relationship coefficient (F), which was computed from the
diagonal elements of the numerator relationship matrix
Fj � Ajj − 1, where A is the pedigree relationship matrix. The
threshold for inbreeding was 1.0. A probit Bayesian linear mixed
model, using the MCMCglmm package (Hadfield, 2010), was
then used to generate a posterior distribution of heritability for
DSLD in the Peruvian Horse. The MCMC chain was run for a
total of 1,000,000 iterations plus a burn-in of 20,000 samples
and a thinning interval of 5, meaning there were
100,000 posterior probabilities sampled of the variance
components.

2.5 Genome-wide association study

A univariate logistic linear mixed regression model in R as
implemented by the ‘gaston’ package (Perdry and Dandine-
Roulland, 2020) was used for the association analysis. Each
SNP was regressed using the Wald test and sex was used as a
covariate. P-values were examined to assess the significance of
SNP associations with DSLD. A genomic relationship matrix
(GRM) as formulated by VanRaden (2008), was used to
account for population stratification and relatedness among
individuals:

G � XX′
2Σpi 1 − pi( )

Where, where X is an n bymmatrix of centered genotypes and pi is
the minor allele frequency for allele i.

Two different P-value thresholds were considered. One
threshold was determined through a Bonferroni correction (p <
0.05/total number of SNPs). As an alternative approach, we
established genome-wide significance thresholds using 95%
confidence intervals (CI) derived from the empirical distribution
of P-values obtained under the null hypothesis of no association
(Karlsson et al., 2013). To construct this distribution, we performed
500 permutations of the phenotypes and reran the GWAS each time.
Genome-wide significance was defined as associations surpassing
the upper 5% empirical CI, corresponding to a P-value threshold
of ≤7.39E−05. A Quantile-Quantile plot was made to compare
expected null distribution of the test statistic with the observed
genome-wide based distribution. A list of GWAS genes was built
using the EquCab3.0 genome assembly and the Ensembl genome
browser. Regions of the reference genome were scanned ±50 kb
upstream and downstream from the positions of SNPs that crossed
the Bonferroni significance threshold. Associated genes were then
investigated for relevance to tendon homeostasis using PubMed and
the search term “tendon”.

2.6 Regional window variance using local
genomic partitioning

Regional variance analysis enhances the power to detect
QTLs by effectively capturing the combined contribution of
multiple marker effects within a specific region. This
approach enables the identification of genetic variants that
may have modest effects individually but collectively
contribute to the trait’s variation as well as rare variants
whose effects are difficult to capture because of lack of
statistical power (Oppong et al., 2022). Consequently, there is
a benefit to be gained in terms of improving heritability
estimates and uncovering genetic variants involved in the
control of traits by fitting genome-wide analytical models that
adequately capture the combined effects of rare genetic variants
(Shirali et al., 2016).

We partitioned the genome of 31 + X chromosomes of the
horse into 4,769 windows with the size of 90 SNPs. On average we
assumed each window covered ~0.5 Mb of the genome. To
determine the optimal window size, we used the longest
chromosome in the horse genome (ECA1) as a reference,
which has a length of 188.3 Mb. We calculated the SNP
density on this chromosome by dividing the total number of
distributed SNPs by its length. The result was approximately
190 SNPs per Mb. Based on this, we selected a window size of
0.5 Mb, which corresponds to ~90 SNPs. Then we ran a logistic
linear mixed model with two variance components by
considering the following mixed model:

Y � Xβ + Zwgw + Zrgr + ε

Where Y is the vector of DSLD case-control status as the
binary phenotype, X is a design matrix of fixed effects, and β is a
vector of fixed effects, Zw and Zr are the design matrices for the
local window (w) and the rest of genome (r) random effects,
respectively, with distributions and covariance structures of
gw ~ N (0,Gwσ2gw ), gr ~ N (0,Grσ2gr ) and ε ~ N (0, Iσ2

ε ). Here,
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Gw and Gr were the relationship matrices calculated using
markers that were in the window and all SNPs out of that
given window. We then selected the top 5% of windows with
the highest heritability and searched for DSLD candidate genes
influencing disease risk in each window through the UCSC
genome browser using the EquCab3.0 reference genome.
Candidate genes were then investigated for relevance to
tendon homeostasis using PubMed and the search term
“tendon”.

2.7 Signatures of selection (SOS) analysis

Evidence of signatures of positive selection across the genome of
case and control groups was investigated through five
complementary statistics designed to detect signatures of
selection, including nucleotide diversity (Δπ), number of
segregating sites by length (nSL), a statistical test based on a
measure of haplotype homozygosity (H12), and integrated
haplotype score (iHS). The different statistics were combined
using the decorrelated composite of multiple signals method
(DCMS) (Ma et al., 2015). This method combines signals of
multiple tests and considers potential correlations among the
different tests to increase resolution and reduce the proportion of
false positives. Nucleotide diversity (π) was calculated with vcftools
(Danecek et al., 2011) and the other statistics were calculated using
selscan and normalized using the norm script as implemented in
selscan (Szpiech & Hernandez, 2014). For each statistic within the
case and the control groups, we computed the P-value of the DCMS
statistic using fractional ranks using the stat_to_pvalue () function
in the MINOTAUR R package (Verity et al., 2017) for all of the
SNPs. Then, using the covNAMcd function (alpha = 0.75, nsamp =
50,000) from the rrcovNA R package to calculate an s × s
correlation matrix (i.e., the minimum covariance determinant
estimator of multivariate location and scatter) between the
included statistics (where s represents the number of statistics to
estimate the DCMS values). This matrix was used as input in the
DCMS function of the MINOTAUR R package to calculate genome
wide DCMS values. Once the DCMS values were generated, they
were fitted to a normal distribution using the robust linear model
(rlm) function of the MASS R package in model = rlm (dcms ~ 1),
in which the dcms object is a vector containing the raw DCMS
values. The outputs of the fitted model (i.e., Mu [mean] and SD
[standard deviation]) were used as input in the pnorm R function
to calculate P-values for the DCMS statistics: dcms_pvalues =
pnorm (q = dcms, mean = Mu, sd = SD, lower.tail = FALSE).
SHAPEIT2 (Loh et al., 2016) was used for haplotype phasing of
autosomes, separately for case and control groups. A list of SOS
regions was developed by using the EquCab3.0 genome assembly
on the Ensemble genome browser. Regions of the reference
genome were scanned ±50 kb upstream and downstream from
the SNPs exhibiting a positive selection signature. The analysis
aimed to identify genes within the candidate regions that
exhibited selection signatures specifically in the cases as the
target cohort, rather than in both cases and controls.
Candidate genes influencing disease risk were then
investigated for relevance to tendon homeostasis using
PubMed and the search term “tendon”.

2.8 Pathway enrichment analysis

In the next step, the genes identified in the top 5% of genomic
regions identified from the local genomic variance analyses using
GWAS, regional heritability, and SOS analyses underwent
functional analysis using genes with biological relevance to
tendon homeostasis. This step aimed to reduce potential bias and
increase the specificity of our analysis, by screening out unrelated
genes based on prior knowledge, functional annotations, and
available literature on DSLD and related biological processes. By
doing this, we aimed to focus our analysis on genes that were more
likely to be directly involved in the condition.

The gene lists derived from the GWAS, SOS and local window
variance data were used for pathway enrichment analysis, using g:
Profiler (https://biit.cs.ut.ee/gprofiler/), to identify Reactome
pathways that are enriched in the experiment. The false discovery
rate was set at 0.05 (Raudvere et al., 2019). Pathway enrichment
analysis results were visualized and interpreted in Cytoscape using
its EnrichmentMap plugin (http://www.baderlab.org/Software/
EnrichmentMap) (Shannon et al., 2003).

2.9 Principal component analysis (PCA)

We assessed the genetic diversity within the Peruvian horse
population using PCA. This analysis enabled us to investigate the
variation present within the population and gain insight into its
genetic structure. To accomplish this, the genotypic information was
also used to compute a GRM between all individuals in case and
control groups (VanRaden, 2008). By performing eigen
decomposition of the GRM using the base eigen () function in R
(R Core Team, 2021), the eigenvectors and eigen values were
obtained and the eigenvectors were normalized. Finally, PCs were
computed by multiplying eigenvectors by the square root of the
associated eigenvalues (Bryant & Yarnold, 1995; Momen et al.,
2022). To review the results, we plotted the projection of the
individuals on the first two PCs, with colors corresponding to
their group assignment.

2.10 Polygenic risk score prediction of DSLD
risk

2.10.1 Machine learning models
Four different machine learning models: weighted subspace

random forest (RF), gradient boosting machine (GBM), least
absolute shrinkage and selection operator (LASSO), and elastic
net (EN) were used to predict DSLD polygenic risk scores. A
weighted RF model was used because the weighted form of the
RF model can achieve high accuracy in classifying high dimensional
data (Banfield et al., 2006), such as datasets with thousands of SNPs.
Because such data often contain many uninformative features for
classification, random sampling often does not include informative
features in selected subspaces. So, the Weighted Subspace Random
Forest algorithm (wsrf) (Xu et al., 2012) and the wsrf R package was
used. The gradient boosting algorithm was the second machine-
learning algorithm used. It has been shown that this algorithm has a
similar or higher predictive accuracy than traditional methods, in
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both classification and regression problems (Friedman, 2002). The
boosting algorithm has been previously used in genome-wide
prediction and disease susceptibility studies in animal and plant
breeding (Momen et al., 2018; Montesinos- López et al., 2022). A
GBM model which combines predictions from an ensemble of tree-
based classifiers for outcome prediction (Chen and Guestrin, 2016)
to generate the final predictions was the algorithm used as a classifier
and the R package gbm (Greenwell et al., 2019) was used for
implementation. Tuning of the hyperparameters was performed
using a 10-fold cross validation grid search technique. Model
training and optimization of tuning parameters used the caret R
package (Kuhn, 2015).

The third model was the LASSO approach (Tibshhirani and
VanRaden, 1996) which is used for efficient feature selection based
on the assumption of linear dependency between input features and
output values. In a general form, the lasso estimator uses the
ℓ1 penalized least squares criterion to obtain a sparse solution to
the following optimization problem:

β̂Lasso � argmin y − Xβ
����

����22 + λ β
����

����1

Where, ‖ y − Xβ ‖22 � ∑n

i
(yi − xTi β)2, is the ℓ2 -norm (quadratic)

loss function (i.e., residual sum of squares), xT
i is the i-th row of X,

and the β
����

����1 � ∑p

j�1 βj
∣∣∣∣

∣∣∣∣ is the ℓ1 -norm penalty on β, which

induces sparsity in the solution, and λ≥ 0 is a tuning parameter. The
ℓ1 penalty enables the lasso to simultaneously regularize the least
squares fit and shrinks some components of β̂Lasso to zero for some
suitably chosen λ. The elastic net (EN) is an extension of the lasso
that is robust to extreme correlations among the predictors
(Friedman et al., 2010; Ogutu et al., 2012), for example, to
overcome the instability of the lasso solution when SNPs as the
predictors are in high linkage disequilibrium. In the ENmodel, there
are two L1 and L2 penalties and the balance between them is
controlled by a parameter (α).

β̂EN � argmin y − Xβ
����

����22 + 1 − α( ) β
����
����22 + αλ β

����
����1

The glmnet function from the “glmnet” R-package was used for
fitting LASSO and EN models. The cv.glmnet () function in this
package was used to obtain optimum values for α and λ using a cross
validation procedure.

2.10.2 Bayesian regression prediction models
Four Bayesian regression models included Bayesian ridge

regression (BRR), Bayes B (BB), Bayes C (BC) and Bayesian
Lasso (BL) models were fitted and compared in terms of their
prediction accuracy. We assumed that there is a genomic variable
predictor, i.e., G � gij{ } with i � 1, . . . , n, j � 1, . . . , pg. The
phenotypic vector y � yi{ } was defined as either yi � 0 for
phenotype-negative controls or yi � 1 for DSLD cases. A probit
link function as P(yi � 1|Gi) � Φ(ηi) was used to estimate the
model parameters. Where, Φ is a standard normal cumulative
distribution function and ηi is a linear predictor that has the
following form:

ηi � μ +∑pg

1
gijβ

Where, µ is an intercept or population mean, gij is the
genotype of the i-th individual at the j-th marker, and βj is the
j-th marker effect. The probit link implemented used a latent
normally distributed variable li � ηi + εi and a measurement
model yi � 0 if li < γ, and 1 otherwise, where γ is a threshold
parameter; εi is an independent normal model residual with
mean zero and with variance set equal to one. A standard
Bayesian linear model was used for prediction as follows:

p θg
∣∣∣∣y,ωg( )∝p y

∣∣∣∣θg( )p θg
∣∣∣∣ωg( )

Here, p(θg |y,ωg ) is the conditional posterior density of the
genomic parameters (θg � μ, σ2e , β{ }), including the residual
variance (σ2e), which was assigned a scaled-inverse χ2 prior
density, µ was assigned a flat prior density, and the marker
effects (β) were assigned independent and identically
distributed informative priors, depending on the model, and
ωg is the genomic hyperparameter that indexes the prior
density of marker effects which for the different models is: A)
BRR assumes the same genetic variance for all markers;
i.e., βi ~ N(0, σ2β). The prior distribution for marker genetic
variance is the following scaled inverted chi-squared
distribution, σ2β|υβSβ ~ υβSβχ−2υβ , with hyper-parameters υβ
(degrees of freedom) and Sβ (scale parameter) (Meuwissen
et al., 2001).

BB and BC both have an extra hyperparameter ‘π’ which is
the probability of a marker’s effect to be equal to zero or null
and usually is assigned a Beta prior π ~ beta (p0, π0), with p0 > 0
and π0 ϵ [0, 1] (Pérez et al., 2010). The BB model assumes the
prior for marker effects follows a normal mixture distribution
given by βi|π ~ (1 − π)N(0, σ2βi ) + πN(0, σ2βi � 0), so that, the σ2βi
denotes that each SNP has its own variance with a prior
distribution σ2βi |υβ, Sβ ~ υβSβχυβi

−2. In BC, the prior
distribution for marker effects is also given by a normal
mixture distribution βi|π ~ (1 − π)N(0, σ2β) + πN(0, σ2β � 0) but
assumes the same genetic variance for all markers with a prior
distribution of σ2β|υβ, Sβ ~ υβSβχ−2υβ which is similar to BRR
assumptions.

In Bayesian LASSO, the regression parameter βj is assumed to
follow a double exponential (DE) prior distribution regression (Park
& Casella, 2008). In this context, βi|τi, σ2e ~ N(0, σ2βi � τ2i σ

2
e), where

τ2i |λ2 ~ Exp(λ2), the shrinkage factor λ is further assigned with a
hyper prior of a Gamma distribution Gamma (λ2 |s, r), and so it can
be estimated as other model parameters. Under this approach, the
marginal prior distribution for the marker effect is given by
βi|λ ~ Double − Exp .(0, λ). This double-exponential distribution
presents higher mass at zero, but it does not necessarily set
coefficients exactly to zero. The shape (s) and rate (r) parameters
of the Gamma prior was specified to s = 1.1 and r � (s−1)

2 × (1−R2)/R2 × MSx
(Perez and de los Campos, 2014), whereMSx represents the sum of
the variances of genotype values of each SNP, and R2 = 0.5.

We used the BGLR package (Perez and de los Campos, 2014) to
fit the Bayesian regression models. A total of 200,000 iterations, plus
20,000 of burn-in samples were considered to create posterior
distributions and infer the model parameters. Global convergence
was checked by visual inspection of trace plots.
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2.10.3 Accuracy of DSLD risk PRS prediction
To find out the optimum subset of the top SNPs, based on the

GWAS results, for prediction of the DSLD genetic risk score, first we
selected 0.5% (2,238), 1.0% (4,476 SNPs), 2.0% (8,952) and 3.0%
(13,428 SNPs) and evaluated performance of all models. Overall, the
best performance was when 1.00% of top SNPs was used for
prediction.

Five-fold cross validation was used to investigate accuracy of
DSLD risk prediction. We used the coefficients of determination (R2)
on the probit and logit liability scale to assess predictive performance
of our models. R2 on the liability scale can be obtained by
transforming R2 on the observed scale from linear regression,
using the Robertson transformation (Dempster and Lerner, 1950) as:

R2
l � R2

o

K 1 − K( )
z2

Where, R2
o is on the observed scale, Z is the height of a normal

density curve at the point according to the population prevalence
of the disease, and K is the mean proportion of cases in the
sample. In probit or logit models, the above formula can be
directly obtained as the proportion of variance explained by
linear predictors in relation to the total variance on probit
liability scale as:

R2
probit �

var b̂probitgi( )
var b̂probitgi( ) + var e( )

where var(b̂probitgi) is the variance due to the explanatory variable
(genetic variance) and residual variance is defined as var(e) = 1. Also,
on the logit scale, R2 can be obtained by residual variance of
var(e) = π2

3 � 3.92

R2
logit �

var b̂logitgi( )
var(b̂logitgi) + var e( )

These formulas allowed us to quantify the proportion of the
total variance in the liability scale that can be attributed to
the genetic factors captured by the linear predictors in the
probit and logit models (Lee et al., 2012). So, by analyzing the
power of our models’ R2 values to the total variance in the
liability scale, we gain insights into the predictive power of our

models and their ability to explain the underlying genetic
variation.

Furthermore, to validate the predictive performance of the
models, a separate validation set comprising 10 Peruvian Horses
with known DSLD case (n = 3) and control (n = 7) phenotypes was
utilized. Ensemble prediction was applied, incorporating all eight
prediction models (BRR, Bayes B, Bayes C, BL, RF, GB, LASSO, EN).
Finally, tuning of the posterior probability threshold for PRS
(Polygenic Risk Score) prediction as a DSLD case was carried out
using the validation set.

3 Results

3.1 Clinical findings in the study population

Pituitary pars intermedia dysfunction (PPID) was identified in
two DSLD cases and two phenotype-negative controls, and equine
metabolic syndrome (EMS) was identified in four DSLD cases and
three controls from medical records (Table 1). No control horses
were reassigned as cases.

3.2 Heritability

Heritability analysis included 1,947 Peruvian Horses and was
conducted using pedigree information. There were 499 (25%)
horses considered inbred based on the F coefficient. The mean F
coefficient was 1.72% and showed a range from 0.012% to 28.2%.
The mean F in the inbred horses was 6.1%. The sample
population included 688 founder horses and 1,259 non-
founder horses. There were 376 horses with no progeny and
1,570 horses with at least one progeny. The posterior density of
the estimated genetic variance σ2g, and DSLD heritability (h2DSLD)
are represented in Figure 2. The posterior mean ± SD of DSLD
heritability was 0.22 ± 0.08 with the highest (posterior) density
interval (HPD) of lower and upper limits 0.081 and
0.419 respectively at 0.95 percent credible interval. The
genetic variance component had a posterior mean and
standard error of 0.683 ± 0.341, with the HPD interval’s
boundary of 0.134–1.371.

TABLE 1 Clinical features of the Peruvian Horse study population.

Phenotype DSLD cases (80 horses) DSLD phenotype-negative controls (103 horses)

Male 7 10

Gelding 26 48

Female 46 45

Unknown 1 0

Age (years) 16.2 ± 5.3 19.1 ± 4.3

PPID 2 2

EMS 4 3

Note: DSLD, degenerative suspensory ligament desmitis; PPID, pituitary pars intermedia dysfunction; EMS, equine metabolic syndrome.
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3.3 Genome-wide association study and
regional window variance

The study population consisted of 80 cases and 103 controls.
There were 7 and 10 stallions, 46 and 45 mares, and 26 and
48 geldings in the case and control groups respectively. The
neuter status of one male horse in the case group was unknown.

In our GWAS analysis we considered two cut-off thresholds, a
Bonferroni corrected P-value threshold at P < 1E-7 and a
permutation-based threshold at P < 7.39E-5. In total, 3 and
151 SNPs passed these thresholds respectively. The three SNPs
that exceeded the Bonferroni significance threshold were located
on chromosomes 4, 10, and 11. Candidate loci with significant SNPs
that passed the Bonferroni threshold contained the NOG, AHR, and

FIGURE 2
Posterior densities for genetic variance component and heritability of degenerative suspensory ligament desmitis (DSLD) in the Peruvian Horse. The
red line denotes the mean (SD) of the heritability distribution. The heritability estimate was 0.22 ± 0.08 and the mean (SD) of the genetic variance was
0.68 ± 0.34.

FIGURE 3
(A)Quantile-quantile plot comparing the expected P-value distribution to the observed P-value distribution. (B)Manhattan plot of -log10 (P-value). A
linear mixed model GWAS analyzed the association between 447,630 SNPs and the DSLD disease phenotype. The solid red line denotes the Bonferroni
corrected significance threshold of ≤1.1E-07. The dotted red line denotes the permutation significance threshold of ≤7.39E−05. There were 3 SNPs that
passed the Bonferroni corrected P-value threshold and 151 SNPs that passed the permutation threshold. (C) Enriched heritability windows were
evident in multiple regions across the genome on chromosomes 1, 2, 6, 10, 13, 16, 18, 22, and the X chromosome.
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UBE3D genes. We identified a total of 200 DSLD candidate genes
based on the less stringent permutation threshold and after we
screened the gene list. After conducting a thorough functional
investigation, 17 of them were considered functionally or
biologically related to DSLD (Table 2). In this analysis λ = 0.99,
indicating absence of systematic biases or population structure that
could lead to false-positive associations. As shown in Figure 3A, only
SNPs that were significantly associated with DSLD reside outside of
the normal distribution line. Multiple SNP associations were
identified across the genome (Figure 3B).

Multiple regions of enriched local heritability were also
identified across the genome, with strong enrichment signals on
chromosomes 1, 2, 6, 10, 13, 16, 18, 22, and the X chromosome
(Figure 3C). In this analysis, we selected the top 5% of windows
(238 windows) with the highest genetic variance and searched for
the DSLD related genes in each window through the UCSC genome
browser. In total 953 DSLD candidate genes were identified of which
39 genes were relevant to tendon homeostasis (Table 2).

3.4 Signatures of selection and principal
component analysis

As a prerequisite for selection signature analysis, we performed a
PCA analysis (Supplementary File S1). The results showed that the
Peruvian Horses clustered together and distributed along these two
vectors based on their genomic similarity with a small difference
between DSLD case and control groups of horses (Supplementary
Figure S1A). Our PCA analysis showed that the first principal
component captured 15.9% and the second explained 5.8% of
total variance (Supplementary Figure S1B).

The SOS analysis in case-control groups showed that there were
115 genes in candidate loci exhibiting a selection signature in DSLD
cases and 123 genes in control populations. Of these genes, 49 were
shared between case and control groups. In the DSLD case group,
candidate genes included the candidate tendinopathy gene TGFB3
that was not shared with the DSLD phenotype-negative control
group (Figure 4 and Table 2).

3.5 Pathway enrichment analysis

We combined 60 candidate genes obtained from the three
analyses (20 genes from GWAS, 39 genes from window based
local variance analysis, and one gene from SOS analysis), for
Reactome pathway enrichment analysis. Finally, 33 pathways
from the Reactome data base which were most related to tendon
homeostasis, were identified (Figure 5). SNP associations with DSLD
showed enrichment for pathways including proteoglycan
metabolism, extracellular matrix homeostasis, and signal
transduction pathways that included the hedgehog signaling
pathway (Figure 5).

3.6 Polygenic risk score prediction of DSLD
risk

Predictive performance of both classification machine learning
and Bayesian regression models using a five fold cross validation is
represented in Table 3. Machine learning performance was assessed
using the top 1% of GWAS SNPs (4,476 SNPs).We considered sex as
the only covariate in the predictive model. A chi-squared test with

FIGURE 4
MirroredManhattan plot for signatures of selection results in the case and control sub-populations. -log10 P-value of the decorrelated composite of
multiple signals (DCMS) values are shown in the upper panel for DSLD cases and in the lower panel for the control group. The red line in the figure
indicates the significance cutoff of (P-value = 0.0001). In the DSLD case group, candidate genes included the candidate tendinopathy gene TGFB3 that
was not shared with the DSLD phenotype-negative control group. Additionally, the candidate tendinopathy gene GLI2 exhibited a large selection
signature in DSLD cases relative to DSLD controls.
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Yates’ continuity correction indicated a weakly significant
association between sex and disease status in our sample
population (χ-squared = 4.55, df = 1, p = 0.0329). The
coefficients of determination (R2) were estimated for the
predictive performance of four machine learning classifiers
and four Bayesian models on both the probit liability and
logit liability scale. On the probit liability scale, the Bayesian
Ridge Regression (BRR) model achieved the highest mean R2 of
0.702, followed closely by the Bayes B and Bayes C models with
mean R2 values of 0.699. These models demonstrated relatively
strong predictive power in explaining the variation in the data.
On the other hand, the Gradient Boosting (GB) model had the
lowest mean R2 value of 0.506, indicating relatively weaker
predictive performance compared to the other models.

Similar patterns were observed on the logit liability scale, where
the BRR model exhibited the highest mean R2 of 0.718, followed by

Bayes B and Bayes C with mean R2 values of 0.717 and 0.716,
respectively. The GB model again showed the lowest mean R2 of
0.467, suggesting comparatively lower predictive accuracy. Among the
machine learning classifiers, Random Forest (RF) had a mean R2 of
0.632, while LASSO and Elastic Net (EN) achieved mean R2 values of
0.562 and 0.682, respectively on the probit liability scale.

When PRS prediction of a separate validation set of Peruvian
Horses was performed using ensemble risk prediction, four DSLD
control horses were incorrectly predicted using a posterior
probability threshold of 0.5 for classification as a case
(Supplementary Table S1). Tuning of the threshold
(Supplementary Figure S4) identified an optimal threshold of
0.55. With this adjusted threshold, correct classification was
achieved for 9 out of 10 horses (Supplementary Table S1). One
DSLD control horse was still predicted to have the genetic risk of
a case.

FIGURE 5
Network of the Reactome pathways. Each node (circle) represents a gene set characterized by a particular reactome pathway. Node fill indicates the
enrichment score (FDR q-value). The thickness of blue lines (edges) indicates the number of shared genes (overlap) between two connected nodes.
Nodes with high overlap are clustered together, forming groups characterized by similar terms and pathways.
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TABLE 2 Degenerative suspensory ligament desmitis candidate genes in case and control Peruvian Horses identified by genome-wide association study,
signatures of selection analysis, and enriched local heritability based on the top 5% of windows consisting of 90 SNPs (~0.5 Mb).

Chr. Gene Start End Association Function

1 GOT1 30375631 30405684 WIN Amino acid metabolism

1 ADPGK 121816143 121845020 WIN Glucose metabolism

1 HNRNPC 159648632 159698966 WIN mRNA processing

1 NFATC4 164052916 164064654 WIN Transcription

1 ARHGAP5 171226123 171340624 GWAS, WIN RhoA signaling

2 IL2 105981808 105986539 GWAS Cytokine signaling

3 CXCL1 63470006 63471632 GWAS Chemokine signaling

4 GLI3 13037249 13219199 GWAS Mechanotransduction

4 DLX5 40253957 40258390 WIN Bone development

4 AHR* 49857545 49905361 GWAS Transcription

4 BMPER 64067759 64300454 GWAS BMP signaling

5 FMOD 98095 108183 WIN Extracellular matrix assembly

5 PRELP 216694 229790 WIN Extracellular matrix protein

5 PRRX1 6933867 7004826 WIN Transcription co-activator

5 PLA2G4A 20629061 20778606 GWAS Inflammation/fibrosis

5 DOCK7 94635353 94839474 WIN Neuronal homeostasis

5 ANGPTL3 94712964 94721879 WIN Angiogenesis

6 MYL1 702203 713479 GWAS Muscle motor protein

6 TNS1 7382346 7475906 GWAS Mechanotransduction

6 CXCR2 7619797 7635887 GWAS Chemokine signaling

6 HOXC11 71740286 71743755 WIN Morphogenesis

6 HOXC10 71752515 71756888 WIN Morphogenesis

6 CDK2 74578263 74584110 GWAS, WIN Cell cycle regulator

6 GLI1 75986882 75997378 WIN Sonic hedgehog signal transduction

6 DDIT3 76025871 76030311 WIN Transcription factor

9 EYA1 14929400 15250649 GWAS, WIN Transcriptional activator of tendongenesis

9 FBXO32 68005907 68040654 WIN Ubitiquination

10 APOE 15712329 15715203 WIN Fat metabolism

10 RELB 15824912 15849495 WIN DNA and protein kinase binding

10 FOSB 16184656 16189918 WIN Transcription

10 C5AR1 17637680 17648858 GWAS Complement signaling

10 BAX 19185480 19189232 WIN Regulation of apoptosis

10 UBE3D* 37554767 37708415 GWAS Protein processing

11 NOG* 31351205 31353200 GWAS TGF-beta signaling

12 FAM111B 22719710 22729624 WIN Serine protease

13 MMP25 40938718 40949639 WIN Extracellular matrix remodeling

13 MAPK8IP3 42229513 42283271 WIN Protein kinase activity in the JNK pathway

14 B4GALT7 3762834 3769419 GWAS Extracellular matrix homeostasis

(Continued on following page)
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4 Discussion

DSLD is a debilitating condition characterized by systemic
deposition of proteoglycan in connective tissues that may yield

insight into human TLI associated with similar matrix
disturbances. We undertook a within-breed GWAS of DSLD
in the Peruvian Horse using a linear mixed model to discover
candidate loci and genes that influence risk of the disease. Our

TABLE 2 (Continued) Degenerative suspensory ligament desmitis candidate genes in case and control Peruvian Horses identified by genome-wide association
study, signatures of selection analysis, and enriched local heritability based on the top 5% of windows consisting of 90 SNPs (~0.5 Mb).

Chr. Gene Start End Association Function

18 GLI2 9941781 10145734 GWAS Mechanotransduction

18 ITGA4 59353502 59429448 WIN Cell surface adhesion and signaling

18 ZNF804A 61922561 62203313 WIN Zinc finger binding protein

18 MSTN 66605149 66610122 WIN TGF-beta signaling

18 CASP8 76419122 76440775 WIN Apoptosis signaling

18 BMPR2 77363946 77575481 GWAS BMP signaling

18 IDH1 82212082 82224373 WIN Regulates cytoplasmic NADPH production

20 DDR1 30773386 30790979 WIN Regulation of cell growth, differentiation, and metabolism

20 TNXB 32581324 32636789 GWAS, WIN Extracellular matrix homeostasis

20 FKBPL 32652174 32653957 WIN Regulation of the cell cycle

20 MEP1A 46257218 46290867 GWAS Collagen type I assembly

23 JAK2 25863481 25998651 WIN Cytokine and growth factor signaling

24 TGFB3 21412497 21434025 SOS Regulation of SMAD transcription

24 SYNE2 10579333 10875981 WIN Cell structural protein

24 SIX1 7880934 7885609 WIN Limb development

X SMARCA1 106902542 106969223 WIN ATPase regulation of chromatin remodeling

X MIR363 110758364 110758439 WIN Non-coding RNA

X HPRT1 110954955 110988635 WIN Purine metabolism

Note: Candidate genes were identified through analysis of significant SNPs with ±50 kb flanking regions using the EquCab3.0 reference genome. Chr, chromosome. *Significance of association

met the Bonferroni threshold. GWAS, genome-wide association study; SOS, signatures of selection; WIN, window analysis of enriched local heritability.

TABLE 3 The estimated coefficients of determination (R2) for each model on the probit liability scale and the logit liability scale for polygenic risk score prediction
of risk of degenerative suspensory ligament desmitis in the Peruvian Horse.

Probit liability scale R2 Logit liability scale R2

Model Mean SD Mean SD

BRR 0.702 0.0176 0.718 0.0164

Bayes B 0.699 0.0189 0.717 0.0169

Bayes C 0.699 0.0183 0.716 0.0176

BL 0.689 0.0198 0.704 0.0213

RF 0.632 0.0381 0.606 0.0363

GB 0.506 0.0416 0.467 0.0458

LASSO 0.562 0.0173 0.525 0.0193

EN 0.682 0.0184 0.679 0.0242

Note: The Bayesian models included Bayesian Ridge Regression (BRR), Bayes B, Bayes C, and Bayesian Least Absolute Shrinkage and Selector Operator (BL). The machine learning classifiers

included Random Forest (RF), Gradient Boosting (GB), Least Absolute Shrinkage and Selector Operator (LASSO), and Elastic Net (EN). The results are presented as mean and standard

deviation (SD) based on the results of five-fold cross-validation.
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analysis showed that the disease has moderate heritability of
0.22 in this breed. Specific environmental risk factors for DSLD
are poorly understood. Our results also show that DSLD has a
polygenic architecture with risk loci spread across the autosomal
genome. Novel TLI genes and pathways were highlighted from
this research. PPID and EMS were occasionally identified with
similar frequency in the horses in both the case and phenotype-
negative control group.

Our GWAS analysis identified 151 DSLD-associated SNPs,
suggesting DSLD is a complex polygenic disease. Environmental
risk factors account for the remaining risk. Candidate loci with
significant SNPs that passed the Bonferroni threshold contained the
AHR, NOG and UBE3D genes. The AHR gene regulates
transcription via the aryl hydrocarbon receptor. A role in tendon
biology has not been defined, but it is possible that this gene may
have a role in extracellular matrix degradation during aging
(Salminen, 2022). NOG is a 222 amino acid secreted protein
known for binding and inactivating BMP4 and other proteins in
the transforming growth factor beta (TGF) superfamily. NOG is
known to play an important role in tendon development and
homeostasis (Schweitzer et al., 2001), including development of
heterotopic ossification with tendon aging (Dai et al., 2020). BMP2,
another member of the TGF superfamily, has been previously identified
within cellular foci of fibroblasts in DSLD-affected SL (Young et al.,
2018). BMPER and BMP2R were also identified as candidate genes in
this analysis. DSLD is associated with an atypical accumulation of
proteoglycans, such as aggrecan, within diseased SL tissue (Plaas et al.,
2011). It is conceivable that NOG may influence aggrecan homeostasis
in SL tissue matrix through BMP-SMAD1/5 signaling (Wang et al.,
2012). UBE3D is a ubiquitin-conjugating enzyme that plays an
important role the ubiquitin proteosome system, regulating protein
degradation. It is possible that functional variation in this protein may
contribute to the pathogenesis of DSLD through protein degradation
(Huang et al., 2015).

A much larger number of SNPs passed the permutation threshold
used in this study. Bonferroni correction is widely considered too
conservative and may propagate Type II error (false negatives)
(Nakagawa, 2004). Because groups of SNPs are inherited together in
a haplotype block because of linkage disequilibrium, association testing
of individual SNPs is not independent. In this larger set of SNP
associations, additional DSLD risk SNPs were identified in genes
that could influence tendon homeostasis. Increased CXCL1
expression has been found in chronic tendinopathy (Kendal et al.,
2020). GLI2 and GLI3 were also identified as candidate DSLD genes.
GLI3 has been linked tomechanotransduction responses during tendon
healing (Freedman et al., 2022). In humans, increased expression of
MYL1 has been identified in traumatic rotator cuff tears in female
patients, whereas MYL2 is highly expressed in degenerative tears in
male patients (Rai et al., 2022). A mutation in B4GALT7 has been
associated with dwarfism and development of tendon laxity in Friesian
horses. B4GALT7 is one of the enzymes that synthesizes the
tetrasaccharide linker between protein and glycosaminoglycan
moieties of proteoglycans in extracellular matrix (Leegwater et al.,
2016). A mutation in TNXB has also been associated with
connective tissue laxity that is part of an Ehler-Danlos Syndrome-
like phenotype (Brisset et al., 2020). Tenascin-X is amatrix glycoprotein
that is thought to have an important role in collagen fibrillogenesis
(Brisset et al., 2020). Collagen assembly is also regulated by MEP1A

(Broder et al., 2013), another DSLD-candidate gene identified in this
research.

Through our SOS analysis, we found 66 candidate genes that
exhibited a selection signature in DSLD cases that was not present in
the control group, further supporting the hypothesis that DSLD has
a polygenic architecture. Candidate genes include 25 non-coding
RNA sequences, suggesting that regulatory SNPs may play an
important role in the genetic contribution to DSLD (Giral et al.,
2018). We also found GLI2 exhibited a large selection signature in
DSLD cases relative to phenotype-negative control horses. A
candidate genomic region from SNP GWAS that also contains a
positive selection signature is more likely to contain the causal
genetic variant, particularly for diseases with a simple mode of
inheritance, but not for complex traits (Kemper et al., 2014).
Development of tendinopathy likely represents a failure to repair
or remodel extracellular matrix after repetitive micro-injury. In this
regard, poor healing has been associated with loss of TGFB receptors
from diseased matrix (Fenwick et al., 2001) and downregulation of
TGFB3 is found with aging, particularly in tendons exposed to
mechanical overload (Kinitz et al., 2021). The Indian hedgehog
signaling pathway, which includes the transcription factors GLI1/
GLI2/GLI3, is known to modulate matrix responses to load and
healing in tendon injury, particularly at bone attachment sites (Liu
et al., 2022).

Pathway analysis of candidate genes identified by GWAS, local
variance analysis and SOS identified enrichment of pathways
associated with glycosaminoglycan metabolism and extracellular
matrix homeostasis. Additionally, signal transduction, particularly
the hedgehog signaling pathway also showed enrichment.
Glycosaminoglycans have a key role in extracellular matrix
composition of tendons and disturbed metabolism of the
extracellular matrix of tendon; accumulation of aggrecan in SL
tissue and disturbance to decorin glycosylation are key features
of DSLD (Kim et al., 2010; Plaas et al., 2011; Haythorn et al., 2020).
Mechanotransduction has a key role in tendon and ligament
homeostasis and genes that have regulatory effects on
mechanotransduction were a key finding in a previous categorical
GWAS of DSLD in multiple breeds of horse (Momen et al., 2022).

The Peruvian Horse is a breed with a small effective population
(Momen et al., 2022), enabling detection of significant associations and
accurate PRS predictions with a relatively small sample size. In the
cross-validation experiment, the models we studied demonstrated
moderate predictive performance on both the probit and logit
liability scales. It is important to consider both the mean R2 values
and the corresponding SD, representing the variability of R2 values
across the cross-validation folds. The low SD values indicatemore stable
and consistent predictive performance.We identified the BRRmodel as
the best performing single model with a clinically relevant predictive
accuracy in the reference population with an R2 that exceeds 0.7 using
the top GWAS SNPs and sex as the only covariate in the predictive
model. When we used ensemble prediction in a validation set of
10 independent Peruvian Horses, all horses were predicted
accurately except one after tuning of the posterior probability threshold.

These results fit with an earlier observation that PCA analysis using
top DSLD GWAS SNPs reflecting breed categorical risk causes the
population within the PeruvianHorse breed to form two distinct clusters
in contrast to a single breed cluster when all SNPs are considered in the
analysis (Momen et al., 2022). Because DSLD is an acquired disease that
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often develops after horses have reached breeding age and been used for
breeding, accurate PRS prediction of DSLD risk is an important advance
clinically, as it enables screening of horses for selection for breeding at a
young age.

There were several limitations to this work. The sample size in our
study population was relatively small at 183 horses. The age was not
available for all the cases. In the future, increasing the sample size may
help detect additional associations, improve the accuracy of PRS
prediction of disease risk, and enable SNP estimation of DSLD
heritability. Consideration of athletic activity in prediction models
may also be useful in the future. Further validation of PRS prediction
is needed by predicting a larger independent test set of horses and
evaluating prediction accuracy. It would also be important to follow
predicted horses over time to confirmwhether young horses predicted as
cases develop DSLD later in life. Combining both genotype and pedigree
data to estimate heritability could also be considered. In our regional
window variance analysis, the choice of the threshold for selecting the top
windows with the highest heritability was a subjective decision. A higher
or lower threshold than 5%mayhave yielded different results.Morework
is also needed to further investigate the key pathways involved in the
pathogenesis. RNA-Seq analysis of tendon tissue from DSLD case and
control horses will likely help confirm key candidate genes and pathways.
Further investigation of candidate genetic variants using whole genome
sequencing is also warranted. By including all genes related to DSLD
from GWAS, SOS and WIN, and shortening the gene list by selecting
biologically compelling genes, we aimed to capture a set of genes that are
biologically relevant to the phenotype of interest and increase the power
of our pathway analysis to detect meaningful associations. Additionally,
we assumed this approach would help reduce the impact of false
negatives in our analysis compared with inclusion of all associated
genes from our discovery analyses.

In conclusion, our within-breed GWAS of DSLD in the Peruvian
Horse has further confirmed moderate heritability and a polygenic
architecture underlies the trait and identified multiple DSLD SNP
associations. Pathways enriched with DSLD risk variants include
pathways that influence glycosaminoglycan metabolism, extracellular
matrix homeostasis, signal transduction, interleukin signaling, and
apoptosis. PRS prediction using an ensemble prediction pipeline
shows clinical promise as a genetic risk test for DSLD.
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