
Identification of the shared gene
signature and biological
mechanism between type
2 diabetes and colorectal cancer

Xianqiang Liu1,2†, Dingchang Li1,2†, Wenxing Gao1,2†, Wen Zhao2,3,
Lujia Jin1,2, Peng Chen1,2, Hao Liu2,3, Yingjie Zhao1,2 and
Guanglong Dong2*
1Medical School of Chinese PLA, Beijing, China, 2Department of General Surgery, The First Medical Center,
Chinese PLA General Hospital, Beijing, China, 3School of Medicine, Nankai University, Tianjin, China

Background: The correlation of type 2 diabetes mellitus (T2DM) with colorectal
cancer (CRC) has garnered considerable attention in the scientific community.
Despite this, the molecular mechanisms underlying the interaction between these
two diseases are yet to be elucidated. Hence, the present investigation aims to
explore the shared gene signatures, immune profiles, and drug sensitivity patterns
that exist between CRC and T2DM.

Methods: RNA sequences and characteristics of patients with CRC and T2DM
were retrieved from The Cancer Genome Atlas and Gene Expression Omnibus
databases. These were investigated using weighted gene co-expression network
analysis (WGCNA) to determine the co-expression networks linked to the
conditions. Genes shared between CRC and T2DM were analyzed by univariate
regression, followed by risk prognosis assessment using the LASSO regression
model. Various parameters were assessed through different software such as the
ESTIMATE, CIBERSORT, AND SSGSEA utilized for tumor immune infiltration
assessment in the high- and low-risk groups. Additionally, pRRophetic was
utilized to assess the sensitivity to chemotherapeutic agents in both groups.
This was followed by diagnostic modeling using logistic modeling and clinical
prediction modeling using the nomogram.

Results: WGCNA recognized four and five modules that displayed a high
correlation with T2DM and CRC, respectively. In total, 868 genes were shared
between CRC and T2DM, with 14 key shared genes being identified in the follow-
up analysis. The overall survival (OS) of patients in the low-risk group was better
than that of patients in the high-risk group. In contrast, the high-risk group
exhibited higher expression levels of immune checkpoints The Cox regression
analyses established that the risk-score model possessed independent prognostic
value in predicting OS. To facilitate the prediction of OS and cause-specific
survival, the nomogram was established utilizing the Cox regression model.

Conclusion: The T2DM + CRC risk-score model enabled independent prediction
of OS in individuals with CRC. Moreover, these findings revealed novel genes that
hold promise as therapeutic targets or biomarkers in clinical settings.
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Introduction

The rising incidence of type 2 diabetes (T2DM) and
colorectal cancer (CRC) has led to their recognition as major
public health concerns, owing to the escalating mortality and
morbidity rates associated with these diseases. T2DM is a
metabolic disease characterized by insulin resistance and
hyperinsulinemia that results in persistent chronic
inflammation and metabolic disorders, such as pancreatic
cancer (Wang et al., 2022), periodontitis (Chen et al., 2022).
Reportedly, the condition affects over 450 million individuals
globally, and this number is projected to increase to 642 million
by 2040 (Ogurtsova et al., 2017). Besides inducing metabolic
disorders and vascular damage, T2DM is also a major
predisposing factor for cancer, primarily gastrointestinal
malignancies, such as CRC (Calle et al., 2003). Globally, CRC
is the third most prevalent malignant gastrointestinal cancer with
the second highest cancer-linked mortality rate (Siegel et al.,
2020). The American Cancer Society has estimated that almost
151,030 new cases of CRC are expected to occur in 2022, with an
estimated 52,580 deaths in both sexes. Furthermore, the
incidence of CRC is projected to rise further (Siegel et al.,
2022). The 5-year survival rate of individuals with advanced
CRC is merely 15% (Bray et al., 2018; Ferlay et al., 2019).
Recently, epidemiological reports have revealed a link between
T2DM and CRC cancer (Kramer et al., 2012). Specifically,
individuals with diabetes exhibit a higher relative risk of CRC
by approximately 30% compared to those without diabetes.
Moreover, diabetes has been shown to increase the risk of
CRC recurrence (Meyerhardt et al., 2003). A meta-analysis by
Zhu et al. (Zhu et al., 2017) revealed that the overall survival (OS)
was 5 years shorter in the CRC + T2DM cohort than in the CRC
cohort. In individuals with T2DM, the poor prognosis of CRC
may be associated with the dysregulation of the cell proliferation
cycle (Eguchi et al., 2022). Therefore, assessing the underlying
mechanisms of T2DM and CRC is crucial for developing novel
therapeutic approaches.

Obesity and a sedentary lifestyle are among the shared
characteristics of CRC and T2DM, indicating a close relationship
between the two conditions (Jin, 2008; Zelenko and Gallagher,
2014). Recent studies suggest that T2DM is a systemic chronic
inflammatory disease linked to genetic alterations leading to
recurrent damage and repair, upregulated cell proliferation, and
ultimately CRC. In individuals with CRC, T2DM-induced cellular
over-proliferation along with increased oxidative stress results in
DNA damage and affects the repair of oncogenic DNA. This T2DM-
related mechanism may be a major factor affecting the survival and
prognosis of individuals with CRC (Stanich et al., 2011; Cho et al.,
2016). Since T2DM and CRC have similar causal factors, such as
high-calorie intake, high-fat diet, overweight, and sedentary lifestyle,
it is common for diabetes and CRC to coexist clinically. Moreover,
these two conditions can affect and promote each other, leading to
disease progression (Potter, 1999; Expert Panel on Detection et al.,
2001).

Currently, there is a lack of highly specific and sensitive
biomarkers for CRC diagnosis and prognosis prediction in
individuals with T2DM. Moreover, exploring the molecular
pathways and networks linked to T2DM and CRC is essential for

the development of patient screening, prevention, diagnosis, and
treatment strategies. Therefore, in this research, a bioinformatics
approach was employed to identify the interactions between T2DM
and CRC.

Materials and methods

Dataset information

According to the pre-defined criteria, the GEO datasets
(GSE17536, GSE17537, GSE7014, and GSE39582) and The
Cancer Genome Atlas (TCGA)-CRC were chosen for this
research. The summarized data of all four datasets are displayed
in Table 1. Furthermore, GSE7014 and GSE39582 were paired into a
discovery cohort for the weighted gene co-expression network
analysis (WGCNA). GSE17536, GSE17537, and TCGA-CRC were
selected into the validated cohorts for the analysis.

Immune infiltration analysis

The R package ESTIMATE (Version 1.0.13) was used to
examine the tumor microenvironment (TME) of every
individual afflicted with CRC by determining the stromal and
immune cell fractions based on the gene expression signatures in
tumor samples. The immune score (degree of immune cell
infiltration), stromal score (stromal content), tumor purity,
and ESTIMATE score (synthetic mark of stroma and immune)
were assessed using ESTIMATE (Yoshihara et al., 2013).
CIBERSORT was used to compute cell composition as per
gene expression profiles. This process was employed for the
calculation of the proportions of 22 immune cell types in each
CRC individual (Newman et al., 2015). The sum of all fractions of
these immune cells in each sample was 1. Additionally, the
infiltration degree of 28 immune cell types was determined
using the R package GSVA (Version 1.42.0) single-sample
gene set enrichment analysis (SSGSEA) (Hanzelmann et al.,
2013), based on the expression of genes in the published
28 gene sets for immune cells (Bindea et al., 2013).

Development and assessment of
nomograms and calibration curves

A nomogram model was developed using the 14 diabetes-
associated mRNAs to predict 1-, 3-, and 5-year OS through the
rms (Version 6.4.1) R package. Afterward, the calibration curves of
the aforementioned OS were used to validate the performance of
nomogram models using the bootstrap method with
1,000 resamples.

WGCNA

WGCNA is an algorithm for analyzing gene expression
patterns in numerous samples. This algorithm can cluster
genes and construct modules based on similar gene expression
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patterns. Additionally, it can identify associations between these
modules and biological characteristics (Langfelder and Horvath,
2008). This research utilized the R package WGCNA (Version
1.72.1) to develop networks of genes co-expressed between
T2DM and CRC. Initially, a soft-threshold beta value of 12 for
T2DM and 8 for CRC along with the gene-gene correlation
matrix was used to build the adjacency matrix, which
describes the strength of association between the nodes.
Following the conversion of the constructed matrix into the
topological overlap matrix, a gene hierarchical clustering
dendrogram was established. This dendrogram enabled the
identification of co-expression modules. Ultimately, the
module eigengenes (MEs) were calculated, and their
correlation with clinical characteristics was assessed to
determine the disease-related modules.

Cox regression analysis and least absolute
shrinkage and selection operator (LASSO)
for prognostic gene selection

To assess survival-linked genes, univariate Cox regression
analysis was conducted for differentially expressed genes (DEGs).
Simultaneously, the gene signature was established through the
LASSO Cox regression model (R package “glmnet” (Version
4.1.7)) in order to avoid overfitting and enhance the
credibility of screening out core genes (Friedman et al., 2010).
Moreover, the selection of relevant features and quantification of
the hazard ratios (HRs) with 95% confidence intervals (CIs) were
conducted through multivariable Cox regression analyses
(Vrieze, 2012). Genes with a p-value of <0.05 were regarded as
suitable for further analysis.

Drug sensitivity prediction

This research utilized the biggest pharmacogenomics database,
the Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.
cancerrxgene.org), which is publicly available. Herein, the
chemotherapeutic sensitivity for each tumor sample was
predicted using the R package “pRRophetic (Version 0.5).” Ridge
regression was utilized to estimate the half-maximal inhibitory
concentration (IC50) of each tumor sample treated with a certain
chemotherapy drug. With the GDSC training set, 10-fold cross-
validation was employed to assess the accuracy of the prediction
(Geeleher et al., 2014).

Results

Weighted gene co-expression modules in
T2DM and CRC

The development process of the risk model and further
analyses are explained in detail (Figure 1A). Initially, using
the WGCNA, 15 modules were identified in GSE7014, where
each module was represented by a different color Next, a heatmap
was established to examine the correlation between each module
and the disease, by mapping module-trait relationships based on
the Spearman correlation coefficient. (Figure 1B). Among the
modules, four modules, including the “magenta,” “turquoise,”
“pink,” and “brown,” exhibited a strong link to T2D and were
identified as T2D-related modules (magenta module: r = −0.67,
p = 0.00021; turquoise module: r = −0.88, p = 2.10e−09; pink
module: r = 0.63, p = 0.0006, brown module: r = 0.84, p =
8.22e−08). The pink and brown modules, consisting of
328 and 1,022 genes respectively, showed a positive
correlation with T2D. On the other hand, the magenta and
turquoise modules, consisting of 184 and 1,634 genes
respectively, exhibited a negative correlation with T2D.

After performing WGCNA on GSE39582, 23 modules were
detected. Five modules, namely “blue”, “turquoise”, “purple”, “pink”
and “brown,” with a high correlation with CRC were identified and
selected as CRC-related modules (blue module: r = −0.44, p =
4.20e−09; turquoise module: r = −0.32, p = 1.67e−09; pink
module: r = 0.66, p = 4.30e−76, brown module: r = −0.36, p =
3.01e−19; purple module: r = 0.43, p = 1.60e−27). The pink and
purple modules, comprised of 446 and 234 genes, respectively,
showed a positive correlation with CRC. On the other hand,
comprised of 1,092, 1,071, and 1,284 genes, respectively, the blue,
brown, and turquoise modules exhibited a negative correlation with
CRC (Figure 1C).

Construction and validation of the shared
gene risk signature

In the training cohort (GSE39582), the prognostic value of
every overlapped gene was analyzed utilizing the univariate cox
regression model. For further analysis, 34 survival-related genes
were identified (p-value <0.001): KIAA1671, PXMP2, CEBPA,
NOX1, R3HDM1, DIMT1, NDUFAF2, COQ2, COX11, PAICS,
COQ3, CNOT9, POLR2I, ZSCAN5A, POP5, NHP2, RPUSD3,
TECR, CENPX, DDX56, SLC37A4, CDC42BPA, LRRC59,

TABLE 1 Summary of three GEO datasets and TCGA dataset on patients with T2DM and CRC.

ID Dataset Platform Samples Disease Group

1 GSE7014 GPL570 20 patients and 6 controls T2DM Discovery cohort

2 GSE39582 GPL570 566 patients and 19 controls CRC Discovery cohort

3 GSE17537 GPL570 177 patients CRC Validation cohort

4 GSE17536 GPL570 55 patients CRC Validation cohort

5 TCGA-CRC Illumina 556 Patients and 28 controls CRC Validation cohort

CRC, colorectal cancer; GEO, gene expression omnibus; T2DM, Type 2 diabetes mellitus; TCGA, the cancer genome atlas.
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IFRD2, NUP85, MTG1, PA2G4, PUS1, NOB1, SNRPF, UTP4,
NOP2, POLD2, and AURKA. After constructing a risk
signature using the LASSO Cox regression model, 14 genes

were screened as per the optimum λ value (Figures 2A, B).
Subsequently, the calculation of the risk score as per the
coefficient of each gene was executed as mentioned below:

FIGURE 1
(A) Flow chart of this study. Weighted gene co-expression network analysis (WGCNA). (B) Module-trait relationships in CRC. Each image element
contains the corresponding correlation and p-value. (C) Module-trait relationships in T2DM. Each pixel contains the corresponding correlation and
p-value. CRC, Colorectal cancer; T2DM, Type 2 diabetes mellitus.
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FIGURE 2
Riskmodel for CRC patients based on T2DM+CRCmRNAs (A) The tuning parameters (log λ) of OS-related proteins were selected to cross-verify the
error curve. According to the minimal criterion and 1-se criterion, perpendicular imaginary lines were drawn at the optimal value. (B) LASSO coefficient
curves and vertical imaginary lines for the 14 OS-related mRNAs were drawn on the values selected for 10-fold cross-validation. (C) Coefficient values of
T2DM+CRC-related mRNA. (D) Spearman correlation analysis of 14 mRNAs (colors represent correlation coefficients, p-values of correlation
coefficients are marked with an asterisk (*p < 0.05, **p < 0.01, ***p < 0.001)). (E) The PCA plot for patients of GSE39582. (F) Survival status of each patient.
(G) Kaplan-Meier curves for the OS. (H) Time-dependent ROC curves for OS.
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Risk score = −0.195×PXMP2 (exp) + −0.096×CEBPA (exp)
+ −0.117×NOX1 (exp) + −0.164×R3HDM1 (exp)
+ −0.348×DIMT1 (exp) + −0.075×COQ2 (exp) + −0.082×COX11
(exp) + 0.110×ZSCAN5A (exp) + −0.135×POP5 (exp)
+ −0.161×CENPX (exp) + 0.106×CDC42BPA (exp)
+ −0.629×LRRC59 (exp) + −0.184×MYG1 (exp) + −0.021×NOB1
(exp). (Figure 2C).

Following the exclusion of 23 individuals (lack of corresponding
survival data), the remaining participants were then classified as per
the median risk score into high-risk and low-risk groups (281 each).
Based on the aforementioned risk formula, the risk score of every
individual was computed. The association between the 14 mRNAs
expressions was assessed by using Pearson correlation coefficients in
the GSE39582 cohort (*p < 0.05, **p < 0.01, ***p < 0.001) (Figure 2D).
As per the median risk scores obtained, patients in the
GSE39582 cohort were classified into groups of low- and high-risk.
The principal component analysis indicated the distribution of the
two risk groups in different directions (Figure 2E). Based on the
distribution graph (Figure 2F), high-risk individuals depicted shorter
survival times, and their survival rates also decreased. The Kaplan-
Meier curve also depicted a remarkable difference in overall survival

across high-risk and low-risk groups, with the high-risk individuals
having a remarkably shorter OS time and their survival probability
also decreased (HR: 2.338, 95% CI: 1.75–3.11, p < 0.001; Figure 2G).
The prognosis-predictive accuracy of the risk score was determined by
the time-dependent receiver operating characteristic (ROC) curve
analysis. The area under the curve (AUC) values for 1-, 3-, and
5-years OS were 0.671, 0.678, and 0.633, respectively (Figure 2H).

Assessment of clinical characteristics
between the high- and low-risk groups

The variations in clinical characteristics between the two groups
were examined. Associated analysis depicted that the group with
high risk had higher pathological, T- and N-stages, and were older in
age in contrast with the group with low risk (Table 2).

Validation of gene signature in two GEO
cohorts and a TCGA cohort

T2DM-associated genetic markers were subsequently validated
in three external validation sets to determine their stability and
generalizability in various populations. Two GEO datasets and the
TCGA-CRC dataset were selected as validation sets. Individuals in
the TCGA-CRC, GSE17536, and GSE17537 cohorts were also
classified into high- or low-risk groups, using the formula used
for the GSE39582 cohort. Similar to that in the training group, the
risk score distribution (Figures 3A–C) and ROC curves (Figures
3D–F) were analyzed in the three validation cohorts. The results
were highly consistent with the GSE39582 cohort. The gene
expression heatmap was drawn (Figures 3G–I). The results of the
three external validation sets revealed good agreement with the
training set data. In the three validation cohorts, Kaplan–Meier
analysis predicted better OS in the low-risk groups than in the high-
risk groups: GSE17536 (HR: 1.69, 95% CI: 1.07–2.68; p < 0.05;
Figure 3J), GSE17537 (HR: 2.93, 95% CI: 1.22–7.10, p < 0.05;
Figure 3K), and TCGA-CRC (HR: 2.30, 95% CI: 1.57–3.37, p <
0.001; Figure 3L).

Comparison of immune infiltration between
the two risk groups

Using the ESTIMATE algorithm, the variation in the
immunological characteristics was explored among individuals with
high and low risks of CRC. These finding depicted remarkably elevated
stromal, immune, and ESTIMATE scores in the group with high risk
than in the group with low risk (all p < 0.001) (Figure 4A). In contrast,
individuals with a lower CRC risk depicted remarkably increased
tumor purity (p < 0.001) (Figure 4B). Similarly, the observed
association between ESTIMATE, immune, and stromal scores and
risk score was positive (all p < 0.001) (Figures 4C–E), whereas a
negative correlation existed between tumor purity and the risk score
(p < 0.001) (Figure 4F). CIBERSORT analysis and LM22 single-cell
gene expression model matrix were used to compare the infiltration
levels of multiple immune cell types between high- and low-risk
groups. Additionally, the prognosis-predictive value that these

TABLE 2 Clinical features of two groups in GSE39582.

High-risk group Low-risk group p Value

Number 278 278

Age (median [IQR]) 69.00 [60.00,78.00] 68.00 [57.25,74.00] <0.05

Gender (%) 0.11

Female 115 134

Male 163 145

T stage <0.01
T1 4 7

T2 13 31

T3 181 179

T4 69 48

Tis 0 4

NA 11 9

N stage <0.01
N0 127 168

N1 68 63

N2 63 35

N3 5 1

NA 15 11

M stage 0.53

M0 231 243

M1 34 26

NA 13 9

Pathological
stage (%)

<0.001

Stage 0 0 4

Stage 1 8 24

Stage 2 119 139

Stage 3 118 85

Stage 4 33 26
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FIGURE 3
14 Prognostic value of genetic risk models TCGA database and GEO database for T2DM+CRC-associated mRNAs. Distribution of T2DM+CRC-
related mRNA-based model risk scores for the validation set cohorts (A) TCGA-CRC (B) GSE17536 (C) GSE 17537; ROC curves show the accuracy of the
prognostic model in the validation set cohorts. (D) TCGA-CRC (E) GSE17536 (F) GSE 17537; cluster analysis heat map showing the expression levels of
14 prognostic mRNAs for each patient in the validation set cohorts (G) TCGA-CRC (H) GSE17536 (I) GSE 17537. Kaplan-Meier survival curves for OS
of patients in the low- and high-risk groups in the validation set cohorts (J) TCGA-CRC (K) GSE17536 (L) GSE 17537.
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immune cells might hold regarding individuals with CRC was also
assessed. The distribution pattern of the expressed 22 immune cell
types in CRC patients was examined (Figure 4G). The data indicated
that the distribution of the 9 of these types varied considerably between

the two groups. Furthermore, these results showed thatNK cells resting
and T cells CD4 memory activated were significantly associated with a
favorable OS in CRC patients (Figures 5A, B). In contrast, higher levels
of infiltration of Macrophages M2 and Neutrophils in the high-risk

FIGURE 4
Comparison of immune characteristics between the two groups. (A) Correlation analysis of stromal score, immune score, ESTIMATE score, (B)
tumor purity, ESTIMATE score of CRC patients (C), immune score (D), stromal score (E), and tumor purity (F) with risk score. Immune cell ratio (G).
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FIGURE 5
Comparison of immune characteristics between the two groups. Comparison of overall survival for CRC patients with different infiltration levels of
NK cells resting (A) and T cells CD4 memory activated (B) in the GSE39582 cohort. Immune cell expression (C), and immunomodulatory drugs were
compared in colorectal cancer clinical trials between the two groups (D). p values were marked using asterisks (ns, not significant, *p < 0.05, **p < 0.01,
***p < 0.001).
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group were strongly linked to adverse clinical outcomes in individuals
with CRC (Supplementary Figures S1A, B). The high-risk group
showed elevated expression levels of 21 immune cell subtypes,
including memory CD4/CD8 T cells (effector and central),
activated dendritic cells, natural killer cells, and natural killer
T cells, as demonstrated by SSGSEA outcomes. (Figure 5C). Thus,
the high-risk group tended to have a higher level of immune infiltration
than the low-risk group.

Association between risk core and
immunotherapy response

To assess the sensitivity of individuals with CRC to
immunotherapy, the expression levels of several targets of
immunomodulatory drugs in metastatic CRC were investigated
utilizing clinical trial data. These immunomodulatory targets
were compared between the two patient groups in terms of their

FIGURE 6
Construction and evaluation of prognostic nomogram. (A) nomogram predicting the probability of 1-year, 3-year, and 5-year OS. (B) Univariate and
(C)multivariate analysis of clinical characteristics and risk scores withOS. (D–F)Calibration plots of nomogrampredicting the probability of 1-year,3-year,
and 5-year OS.
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expression. The resulting data indicated considerably elevated
expression levels of most of the immunomodulatory targets
(NRP1, CD28, CD48, CD86, and CD200) in the high-risk group
(Figure 5D). Hence, this group may exhibit a more positive response
to immunotherapy than the low-risk group.

Results of the nomogram model for
predicting survival

A nomogram incorporating age, pathological stage, sex, and the
prognostic risk score model was developed to predict OS in CRC
patients (Figure 6A). To determine whether the risk score and clinical
features could function as independent indicators concerning
prognosis, univariate and multivariate Cox regression analyses were
performed. The resulting data depicted the capacity of the risk score,

age, and TNM stage to independently predict the prognosis in
individuals with CRC (Figures 6B, C). A satisfactory concordance
was exhibited between the predicted OS rates by the nomogram and
observed OS rates by the calibration curves (Figures 6D–F).

Predicting response to chemotherapy using
risk model based on 14 signatures

The “pRRophetic” R package was utilized to evaluate the
sensitivity of the two risk groups to chemotherapy drugs
commonly used for CRC. The resulting data (Figure 7) revealed
that the IC50 values of embelin, lapatinib, pazopanib, and sunitinib
were considerably reduced in the high-risk group in contrast with
the low-risk group, depicting an enhanced sensitivity of the CRC
patients in the high-risk group (Figures 7A–D). To further validate

FIGURE 7
IC50 values of four chemotherapeutic agents with 14-mRNA profiles in two GEO cohorts and the correlation. (A–D) Embelin, Lapatinib, Pazopanib
and Sunitinib in the GSE39582 cohort. (E–H) Embelin, Lapatinib, Pazopanib and Sunitinib in the GSE17536 cohort.
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these findings, tests were conducted using the GSE17536 dataset,
and the results confirmed that the high-risk group had lower
IC50 values for embelin, lapatinib, pazopanib, and sunitinib
(Figures 7E–H).

Diagnostic value of hub genes in T2DM-CRC

The diagnostic accuracy of the 14 hub genes was examined
through the ROC curve analysis by calculating the AUC values. In

FIGURE 8
The receiver operating characteristic (ROC) curves of hub genes. (A) ROC curve of NOB1. (B) ROC curve of R3HDM1. (C) ROC curve of DIMT1. (D)
ROC curve of PXMP2. (E) ROC curve of MYG1. (F) ROC curve of five genes combination in training cohort (GSE39582), ROC curve of five genes
combination in validation cohort (TCGA-CRC).

Frontiers in Genetics frontiersin.org12

Liu et al. 10.3389/fgene.2023.1202849

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1202849


total, 5 of 14 hub genes had AUC >0.9, indicating their high
diagnostic significance in CRC (Figures 8A–E). To improve their
performance regarding their function as predictive indicators,
logistics regression analysis was utilized to establish a multi-
marker diagnostic model by the integration of these five hub
genes. The model was then evaluated using ROC curve analysis,
and the data indicated that it had high accuracy and efficiency for
diagnosing CRC (AUC = 0.999). The validation of this model in the
independent dataset TCGA-CRC showed similar results, with an
AUC of 0.853 (AUC = 0.853) (Figure 8F).

Discussion

The current scientific literature includesmany observational studies
that have placed patients with T2DM more at risk of CRC (Levi et al.,
2002; Coughlin et al., 2004; G et al., 1985). A review of 97 prospective
studies linked 123,205 fatalities to CRC in 820,900 patients with T2DM,
with a high risk of CRC in individuals with T2DM (RR = 1.40; 95% CI:
1.20–1.63) (Rao Kondapally Seshasai et al., 2011). In addition, other
research has depicted an increased incidence of CRC in patients with
diabetes in contrast with non-diabetic individuals (Jiang et al., 2011;
Deng et al., 2012; Kramer et al., 2012). Moreover, individuals with
diabetes have lower OS after CRC (5-year survival rate: 48% vs. 35%)
(Barone et al., 2008; van de Poll-Franse et al., 2012). In a previous study
where the histopathological features of diabetic and non-diabetic
individuals were explored, individuals with diabetes had increased
tumor infiltration, higher lymphovascular infiltration, and greater
TNM staging (OR [95% CI]: 2.06 [1.37–3.10], 2.52 [1.74–3.63], and
2.45 [1.70–3.52], respectively; p < 0.001] (Sharma et al., 2014). These
data support the idea that in individuals with diabetes, CRC is more
aggressive, requiring appropriate measures to better control diabetes.
The relationship between T2DM pathogenesis and CRC progression
has been explored in the literature, with several factors being implicated
in the increased risk of CRC among individuals with T2DM. These
factors include reduced levels of vitamin D, obesity, a sedentary lifestyle,
and a high-fat diet (Giovannucci et al., 2010). Abdominal obesity and
lack of physical activity are major factors concerning hyperinsulinemia
and insulin resistance. Moreover, hyperinsulinemia further increases
insulin-like growth factor 1 level, which in turn induces vascular
endothelial growth factor expression. This then stimulates tumor cell
angiogenesis and promotes tumor cell proliferation, thereby inducing
CRC development (Ahmed et al., 2006). Meanwhile, hyperinsulinemia
directly stimulates DNA synthesis and growth of normal intestinal
epithelial cells and tumor cells in CRC via dose-dependent stimulation,
contributing to CRC development and invasion (Ahmed et al., 2006).
Furthermore, in animal models, exogenous insulin stimulates the
growth of CRC precursors (Jiang et al., 1998). Hence,
hyperinsulinemia likely mediates the effect of type 2 diabetes on
CRC risk. In addition, chronic hyperglycemia has been reported to
significantly increase reactive oxygen species production, increase
chronic oxidative stress (Robertson, 2004), and induce inflammatory
pathways (Lin et al., 2005). Inflammation has been considered a
potential mechanism leading to an enhanced risk of cancerous
growth (Rinaldi et al., 2008). Numerous studies have confirmed that
patients with diabetes have significant cellular immune dysfunction
with a dysregulated ratio of T-lymphocyte subsets (Frolov et al., 1994).
Remarkably, decreased immune function can cause tumor cells to

escape immune surveillance and survive, inducing malignant tumor
development and disease progression. However, the molecular
mechanisms underlying the complex interactions between CRC and
T2DM are yet to be elucidated.

As far as we are aware, this research is the first to assist in early
detection, better therapeutic options, and timely prevention of CRC
based on the common genes and features of CRC and T2DM
identified using WGCNA. First, individuals with CRC were
classified into high- and low-risk groups as per the intermediate-
risk scores, with considerably poorer clinical outcomes being
assigned to the former group. Multiple Cox regression analysis
indicated that the 14-gene model was an independent risk factor
for OS. Moreover, ROC analysis indicated increased efficacy of the
model in contrast with the conventional clinical features in
predicting survival in CRC patients. Additionally, a nomogram
that depicted congruence between the nomogram-predicted and
observed rates of 1-, 3-, and 5-year OS was developed. Traditionally,
the prognosis of individuals with CRC relies on TNM staging, which,
although valuable, has limitations due to the lack of data regarding
the cellular and molecular levels. This may cause the clinical
outcomes of individuals with CRC who have the same TNM
stage to vary considerably. Therefore, several studies have
focused on assessing a single biomarker as the prognostic
indicator for CRC along with various other tumors. Moreover,
integrating multiple elements into a prognostic model has been
shown to considerably improve the prognostic value of a single
biomarker in various malignancies (Halabi et al., 2013; Zhang et al.,
2013; Cardoso et al., 2016). Accordingly, the current research
developed a new prognostic model to effectively assess the risk
score and predict the prognosis of individuals with CRC.

Subsequently, the study comparatively assessed the immunological
features of the two aforementioned groups using CIBERSORT,
SSGSEA, and ESTIMATE. The ESTIMATE data indicated that the
group with increased risk depicted elevated immune, stromal, and
ESTIMATE scores in contrast with the groupwith low risk, suggesting a
more active tumor immune microenvironment in the group with high
risk. Remarkably, the extent of immune cell infiltration into tumors has
been associated with the growth of the tumor, its progression, and
prognosis, making these areas crucial for research recently (Jass, 1986;
Ogino et al., 2009). CIBERSORT, a biological software, can assess the
expression profiles of complex tissues for the purpose of examining the
immune cell composition (Newman et al., 2015). Therefore, in this
study, CRC-related genes in the risk groups were assessed through
CIBERSORT. In the GSE39582 dataset, the number of CD4 resting
memory T cells was increased in the group with low risk. Prior research
has documented that CD4 memory T cells may inhibit the progression
of tumors by upregulating the proliferative ability of CD8T cells, which
differentiate into effector cells following their migration into tumor-
associated tissues (Crouse et al., 2015). A report on breast cancer has
demonstrated that an elevated level of resting and activated
CD4 memory T cells is directly linked to greater disease-free
survival (Zhang et al., 2019). Macrophages perform a vital function
in tumor progression with earlier and more numerous immune cell
infiltration in TME. Following induction by different cytokines,
macrophages develop into their subtypes M0, M1, and M2, each
with various immune functions (Mosser and Edwards, 2008). M0 is
an inactivated subtype with no inflammatory or tumor-associated
functions. Depending on the pathway employed for activation,
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M0 can differentiate into two activated subtypes M1 and M2 that
exhibit different immunomodulatory effects. M1 macrophages release
pro-inflammatory cytokines, such as interleukin (IL)-12, IL-16,
interferon-γ, and tumor necrosis factor-α; they thus activate
inflammatory responses and contribute to the innate immunity of
the host, eventually destroying the cells in TME (Galdiero et al., 2013).
M2 macrophages are primarily involved in the secretion of cytokines
such as IL-10 and transforming growth factor-β to suppress
inflammation (Sica and Mantovani, 2012). Such cells participate in
Th2-type immune response, inhibiting the proliferative and
differentiation capacity of T cells and promoting tumor cell
proliferation and tumor stromal angiogenesis (Chen et al., 2017;
Martinez et al., 2017). The CIBERSORT analysis implied that the
level of M2 macrophages was increased in the group with high risk
than in the group with low risk. This suggested that the high-risk group
could tend to establish a tolerogenic TME. Zhao et al. linked the
promotion of liver metastasis in CRC to M2 macrophage polarization
(Zhao et al., 2020). Based on the findings of SSGSEA, the expression
level of 25 immune cell subtypes was considerably upregulated in the
high-risk group; these subtypes included macrophages, natural killer T
(NKT) cells, CD4 cells, natural killer (NK) cells, and dendritic cells
(DC). A strong impact of the tumor-infiltrating T cells was observed on
the clinical outcome of individuals with CRC. The increased CD8 T cell
infiltration enables the prediction of sensitivity to drugs and improves
survival in individuals with CRC and liver metastases (Galon et al.,
2006; Fridman et al., 2012). Prior research on CRC has demonstrated a
better prognosis in individuals with elevated Th1 levels, while
individuals with upregulated Th17 have a poorer prognosis.
Furthermore, the influence of Th1 on survival appears to outweigh
the impact of Th17 (Tosolini et al., 2011). Reportedly, the major
antigen-presenting cells, the DCs, activate T cells, thereby promoting
antitumor immunity (Wculek et al., 2020). In addition, following NK
cell stimulation, the conventional type 1DCs are recruited into the TME
(Bottcher et al., 2018). NK cells cause immune-induced cytotoxicity in
tumor cells; therefore, its increased infiltration results in a better
outcome in CRC (Coca et al., 1997). Furthermore, the vital role of
NKT cells in anti-tumor immunity was revealed in anti-PD-1 resistant
tumor models wherein these cells exhibited the ability to reinvigorate
the depleted CD8 T cells (Bae et al., 2018). Prior research depicted that
elevated levels of NKT cell infiltrates can independently function as a
CRC prognostic factor (Tachibana et al., 2005). Based on our study of
immune texture, the high-risk group had a more extensive immune cell
infiltration than the low-risk group. Hence, the former group may
possess better immunological competence, making them better
candidates for immunotherapy.

The CGP contains data regarding drug sensitivity and molecular
markers of drug response in cancer cells and is a public resource.
Currently, data regarding cancer cell lines (almost 700 in total) can
be accessed at the CGP regarding their response to
251 chemotherapeutic drugs. To design an improved treatment
plan for CRC, pharmacosensitivity analysis was conducted on
high- and low-risk populations. The resulting data indicated four
drugs with potential clinical significance, including embelin,
lapatinib, pazopanib, and sunitinib. In the future, the risk score

of CRC patients can be identified based on this risk model and a
more appropriate therapeutic schedule can be developed. This will
help further improve chemotherapy efficacy and reduce drug
resistance.

In summary, a T2DM-related CRC risk score model was
developed and validated in this research. This model can
accurately predict OS and sensitivity to common
chemotherapeutic agents in CRC patients. In addition, a 5-gene
signature diagnostic model was identified, and an external validation
set was utilized to validate the model. Furthermore, the
characteristics of immune cell infiltration and TME were
assessed. This may help in understanding immune mechanisms
and may contribute to the treatment of T2DM-related CRC as well
as the assessment of prognosis.
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