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HLA-C, a gene located within the major histocompatibility complex, has emerged
as a prominent target in biomedical research due to its involvement in various
diseases, including cancer and autoimmune disorders; even though its recent
addition to theMHC, the interaction betweenHLA-C and KIR is crucial for immune
responses, particularly in viral infections. This review provides an overview of the
structure, origin, function, and pathological implications of HLA-C in the major
histocompatibility complex. In the last decade, we systematically reviewed original
publications from Pubmed, ScienceDirect, Scopus, and Google Scholar. Our
findings reveal that genetic variations in HLA-C can determine susceptibility or
resistance to certain diseases. However, the first four exons of HLA-C are
particularly susceptible to epigenetic modifications, which can lead to gene
silencing and alterations in immune function. These alterations can manifest in
diseases such as alopecia areata and psoriasis and can also impact susceptibility to
cancer and the effectiveness of cancer treatments. By comprehending the
intricate interplay between genetic and epigenetic factors that regulate HLA-C
expression, researchers may develop novel strategies for preventing and treating
diseases associated with HLA-C dysregulation.
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1 Introduction

The human leukocyte antigen complex (HLA) or also called the human major
histocompatibility complex (MHC), is a genetic region present in humans (Mallia et al.,
2012). Homo sapiens comprises a broad set of more than 200 genes located in a highly
polymorphic region of the short arm (p) of chromosome 6. HLA is involved in the body’s
immune response. About 40 of its genes are specifically encoded in leukocyte antigens, and
the rest participate in their functionality. Interestingly, several genes in this complex have no
known function in the immune system. The complex is divided into classes I, II and III,
which participate in the immune response in structure and function. More specifically, there
are around 20 genes within class I, but the main ones are called class 1a, such as HLA-A,
HLA-B, and HLA-C. These three are fundamental agents in the mechanism of innate
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immune response when interacting with NK (Natural killers) with
their killer-cell immunoglobulin-like (KIR) receptors, and with T
CD8+ and indirectly with cells T CD4+, as part of the adaptive
immune response (Klein and Sato, 2000; Aguiar et al., 2019).

On an evolutionary scale, HLA-C emerged 10 or 15 million
years ago in an ancestor shared with African apes, humans, and
orangutans that until now have only one allotype, C1. This is
preserved in great apes such as gorillas, chimpanzees, bonobos,
and humans but with an additional allotype (HLA-C2) (Adams
et al., 1999; Li et al., 2021). It is estimated that it was generated by the
duplication of HLA-B because, although both are highly
polymorphic, they have distinct preserved regions (Heijmans
et al., 2020; Li et al., 2021). The similarity between these two
genes is so remarkable that the proximal promoter regions of
HLA-B and HLA-C differ by only one base pair (G/A) (Figure 1).

Simultaneously to developing HLA-C in higher primates, KIR
receptors by the immune response also evolved, based on sequence
information from orangutans, chimpanzees, and gorillas. It has been
shown that while MHC class I first acquired its capacity to present
antigen to T-cells, KIR began interacting with ligands formerly
related to T-cell responses. Although T and NK cells have
different roles, competing selection pressure on MHC class I
genes resulted in MHC-C specialization upon NK responses. At
the same time, MHC-A and MHC-B maintained their role in T-cell
function (Augusto and Petzl-Erler, 2015). The orangutan is an
evolutionary intermediary for the HLA-C1 epitope with its
specific receptor KIR2. Both would have co-evolved. However,

the origin of the HLA-C2 epitope needs to be clarified (Chazara
et al., 2011).

Later in our evolutionary history, studies comparing Neanderthal
andmodern human sequences found that theHLA-C*07:02:01:01 allele
probably comes from the cross between H. sapiens and Homo
neanderthalensis and has been preserved to the present day in
regions of Northwest and Southeast Asia. Furthermore, this allele
has been linked with low susceptibility to autoimmune diseases such
as diffuse cutaneous and systemic sclerosis and supports the
hybridization between these two species theory y (Miren Ainhoa
Riaño Vivanco, and Afonso, 2016). Finally, it is estimated that
1 million years ago, along with the brain development of hominids
of modern human ancestors with allotypes (C1 and C2), a functional
balance was reached with the KIRA andKIR B haplotypes, respectively,
during gestation, preserving the immune functionality and reproductive
purpose (Moffett and Colucci, 2015), the latter could be key for
understanding the reason for the origin of this gene and the unique
functional characteristics that have in H. sapiens.

Recent information suggests that HLA-C may have originated
with another histocompatibility gene: HLA-G. These two genes are
probably an adaptation in primate gestation because they actively
participate in pregnancy’s development, tolerance, and immune
response, expressed by intervillous trophoblasts (Carter, 2011; Li
et al., 2021). However, HLA-C has the particularity of acting as a
fetal alloantigen and deep invasion of trophoblast towards the
placenta, a unique quality among the members of the class I
histocompatibility complex and distinctive of human and certain

FIGURE 1
Phylogenetic tree of the evolutionary process of HLA-C in primates. Primates with some HLA-C allotypes are grouped in the grey region. The
number before each species describes the evolutionary closeness of each one with Homo sapiens (Mallia et al., 2012) compared to the similarity of
regions within the class I type C histocompatibility complex. Phylogenic Tree: Geneious Prime 20221.1 [https://www.geneious.com]. Illustrations Created
with BioRender.com.
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types of apes pregnancy (Carter, 2011; Carter et al., 2015; Li et al.,
2021).

2 Function

HLA-C is the most recently evolved member among the genes
involved in the major histocompatibility complex. Its primary
function is to present peptides to cytotoxic T lymphocytes with
which it has contact in the cell membrane, in addition to serving as a
specific ligand for KIR, a family of genes that encode recognition
proteins in the NK cell membrane, actively participating in its
development and regulation (Anderson, 2018; Souza et al., 2020).

The major histocompatibility complex class I, C [HLA-C],
encodes glycoproteins distributed in the membrane of cellular
tissues, platelets and mature erythrocytes (Barzuna, 2003). This
protein plays an essential role in the immune response against
bacterial and viral pathogens and in cancer and the rejection or
acceptance of organs and tissues, preeclampsia in pregnant women,
and rheumatic and autoimmune diseases such as psoriasis or
alopecia areata (Haida et al., 2013; Siegel et al., 2019). The
communication mechanism mainly mediates all these pathologies
between HLA-C and NK cells, specifically by KIR signalling that can
inhibit or activate the function of this group of lymphocytes
(Laperrousaz et al., 2012).

The allele HLA-C*06:02 executes an autoimmune response against
ADAMTS-like protein five presented to CD8+ T-cells as a causative
melanocyte autoantigen; together, the allele, the autoantigen, and the

T cell receptor (TCR) trigger a psoriasis autoimmune response
(Arakawa et al., 2021). HLA-C*6 and its role in autoantigen
response in epidermal interaction with CD8+ T-cells represent a risk
of generating psoriasis (Mylonas and Conrad, 2018). In addition, LL37,
an antimicrobial peptide (AMP) overexpressed in psoriasis skin that
triggers activation of innate immune cells, shelters CD4+ and CD8+

T-cells (Lande et al., 2014).
The HLA-C gene is expressed in the maternal-fetal interface,

playing an important role in immunomodulation for placentation
and pregnancy wellbeing. In addition, due to high polymorphisms in
KIR and HLA-C genes, the combination of fetal HLA-C and
maternal KIRs will possibly determine a well-developed
pregnancy (Souza et al., 2020).

As mentioned, this gene is expressed in intervillous trophoblasts
of placental invasion in human pregnancy. This process occurs in
several apes with these genes (Carter et al., 2015). It is interesting
that in neonatal development, the interaction of HLA-C with KIR
determines the risk of obstetric complications like small or large
babies, this depending on the level of invasion trophoblasts that the
alleles of HLA-C and KIR determinate: KIR AA + HLA-C2 = small
babies, KIR2DS1 + HLA-C2 = large babies (Moffett et al., 2015).

3 Structure and expression

Structurally, HLA-C has eight exonic regions distributed along
3,388 bp, with 18.3% CpG islands and 66.1% Guanine-Cytosine,
making HLA-C susceptible to epigenetics silencing phenomena such

FIGURE 2
HLA-C exons location and the structure of the histocompatibility proteins. Illustrations Created with BioRender.com.
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as methylation compared to the other members of the major
histocompatibility complex, because although the number of CpG
islands is very similar HLA-A (110 CpG), HLA-B (118 CpG) (HLA-
C 116 CpG), HLAC concentrates the CpG islands in their promoter
region. Exons 6, 7, and 8 have a relatively low level of CpG islands
compared to the others that make up this gene, with exons 1, 2, and
3 being the densest in terms of guanine-cytosine. Remarkably, exons
2 and 3 polymorphisms give it the peptide binding specificity for the
class I histocompatibility complex (Siegel et al., 2019). These
characteristic polymorphisms of the HLA- (A, B, C) genes seem
to be generated as an adaptive product to pathogen infection
throughout our evolutionary history (Kulpa and Collins, 2011).

As a transcriptional product, HLA-C, like other members of HLA
class I, generates a heavy polypeptide chain of 5 domains. The first two
domainsmake a peptide-binding groove (α1, α2), and an additional one
(α3) binds the remaining domains, transmembrane, and cytoplasmic
tail. It is essential to mention that the α3 domain is non-covalently
coupled to a beta 2-microglobulin (β2M) not encoded by the HLA
complex but by a gene on chromosome 15 (Klein and Sato, 2000).
Exons 2 and 3 encode α1 and α2 domains, respectively, and their
variations directly impact HLA-C expression in the cell membrane.
α3 is encoded by exon 4. Exon 5 encodes the transmembrane domain,
exons 6 and 7 the cytoplasmic tail and exon eight corresponds to a
polyadenylation region (poly A). Exon 1 transcribes the peptide
targeting the cell membrane. However, it is not part of the
functional structure of the HLA-C molecule (Souza et al., 2020).

The α1 helix domain of HLA-C is unusually conserved. The
KYRVmotifs (residues 66, 67, 69, and 76 in all alleles), in addition to
a conserved glycine at amino acid 45 of pocket B, are unique
characteristics of this gene, unlike the α2 domain, which is more
like that of HLA-B (Blais et al., 2011). These small structural
qualities decrease the presence of HLA-C in the cell membrane
by reducing the amount of mRNA transcribed from it. There are also
post-transcriptional control mechanisms that prevent the coupling

of the protein on the cell surface (Zemmour and Parham, 1992;
McCutcheon et al., 1995). It was recently identified that alternative
splicing during the maturation of HLA-C mRNA regulates its
expression depending on the polymorphisms present in exon 1
(Goodson-Gregg et al., 2019). The expression of HLA-C throughout
the life of a human being is remarkably lower, about 13–18 times less
than its paralogous genes HLA-A and HLA-B (Johnson et al., 2018).
It has been determined that this lower expression is due to the heavy
chains of HLA-C being poorly associated with microglobulin (β2M),
which will form its functional structure in the cell membrane
(Chazara et al., 2011). However, the expression control
mechanisms for this gene have not yet been thoroughly
investigated (Figures 2, 3).

4 Related pathologies

4.1 Infectious diseases

HLA-C is new in discovery and characterization if we compare it
with its paralogous brothers (HLA-A and HLA-B), both in its role in
the immune system and the particularities of its expression and
structure (Kaur et al., 2017). In the early 1990s, its function in the
human major histocompatibility complex was not known, only that
it was the member of HLA class I with the lowest level of expression
in cells (Snary et al., 1977; Dill et al., 1988). Today we know that
HLA-C is highly relevant to the condition of the immune response.
For example, a higher gene expression is associated with partial
resistance to the HIV-1 virus: more particularly, a single nucleotide
polymorphism (C/T) 35 bp upstream can cause the virus to
proliferate the viral load in the organism of the carrier of this
variant (Apps et al., 2013; Kaur et al., 2017). This polymorphism
generates a relatively low protein expression on the cell surface as it
is regulated by a microRNA that binds to these monopoly morphic

FIGURE 3
The nucleotide composition of HLA-C in each exon of its DNA structure.
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regions, reducing the expression of HLA-C alleles. Despite this,
microRNAs do not seem to be the only regulatory process nor the
most effective for this gene (Kulkarni et al., 2011). Individuals with
HLA-C*04:01 and HLA-C*12:03 haplotypes, in combination with
certain types of HLA-A and HLA-B, could have partial protection or
resistance to HIV by triggering an additive immune effect that better
controls viral infection (Leslie et al., 2010).

In the case of genital herpes type II, it has been identified that the
C*04 and C*02 alleles of HLA-C are present in individuals with
greater susceptibility to infection and severe development of the
pathology that could trigger neoplasms (Sasso et al., 2020).

Interestingly, for other viruses such as hepatitis C, HLA-C1 allotype
confers resistance to Caucasian and African American individuals
exposed to medium doses of the virus. However, at high doses, this
“innate defence” is not enough to counteract the virus (Khakoo et al.,
2004). These susceptibility or innate immunity mechanisms to viral
infections are due to the interaction of HLA-C and its variants with KIR
of NK cells and the not-so-specific interaction of HLA-C and its
variants with cytotoxic T lymphocytes. It may also be due to the
microRNA-mediated control mechanism of its expression and
supposed coupling quality to the cell surface and viral proteins
(Zipeto and Beretta, 2012).

HTLV-1 is a less well-known virus that affects T lymphocytes.
Unfortunately, it has no cure and no successful treatments have yet
been reported; in cases with a high viral load, it has been related as an
etiological agent of leukaemia (Gotuzzo Herencia et al., 2010). A
study in a Japanese population showed that the HLA-C*07:02 allele
generates susceptibility to developing myelopathies associated with
HTLV-1 while the C*08 allele protects the individual from suffering
from these diseases even with the presence of the virus; despite this,
the evidence suggests that there are other variants of HLA genes with
an equal or more significant influence of this duality of
susceptibility/resistance (Jeffery et al., 1999; Rafatpanah et al.,
2007; Penova et al., 2021).

Epstein-Barr virus infection occurs during the first years of life.
There is 5% of the worldwide population has a resistance mechanism to
this virus that we do not understand yet. Studies of the US population
found that individuals who appear to be immune to this virus have a
variant of a single nucleotide (TT) at−35bp and express a lower amount
of HLA-C protein (Durovic et al., 2013). It is not clear, but the Epstein-
Barr virus is associated in some way with the development of multiple
sclerosis, perhaps as a trigger when there is a predisposition, since a
recent study found that KIR receptors, particularly in individuals with
KIR2DS1, KIR2DS3, or KIR3DS1 alleles, present a more significant
reactivation of the virus, all these receptors interact with HLA
apparently (Wang et al., 2022).

Finally, due to its central role in activating NK cells, HLA-C has
been linked mainly to viral infections, autoimmune diseases, and
cancer. On the other hand, it has been proposed that more than a
thousand bacterial species, including Helicobacter, Chlamydia,
Brucella, and Campylobacter, trigger an immune response
mediated by the HLA-C/KIR interaction (Sim et al., 2019).

4.2 Autoimmune diseases

As previously mentioned, HLA-C is susceptible to epigenetics
silencing events or hyper-methylation, which could negatively

condition its expression level. This process has been pointed out
as an epigenetic marker for autoimmune diseases like psoriasis
(Chen et al., 2016). Also, within the immunity spectrum, HLA-C
has been linked to transplant rejection and skin diseases like alopecia
areata or Crohn’s Disease, all related to an increased expression of
this gene (Haida et al., 2013; Kulkarni et al., 2013; Khashaba, 2017).

In psoriasis vulgaris, the C*06:02 allele from HLA-C generates
susceptibility to this chronic skin illness affecting around 2% of the
world’s population. C*05 (along with other variants of HLA-A and
B, C*07, and C*15 alleles) can promote disease protection or at least
reduce susceptibility to this pathology. Environmental factors are
additional risk factors which can further increase disease risk of pre-
existing predisposition for the pathology (Cardili et al., 2016;
Wiśniewski et al., 2018). Psoriatic arthritis is a common
pathological condition in psoriasis patients. Some individuals
have been identified with C*12, C*02, and C*06 alleles associated
with such disorders as more severe psoriasis (Sokolik et al., 2014).
Also, it has been determined that a decrease in carriers of HLA-C
type receptors KIR2DS2 and KIR2DS1 reduces T and NK cell
activation, enhancing this type of Arthritis (Martin et al., 2002).
Another variation of Arthritis, without a relationship to psoriatic
pathologies, is generalized osteoarthritis, shown in Japanese
population research to be related to an HLA-C*04 allele found in
many individuals suffering from this condition. On the contrary,
C*1 and C*10 alleles were less common in this group of patients
(Wakitani et al., 2001).

A similar case occurs in “Graves” disease, a pathology in which
the immune system affects the thyroid. It has been found that
individuals with HLA-C alleles such as C*03 and C*16 are unlikely
to develop this pathology, while those with the C*07 allele are more
susceptible to suffering from it (Simmonds et al., 2007). Even so, if
an individual with the C*03:02 allele suffers fromGraves’ disease, the
usual treatment with methimazole can generate hepatotoxicity (Li
et al., 2019a). Remarkably, the same gene causes a pathology that
simultaneously determines liver disease susceptibility and treatment
response. Of special note, the liver can also be affected by
autoimmune hepatitis modulated by the allotype C*07:01 of
HLA-C (Strettell et al., 1997).

Alopecia areata is a disease caused by genetic and epigenetic
immune irregularities, but the presence of C*04:01 and C*15:
02 alleles of HLA-C predisposes this pathology in the Japanese
population (Haida et al., 2013). In a Brazilian population study,
individuals with no familial history of alopecia areata but suffering
from different degrees of this pathology were analyzed. They showed
a higher frequency of the C*04 allele, but no other significant
differences were found between the control groups (Barbosa
et al., 2016). However, more recent studies that analyzed the top
class I histocompatibility genes propose that HLA-A and B alleles
represent a more significant risk factor than HLA-C alleles. The
C*07:02 allele was more frequent in individuals with alopecia areata.
However, its mechanism still needs to be fully understood. Still,
stress conditions are supposed to promote an inflammatory HLA-B
and C response which over-activates a variety of T lymphocytes,
affecting a specific area of the scalp. This mechanism is similar in
individuals holding the C*15 allele, found in people with capillary
density loss both in the beard and eyebrows (Hayran et al., 2021).

Other immune disorders in which HLA-C participates are
systemic lupus erythematosus and progressive systemic
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scleroderma, suggesting that these pathologies could be linked to
variants of KIR receptors. Accordingly, it was found that patients
with these diseases are carriers of the KIR2DS1 and KIR2DS2 alleles,
both HLA-C receptors which promote different severity levels of
these diseases (Pellett et al., 2007). In the case of lupus, it was found
that individuals with the HLA-C1 allele or carriers of HLA-C*17:
01 are susceptible to this disease, apparently due to a greater
expression of the HLAC1/KIR2DS2 ligand, resulting in an
increased cytoplasmic antioxidant response due to oxidative
stress in patients with systemic lupus erythematosus (Gambino
et al., 2018; Hanscombe et al., 2018).

Crohn’s disease or syndrome is related to an immune imbalance
that affects the mucosa of the intestinal tract. A study conducted in
the Korean population found that an intergenic region between
HLA-C and HLA-B called: rs114985235 and the HLA-C*01 allele is
associated with developing this pathology (Jung et al., 2016). Still,
unlike the previously mentioned pathologies, this immune disorder
does not depend on the HLA-C/KIR interaction.

Another disease, primary sclerosing cholangitis, is caused by an
autoimmune disorder that generates a progressive and degenerative
inflammation of the liver and bile ducts (Vargas, 2018). In a study of
the European population, it was found that the HLA-C1 allele is
associated with a greater tendency to suffer from this disorder. In
contrast, the HLA-C2 allele significantly reduces the risk of primary
sclerosing cholangitis (Hov et al., 2010). In chronic cases of this
disease, malignant carcinoma can develop, resulting in the need for
liver transplantation treatment. A study linked to liver transplant

rejection found that the HLA-C*07 allele generates a greater risk for
acute rejection mediated by infiltration of NK and T-cells in the
transplanted organs (Fosby et al., 2014).

A study of the Japanese population found that the HLA-C*12:
02 allele protects against a muscle disorder known as idiopathic
inflammatory myopathy, in which HLA-C and other members of
the major histocompatibility complex class I are highly expressed in
the affected necrotic myofibers (Seki et al., 2019).

Finally, those variants in HLA-C expression have been linked
during fetal development with preeclampsia, obstructed delivery,
and even with a low weight of the neonate (Moffett and Colucci,
2015).

All the diseases mentioned above are graphically detailed in
Figure 4.

4.3 Cancer

The immune response is highly linked to cancer pathologies,
where chronic inflammation in the tumour microenvironment
represents a key hallmark of cancer. Reciprocally, a deficiency of
the immune system also increases susceptibility to tumorigenesis,
whereas the recognition of cancer cells is modulated by the
histocompatibility complex of immune cells (Sondka et al., 2018).
A decrease in the expression of HLA class I have been linked to
tumour progression, metastasis, and reduced survival. However, the
exact level of expression of these genes in different types of cancer is

FIGURE 4
Grouping of the disease and protective alleles caused by the different variants of HLA-C described in detail in the previous points “Infectious
Diseases” and “Autoimmune Diseases”. Illustrations Created with Bio Render.com.
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still unclear, and in some cases, the evidence is contradictory (Powell
et al., 2012). It is also necessary to mention that deficiencies in the
histocompatibility recognition system are not the only deficiency by
which cancer cells escape immune control, as senescent cells can
generate cancer dormancy-resistance during chronic cancer
treatment, and clonal variation of cancerous cells can emerge
without being identified as harmful by the organism defences
(Fouad and Aanei, 2017).

It is currently considered that structural alterations in the HLA
complex trigger an evasion of the immune system in cancerous
tissue because the β2M macroglobulin, which is part of the final
protein structure of histocompatibility class I, is considered a
tumour suppressor gene in addition to being catalogued as a
cancer hallmark which promotes cancer escape from immune
surveillance (Castro et al., 2019; Tate et al., 2019).

HLA-C’s characteristic immune activity of interacting with
natural killer cells (NK) was discovered at the beginning of the
century. Consequently, it was proposed as a highly relevant protein
for oncological studies (Falk and Schendel, 1997). A few years later,
this hypothesis was further strengthened since structural allelic
variants and expression of this gene were linked to aggressive
neoplasms in nasopharyngeal and cervical cancer, both caused by
viruses, raising the possibility that the interaction of HLA-C/KIR as
an innate immune response is involved in activity and viability of
cancerous cells (Butsch Kovacic et al., 2005; Martin et al., 2010).

HLA/KIR signalling activates NK cells that induce natural
cytotoxicity through membrane receptors characteristic of this
group of cells (Biassoni et al., 2001). This mechanism eliminates
potentially harmful cells, highlighting the HLA-C/
KIR2DS1 interaction in which their different alleles determine
the level of tolerance or cellular cytotoxicity; this is very relevant
in cancer typologies such as acute myeloid leukaemia in which the
success of stem cell treatments depends on the histocompatibility of
the allografts and the HLA-C/KIR2DS1 typology in donor and
HLA-C1 in recipient generates a low relapse rate by inducing an
anti-leukemic effect, while an individual homozygous of HLA-C2
poses a considerable risk (Venstrom et al., 2012).

A Caucasian population study from Poland found that the
homozygous HLA-C1 epitope in the presence of KIR2DL2 and
KIR2DS2 receptors caused lung cancer patients to have more than
twice the life expectancy of individuals with other histocompatibility
alleles (Wiśniewski et al., 2012). There is a paradoxical role for HLA-
C in oncological pathologies, as evidence shows both low and high-
expression gene correlations with various types of cancer. For
example, the HLA-C*04 and HLA-C*15 alleles have been linked
to a greater tendency to develop papillary thyroid carcinoma. In
contrast, the HLA-C*07:01 allele protects against this pathology, at
least in the Chinese population (Shuxian et al., 2014). In contrast, in
the Saudi population in Arabia, no difference was found between
patients and control groups when analyzing the HLA-C1 and
-C2 alleles in a colorectal cancer study (Al Omar et al., 2015).

Studying the alleles and structural variants of HLA-C seems very
relevant to understanding the aggressiveness of different types of
cancer. However, the variability of this gene between populations
could represent a challenge. For example, in the Chinese people, it
was found that the allele HLA-C*08:01 is a risk factor for developing
adenocarcinoma (Li et al., 2019b). In clinical cases, it has been
reported that the loss of expression of an allotype very similar to

HLA-C*08:02 generates an immune evasion in tumour tissue (Tran
et al., 2016). Recently it was found that a decrease in the frequency of
HLA-C*08:01 and an increase in HLA-C*04:01 is associated in the
Korean population with the risk of generating glioblastoma (Choi
et al., 2021). Also, in this population, it was recently found that
overexpression of HLA-C decreases the cell viability of colorectal
cancer, exerting a strong influence on distinct cancer pathways such
as JAK/STAT, retinoblastoma and Hedgehog signalling (Lim et al.,
2022). Also, overexpression of the HLA-C gene has previously been
associated with low survival expectancy of cancer or the
development of autoimmune diseases.

The immune relevance in cancer is closely related to HLA-C. For
example, it has been shown that there is a significant decrease in
immune activity in colorectal cancer due to a reduced expression of
HLA-C in the tumor that did not present genetic structural
alterations but rather epigenetic modifications. That reduced its
expression level, allowing cancer to proliferate (Kawazu et al., 2022).
This is corroborated by other recent investigations, which suggest
that HLA-C demethylation levels and HLA class 1 could be
epigenetic markers of prostate cancer (Rodems et al., 2022).

Despite the above, cancer as a pathology is developed by
escaping a malignant cell from the immune system. If this
system is not functioning competently, it facilitates these
aberrant cells to proliferate and generate tumours, at least in
the case of solid tumours. The methylation of the HLA class can
cause this deficient expression I complex, as reported in gastric
cancer (Ye et al., 2010).

5 After SARS-COV2 outbreak

During the 2020 outbreak caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV2), polymorphisms in HLA-C
were correlated with a higher mortality rate due to viral infection by
triggering an overactive immune response SWED4Wlinked to the
KIR mechanism of NK cells (Wang et al., 2020a; Sakuraba et al.,
2020; Khor et al., 2021). Polymorphisms HLA-C*14:02, HLA-C*07:
29, HLA-C*08:01 in the Chinese population, HLA-C*12:02:02:01 in
the Japanese population, HLA- C*17 in the Italian population, HLA-
C*04:01 in German, Spanish, Swiss, and American populations,
HLA-C* 16 and HLA- C*01 in the Spanish population and
occasionally HLA-C*04:01:01:01 in India were all significantly
associated with SARS-CoV2 disease severity.

6 Discussion

All the examples and comparisons cited seem to indicate
significant involvement of HLA-C regulation in different types of
cancer and infectious or autoimmune pathologies, where the
structural variations (alleles) of the gene represent both potential
risk and possible protection against some dysfunction of the
organism, mediated by the mechanism of HLA-C and KIR.
Epigenetic features and polymorphic characteristics represent
parallel evolutionary strategies to balance health advantages and
disadvantages for survival benefits. Further studies are needed to
compare HLA allele frequencies from different populations to
estimate the relative disease risk for each HLA-C allotype.
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The physiological involvement mechanisms of HLA-C are far from
being fully understood, and new pathological association mechanisms
continue to be discovered. For example, this year, a commonly used
antibiotic “trimethoprim-sulfamethoxazole” was found to trigger an
extremely rare and lethal type of respiratory failure that appears to be
generated exclusively in individuals carrying the C*07:02 allotype and its
paralogue HLA-B*07:02 (Goldman et al., 2022). Another example is
Graves’ disease, where individuals with HLA-C*03:02 allele were more
susceptible to acquiring a methimazole-induced liver injury (Li et al.,
2019a). This indicates the need to expand the spectrum from an
understanding of HLA-C involvement in pathologies (alleles of
susceptibility or resistance) towards how the structural variability of
this gene determines susceptibility or not for a high spectrum of
pathologies, as mentioned in this article.

In a study of malignant neoplasms, the importance of the KIR-
HLA-C variants was highlighted when applying chemotherapy
treatments and drugs such as “rituximab”. It was shown that
those HLA-C2 homozygotes did not benefit from the drug, while
those with the KIR2DS1-HLA-C variant considerably increased
their survival rate (Kaddu-Mulindwa et al., 2022).

In conclusion, finding new allelic variants in different
populations around the world of the major histocompatibility
complex class I type C (HLA-C) has become commonplace due
to the novel relevance of this protein for the prevention, diagnosis,
prognosis, and correct treatment of a wide variety of pathologies that
cover a large part of the human health spectrum. Therefore, future
studies focusing on better understanding HLA-C gene variant
associations with treatment will need personalized pharmaco
(epi) genomic applications in different demographic groups.
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