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Background: Rheumatoid arthritis (RA) is a disabling autoimmune disease that
affects multiple joints. Accumulating evidence suggests that imbalances in
liquid–liquid phase separation (LLPS) can lead to altered spatiotemporal
coordination of biomolecular condensates, which play important roles in
carcinogenesis and inflammatory diseases. However, the role of LLPS in the
development and progression of RA remains unclear.

Methods: We screened RA and normal samples from GSE12021, GSE55235, and
GSE55457 transcriptome datasets and GSE129087 and GSE109449 single-cell
sequencing datasets from Gene Expression Omnibus database to investigate the
pathogenesis of LLPS-related hub genes at the transcriptome and single cell
sequencing levels. Machine learning algorithms andweighted gene co-expression
network analysis were applied to screen hub genes, and hub genes were validated
using correlation studies.

Results:Differential analysis showed that 36 LLPS-related genes were significantly
differentially expressed in RA, further random forest and support vector machine
identified four and six LLPS-related genes, respectively, and weighted gene co-
expression network analysis identified 396 modular genes. Hybridization of the
three sets revealed two hub genes, MYC and MAP1LC3B, with AUCs of 0.907 and
0.911, respectively. Further ROC analysis of the hub genes in theGSE55457 dataset
showed that the AUCs of MYC and MAP1LC3B were 0.815 and 0.785, respectively.
qRT-PCR showed that the expression ofMYC andMAP1LC3B in RA synovial tissues
was significantly lower than that in the normal control synovial tissues. Correlation
analysis between hub genes and the immune microenvironment and single-cell
sequencing analysis revealed that both MYC and MAP1LC3B were significantly
correlated with the degree of infiltration of various innate and acquired immune
cells.
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Conclusion: Our study reveals a possible mechanism for LLPS in RA pathogenesis
and suggests that MYC and MAP1LC3B may be potential novel molecular markers
for RA with immunological significance.
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1 Introduction

Rheumatoid arthritis (RA) is an autoimmune disease involving
multiple joints that is characterized by tenosynovitis, resulting in both
cartilage destruction and bone erosion. Until the 1990s, RA frequently
resulted in disability, inability to work, and increased mortality. Newer
treatment options made RA a manageable disease (Lin et al., 2020). In
recent years, an increasing number of recent studies have demonstrated
that the innate immune system plays a critical role in the development
and progression of RA and that a variety of innate immune cells,
including monocytes, macrophages, dendritic cells, autoreactive CD4+

T cells and pathogenic B cells, are involved in the inflammatory
response in RA patients, which in turn activates the adaptive
immune system (Edilova et al., 2021; Jang et al., 2022).

Liquid–liquid phase separation (LLPS) (Falahati and Haji-Akbari,
2019) is a recent discovery in molecular cell biology. It is a reversible
condensate generation-driven process that generates membraneless
organelles (MLOs) that exert pan-cellular functions under normal
conditions and stress (Alberti, 2017; Cobos et al., 2018; Alberti et al.,
2019; Pancsa et al., 2019). The functional advantage of MLOs does not
arise directly from the individual actions of their constituent molecules
but rather from their collective behavior (Hamill et al., 2002; Lee et al.,
2013; Alberti et al., 2019; Pancsa et al., 2019). Although early studies of
abnormal LLPS processes and lectin formation focused on specific
neurodegenerative diseases, emerging research targeting LLPS has
received increasing attention in the field of cancer, where it has been
found that LLPS can alter the normal function of oncogenes or
antioncogenes, thereby promoting tumorigenesis and progression
(Zbinden et al., 2020; Quiroga et al., 2022). Also, LLPS can promote
tumor progression by regulating tumor-related signaling pathways
(Peng et al., 2022). Numerous studies have shown that LLPS not
only be involved in the pathological process of type 2 diabetes and
metabolic bone disease, but also promote virus-induced inflammation
(Wu et al., 2021; Chen et al., 2022). Phase separation has been shown to
play a role in immune signaling such as T cell receptor, B cell receptor,
cyclic GMP–AMP synthase, retinoic acid-inducible gene I protein and
nuclear factor-κB pathways (Xiao et al., 2022). The study of LLPS-
mediated regulation of biological processes remains in its early stages,
and a better understanding of the molecular mechanisms involved and
their impact on cells and organisms is needed.

Studies into the immunopathogenesis of RA have spanned decades.
RA is now understood as a highly heterogeneous chronic immune-
mediated disease, in which multiple immune cell types and signaling
networks are dysfunctional, resulting in maladaptation (Bartok and
Firestein, 2010; Jiang et al., 2021). Although the role of LLPS in RA has
not been reported, it has been suggested that LLPS-derived protein
aggregates are responsible for age-related diseases, and that if molecular
condensates formed through LLPS cannot be tightly controlled, they
can lead to protein misfolding and aggregation, further contributing to

the progression of aging-related diseases (Alberti and Hyman, 2021).
Meanwhile, LLPS has been found to mediate both innate and adaptive
immune responses (Du and Chen, 2018;Wang et al., 2021), while RA is
considered a typical autoimmune disease and immunosenescence can
exacerbate joint discomfort in patients with RA (Barbé-Tuana et al.,
2020). Therefore, this study combines LLPS with RA for the first time to
explore the role of LLPS in RA. This study aimed to investigate the role
of LLPS-related genes and immune pathogenic mechanisms in RA
lesions using transcriptome data and establish a model to predict the
prognosis and immune status of patients with RA. We identified
biomarkers of LLPS-related genes in the disease process and
explored the immune mechanisms by which these markers may be
involved. Overall, our results reveal insights into new therapeutic
concepts and biomarkers for RA.

2 Materials and methods

2.1 Acquisition of data and screening of
differentially expressed genes (DEGs)

Gene expression profile data for human synovial tissues were
obtained from the GSE12021 (Huber et al., 2008) (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE12021), GSE55235 (Woetzel
et al., 2014) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE55235), and GSE55457 (Woetzel et al., 2014) (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE55457) datasets of the Gene
Expression Omnibus (GEO) database (Barrett et al., 2007). Twelve
RA samples and nine normal samples from the GPL96 ([HG-U133A]
Affymetrix Human Genome U133A Array) sequencing platform of the
GSE12021 dataset, ten RA samples and ten normal samples from the
GPL96 [(HG-U133A) Affymetrix Human Genome U133A Array]
sequencing platform of the GSE55235 dataset, and thirteen RA
samples and ten normal samples from the GPL96 [(HG-U133A)
Affymetrix Human Genome U133A Array] sequencing platform of
the GSE55457 dataset were used in this study. We used the combat
function of the R software “sva” package (https://bioconductor.org/
packages/release/bioc/html/sva.html) (Leek et al., 2012) to pre-process
the data sets expression matrix of GSE12021 and GSE55235 datasets,
including data background adjustment, normalization, and merging.

2.2 Panoramic analysis of LLPS-related
genes in RA

LLPS-related genes were selected from PhaSepDB (Hou et al.,
2022), an online database that records all LLPS-related genes (http://
db.phasep.pro). We first used the Perl language to extract LLPS-related
gene expression data and applied the limma (Ritchie et al., 2015)
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package in the R language to screen LLPS-related DEGs from RA and
normal synovium using the screening condition p < 0.05. In addition,
we performed a co-expression analysis of these DEGs and visualized
gene relationship pairs with correlation coefficients greater than 0.4.We
also constructed an LLPS-related DEGs interaction network using the
network analysis R (Theodosiou et al., 2017) package. Finally, we
observed the chromosomal localization of LLPS-related DEGs, which
were visualized using the R circos (An et al., 2015) package.

2.3 Molecular subtype classification of LLPS-
related genes and functional enrichment
analysis

We applied the “ConsensusClusterPlus” (Wilkerson and Hayes,
2010) (http://www.bioconductor.org/packages/release/bioc/html/
ConsensusClusterPlus.html) package in R language, we classified
RA samples into different sub molecular subtypes based on
differential genes between RA and normal tissue (log2FC > 2.5, p <
0.05). Parameters were set to 50 replicates (reps = 50) and a resampling
rate of 80% (pItem = 0.8). Finally, we performed functional enrichment
analysis of the DEGs for the sub molecular types.

2.4 Machine learningmethods and signature
gene screening

This study first used two machine learning algorithms, random
forest (RF) and support vector machine (SVM), to identify the
characteristic genes of RA, and then applied the Weighted Gene
Co-Expression Network Analysis (WGCNA) method to screen out
modular genes that were significantly associated with LLPS.

RF is an integratedmachine learning algorithm for feature screening
of classification trees based on the Gini coefficient minimization
criterion, which is highly adaptable to data, widely used, and has an
outstanding advantage in gene identification of genomic data, and the
algorithm also takes into account the correlations and interactions
between features (Chen and Ishwaran, 2012; Speiser et al., 2019).

SVMs are widely used in pattern recognition and machine
learning. Support vector machine recursive feature elimination
(SVM-RFE) is a sequential inverse selection algorithm based on
the maximum margin principle of SVM, which means that a
model is used to train a sample, each feature is labeled and scored,
the lowest scoring feature is removed, the remaining features are used
again formodel training, and so on, and the desired features are finally
selected (Lin et al., 2012). The packages “e1071,” “kernlab,” and
“caret” were used to eliminate the recursive features of the
obtained DEGs and data calculation, and the best gene signature
was obtained (Wang and Liu, 2015; Mahmoudian et al., 2021).

WGCNA is a widely employed approach for translating
expression data into co-expression modules and investigating the
relationships between modules and phenotypic traits (Yang et al.,
2022). We first calculated the LLPS score of each sample based on
the expression of LLPS-related genes in the samples using principal
component analysis (Liu et al., 2021a), and calculated the stromal
score of each sample using the ESTIMATEmethod (Yoshihara et al.,
2013), and then clustered the genes with similar patterns based on
the transcriptome profiles, stromal scores, and LLPS scores of the

RA samples using the “WGCNA” R package (Langfelder and
Horvath, 2008). In general, modules with high absolute values of
module correlation were considered to have greater biological
significance. Key criteria for module gene screening were gene
significance >0.5, module membership >0.7, and p < 0.001.

The hub genes were obtained by crossing the three sets of genes
screened by RF, SVM-RFE, and WGCNA. We then performed a
correlation analysis between hub genes and LLPS-related genes.

2.5 Building and validating a predictive
nomogram

Using the “rms” R package (Wells et al., 2018), we constructed a
nomogram to assess risk for hub genes, the discriminatory power of
the nomogram was validated by several methods. The performance
of the nomogram was assessed by calibration and discrimination,
and a calibration plot (1,000 bootstrap resamples) was used to
evaluate the discrimination of the model. Harrell’s concordance
index ranged from 0.5 (indicates absence of discrimination) to 1
(perfect discrimination) (Low et al., 2019), which is approximately
equivalent to the receiver operating characteristic (ROC) area under
curve (AUC). Furthermore, decision curve analysis (DCA) was
employed to evaluate the clinical values and utility of the
nomogram by R function “stdca” (Wang et al., 2020).
Subsequently, we validated the accuracy and sensitivity of the
hub genes in the GSE55457 dataset, constructed ROC curves for
the hub genes, and calculated the AUC.

2.6 Single-cell sequencing analysis

We obtained serum transfer inflammatory arthritis and RA tissue
single-cell RNA sequencing (scRNA-seq) data from the GSE129087
(Croft et al., 2019) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE129087) and GSE109449 (Mizoguchi et al., 2018) (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109449) dataset,
respectively. Single-cell RNA-seq can provide RNA expression
profiles for each cell independently, and differences in gene and
protein expression levels can be observed on a single-cell basis
(Wang et al., 2023). First, we selected the scRNA sequencing data in
the GSE129087 dataset and performed data dimensionality reduction
using the t-distributed random neighbor embedding (t-SNE) method to
identify distinct cellular subpopulations. Subsequently, the scRNA
sequencing data in the GSE109449 dataset further revealed distinct
fibroblast subpopulations, and cell population classification, cell type
identification, and cell differentiation trajectory analysis were performed
using the “Seurat”, “SingleR”, and “Monocle” R software packages,
respectively (Trapnell et al., 2014; Butler et al., 2018; Aran et al., 2019).

2.7 Validation of quantitative real-time
polymerase chain reaction (qRT-PCR) for
hub genes

The selection criterion for patients with RA in this study was
based on the American Rheumatism Association 1987 revised
classification criteria for RA. Synovial membranes of healthy
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controls were obtained from patients who underwent patellar repair
surgery for patellar trauma (approval number: 202210006). All
samples were obtained after obtaining informed consent from the
patients. The samples were stored in RNAlater (Ambion) at −70°C.
RNA was extracted from the synovial membranes using a UNIQ-10
Columnar Total RNA Purification Kit (Sangon Biotech, China).
RNA quality and concentration was assessed using a
SMA4000 microspectrophotometer (Merinton Instrument, Inc.
MI, United States). The extracted RNA was reverse transcribed
using an RR047A cDNA Synthesis Kit (TaKaRa, China). The qRT-
PCR of pivotal genes was performed using 2X SG Fast qPCR Master
Mix (High Rox, B639273, BBI) on an ABI PRISM 3700 instrument
(Foster City, CA, United States). GAPDH was used as an internal
control. The primers used are as follows:

MYC-F: 5′ACTTC-TACCAGCAGCAGCAG 3′,
MYC-R: 5′GAGCAGAGAATCCGAGGACG 3′;
GAPDH-F: 5′TGGGTGTGAAC-CATGAGAAGT 3′,
GAPDH-R: 5′TGAGTCCTTCCACGATACCAA 3′;
MAP1LC3B-F: 5′CCGCACCTTCGAACAAAGAG 3′,
MAP1LC3B-R: 5′TCTCCTGGGAGGCATAGACC 3′.

2.8 Infiltration of immune cells and
construction of immune characteristic
subtypes

The single-sample gene set enrichment analysis (ssGSEA)
algorithm is a rank-based method that defines a score representing
the degree of absolute enrichment of a particular gene set in each sample
(Zuo et al., 2020), With the aim of exploring the infiltration level of
different immune cell populations, We obtained the immune reaction
gene sets from the publication by Bindea et al. (2013), and assessed the
level of immune infiltration in each sample based on the expression
levels of immune cell-specific marker genes. We performed immune
infiltration analysis of the ssGSEA results using the limma package
(Ritchie et al., 2015) for the RA and normal groups and identified
immune cells differentially expressed between these two groups. The
samples were clustered according to the differentially expressed
immune cells in RA using the “ConsensusClusterPlus” package in R.
The parameter settings were repeated 50 times (reps = 50), and the
resampling rate was 80% (pItem = 0.8). We also calculated the Pearson
correlation coefficient between the expression levels of the hub gene and
immune cell indices and assessed the relationship between the hub
genes and immune infiltration levels.

2.9 Hub gene enrichment analysis and drug
sensitivity analysis

GSEA was used to assess trends in the distribution of predefined
gene sets to identify phenotypes associated with and interesting for
hub genes (Subramanian et al., 2005). We performed GSEA on hub
genes using GSEA 4.3.2 software and obtained the “c2. kegg.v7.4.
symbols. gmt” and “c5. go. v7.4. symbols. gmt” from the database
(Liberzon et al., 2015).

Drug sensitivity analysis was performed using the CellMiner
database (https://discover.nci.nih.gov/cellminer/). The CellMiner
database is primarily based on 60 cancer cell lines listed by the

National Cancer Institute’s Center for Cancer Research (NCI) and is
extensively described on numerous genomic and drug response
platforms (Reinhold et al., 2012; Reinhold et al., 2019).

3 Results

3.1 Experimental design

As shown in Figure 1, this study screened and compared the
expression of LLPS-related genes in RA and normal samples using
the sample expression matrix from the GEO database. Machine
learning algorithms, such as SVM, RF, and WGCNA, were applied
to identify diagnostic markers, and single-cell sequencing data were
used to determine the cellular localization and gene expression of the
hub gene, which was subjected to PCR validation in control tissues
and RA samples. We performed a series of bioinformatics analyses
to validate key model genes, including functional enrichment,
clinical feature-related, and immune-related analyses, drug
sensitivity analysis of hub genes, and constructed molecular
typing based on key genes.

3.2 Characterization of genes associated
with LLPS in RA

To analyze the changes of phase-separated genes in the RA
synovial group and to observe the effects of LLPS-related genes in
patients with RA, we performed differential expression analysis of
LLPS-related genes in the combined dataset. Differential analysis
found 36 of 110 LLPS-related genes (RPL23A, UBC, NPM1, FBN1,
APP,DDX3X, FYN, SUMO3, HNRNPA1, MYC, MAP1LC3B,
XPO1, BRD4, ABL1,SPOP, KPNA2, TARDBP, FUS, NCK1,
IPO5, EIF4EBP2, LBR, RARA, LCP2, DAZAP1, TNRC6B,
HSPB2, TAF15, GATA2, GATA3, PIAS2, LAT, DYRK3, AR,
CCNT1 and GRAP2) to be significantly differently expressed in
RA patients (Figures 2A, B; Table 1), and the network between these
LLPS-related genes is shown in Figure 2C. From the net-work
structure map constructed based on the differential gene expression
values, it can be inferred that, among the LLPS-related genes in RA,
TARDBP, MYC, MAP1LC3B, HNRNPA1, NPM1, and LBR appeared
to interact more closely with other genes. We show the chromosomal
localization of LLPS-related DEGs in RA pathogenesis in a circle
diagram Supplementary Figure S1A chromosome localization
analysis showed that the LLPS-related DEGs genes were distributed
on almost all chromosomes, except for chromosomes Y, 4, 7, 14, and 20.

3.3 Molecular subtype classification of LLPS-
related genes and functional enrichment
analysis of key genes

To further confirm the possible role of LLPS-related genes in the
pathogenesis of RA, we typed the RA samples with LLPS-related
differential genes (Figures 3A–C; Supplementary Figures S1B–C),
and after consensus clustering, the relative increase in delta area
score and stabilization after k = 3 (Figure 3C), but the matrix heat
map was not sufficiently separated at k = 3 compared to at k = 2
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(Figure 3A, Supplementary Figure S1B), and the slope of the
Cumulative Distribution Function (CDF) curve continued to
increase (Figure 3B); therefore, we chose a heat map with k = 2.
The heat map was sufficiently separated under this condition, and
based on LLPS differential expression, we divided the patients with
RA into clusters 1 and 2 (Figure 3A, Supplementary Figure S1C)
(cluster 1: n = 10, cluster 2: n = 12). The RA sample is grouped in
detail in Additional file 1. Figures 3D, E show the expression of the
differential genes (|log2FC| > 1, p < 0.05) of the two classification
types in the form of box plots and heat maps, respectively. Finally,
we performed functional enrichment analysis of DEGs for sub

molecular typing (Figure 3F), suggesting that the LLPS genome
may function through the following signaling pathways: cellular
component disassembly, spindle, regulation of intrinsic apoptotic
signaling pathway, protein-containing com-plex disassembly,
cellular response to biotic, stimulus, negative regulation of
transferase activity, intrinsic apoptotic signaling pathway, macro
autophagy, regulation of autophagy, cellular response to chemical
stress, regulation of apoptotic signaling pathway, viral process,
negative regulation of phosphate metabolic process, negative
regulation of phosphorus metabolic process, wound healing,
midbody, late endosome, RNA polymerase II-specific, DNA-

FIGURE 1
Experimental design flow chart.
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binding transcription factor binding, DNA-binding transcription
factor binding and a box plot was used to show the overall picture of
such differences.

3.4 Screening for hub genes by machine
learning algorithm and WGCNA

In order to predict the diagnostic biomarkers associated with
LLPS that have the most important impact on the development of
RA, we applied two different machine algorithms andWGCNA.We
first built an RA prediction model for LLPS-related genes using the
RF algorithm and identified four feature subsets: MYC, MAP1LC3B,
LAT, and HNRNPA1, the results are shown in Figures 4A, B. As
shown in Figure 4A, the error rate decreased as the number of trees
increased. When the number of trees reached 100, the error rate
started to stabilize at 0.05; that is, 95% of the samples were corrected
by RF classification. Figure 4B shows that the main risk genes in the

model with a Gini coefficient greater than 1 wereMYC,MAP1LC3B,
LAT, and HNRNPA1. The SVM-RFE algorithm was used to identify
feature variables associated with LLPS in RA, and the results showed
that the classifier produced the least error when the number of
features was six. The feature variables identified were MYC, LAT,
MAP1LC3B, TAF15, CCCT1, and ABL1 (Figure 4C). WGCNA
(Figures 4D, E) was conducted using transcriptome profiling
data, PCA scores, and stromal scores of the samples. The blue
module was identified as having a higher correlation with the PCA
score (R > 0.3, p < 0.0001). Using<0.01 as the threshold of the
p-value for univariate Cox regression, 97 genes with gene
significance >0.5 and module membership >0.7 from the blue
module were identified as promising candidates related to the
prognosis of patients with RA. Finally, the common genes
obtained by overlapping the screening genes of SVM-RFE, RF,
and WGCNA were further analysed (Figure 4F). To further
confirm the correlation between hub genes and LLPS, we
performed correlation analysis of submolecular typing of

FIGURE 2
Differential analysis of liquid–liquid phase separation (LLPS)-related genes, interaction networks, and their distribution on chromosomes. (A) Box
plot of significantly differential ex-pression of LLPS-related genes; (B) Heat map of differential expression of LLPS-related genes in RA; (C) Correlation
analysis of differentially expressed LLPS-related genes, with positive corre-lations shown in red and negative correlations in blue.
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differential and hub genes based on the expression values of
differential and hub genes using Limma package and visualized
the network relationships using Cytoscape software (Figure 4G).

The correlation of submolecular typing of differential genes and hub
genes is shown in Additional file 2. To better evaluate the RA risk
assessment model constructed based on the LLPS-related genes
screened by multiple algorithms, we constructed a nomogram
model based on the expression of MYC and MAP1LC3B of the
model genes (Figure 4H), and the calibration plot (Figure 4I)
revealed that the nomogram was well calibrated. The model
developed by LLPS-related genes is always at the top of the DCA
curve (Figure 4J), indicating that our nomogram model has a high
predictive performance. The clinical impact curve (Figure 4K)
showed that the number of high-risk patients screened by the
model far exceeded the number of high-risk patients
experiencing the event, indicating that patients with RA clearly
benefit from decisions based on this nomogram. The AUC of the
LLPS-related genes, MAP1LC3B and MYC, in the model were
0.911 and 0.907, respectively (Figures 4L, M), indicating that the
nomogram was highly predictive. To further validate the accuracy
and sensitivity of the hub genes screened in this study in RA, we
verified the expression of the hub genes in the GSE55457 dataset,
and further ROC analysis of the MAP1LC3B and MYC genes in the
GSE55457 dataset showed that the AUC of the two genes were
0.785 and 0.815, respectively (Supplementary Figures S1D, E). These
analyses suggest that the MAP1LC3B and MYC genes have high
diagnostic and therapeutic accuracy for RA. Differential analysis of
the MYC and MAP1LC3B genes in the GSE55457 dataset showed
that the expression of MYC and MAP1LC3B was significantly lower
in RA patients than in normal control patients (Supplementary
Figures S1F,G), which is consistent with the results of previous
studies.

3.5 High cellular heterogeneity in RA tissues
discovered by scRNA-sequencing

To understand the cellular heterogeneity of synovial tissues and
the cellular heterogeneity of hub genes, we first selected scRNA-seq
data of mice with serum transfer inflammatory arthritis from the
GEO database, and using the “singleR” R package, we classified the
cells into four major categories labeled as chondrocytes, endothelial
cells, fibroblasts, and macrophages (Figure 4N). Subsequently, we
analyzed the expression of MYC and MAP1LC3B in cell clusters in
RA synovial tissue, and in agreement with our RNA transcriptome
data results, MYC showed low expression in the 4-cluster cell
population, while inconsistently, MAP1LC3B showed high
expression in the 4-cluster cell population, which requires further
studies and support from the literatur (Figures 4O–Q). MYC
expression was higher in fibroblasts compared to the rest of the
cells (Figures 4O, Q). To further demonstrate the transcriptome
regulation of fibroblasts in synovial tissues of RA patients, we
performed UMAP analysis on scRNA-seq datasets of human RA
tissues and classified fibroblasts into five classes. To further name
these type 5 cells, we filtered the top five marker genes in each cell
type according to log|FC| and drew a heatmap of gene expression
(Supplementary Figure S2A), and named these type 5 cells as
SPRF1+ fibroblasts, COMP+

fibroblasts, RYR3+ fibroblasts, PRG4+

fibroblasts, and SPARC−
fibroblasts, respectively (Supplementary

Figure S2B). Analysis of MYC and MAP1LC3B expression in
different types of fibroblasts showed that MYC expression in

TABLE 1 Differently expressed genes related to liquid-liquid phase separation.

Genes logFC p-value

MYC −1.75 1.36E−06

TAF15 −0.80 1.36E−06

LAT 0.87 1.36E−06

MAP1LC3B −0.56 7.33E−06

CCNT1 −1.19 1.66E−05

DYRK3 −1.16 2.23E−05

HNRNPA1 −0.71 6.02E−05

LBR 0.91 1.32E−04

AR −1.03 1.32E−04

NCK1 0.45 2.46E−04

ABL1 −0.55 5.86E−04

NPM1 −0.40 6.44E−04

TARDBP 0.33 1.95E−03

DDX3X −0.48 2.03E−03

KPNA2 0.50 2.60E−03

LCP2 0.74 2.85E−03

HSPB2 −0.75 3.13E−03

DAZAP1 −0.44 3.44E−03

GATA3 0.62 3.71E−03

SUMO3 0.31 4.03E−03

RARA −0.44 4.93E−03

APP −0.35 5.36E−03

EIF4EBP2 −0.41 6.40E−03

SPOP 0.25 6.97E−03

PIAS2 −0.30 6.97E−03

BRD4 −0.90 7.59E−03

FYN −0.32 0.013

FBN1 0.46 0.017

XPO1 0.26 0.017

FUS −0.30 0.017

GRAP2 −0.31 0.020

TNRC6B −0.25 0.026

IPO5 −0.33 0.034

UBC −0.09 0.037

GATA2 −0.28 0.039

RPL23A −0.14 0.043
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fibroblasts was lower than that of MAP1LC3B, consistent with
previous single-cell results in mice metastatic arthritis
(Supplementary Figures S2C–E). qRT-PCR showed that the
expression of MYC and MAP1LC3B in RA synovial tissues was
significantly lower than that in the normal control synovial tissues
(Figures 4R, S).

3.6 Correlation analysis of hub genes and
immune cell infiltration

Based on the results of the ssGSEA analysis (Additional file
3), we used consensus clustering to classify RA patients into
different immune subtypes (Figures 5A–D; Supplementary
Figures S1H–J). Figure 5C shows that the delta area score of

the CDF curve tends to increase at k = two to nine and is relatively
stable after k = 5, but the matrix heat map is not completely
separated at k = 3, 4 and 5 (Supplementary Figures S1H–J). At k =
2, the slope of the CDF curve (Figure 5B) was minimal, and the
matrix heat map was fully separated (Figure 5A). Therefore, we
divided patients with RA into two subtypes with distinct immune
signatures (cluster 1, n = 22; cluster 2, n = 19). The correlation
between the hub gene, MYC, MAP1LC3B and immune signature
isoforms revealed that MYC, MAP1LC3B were significantly
overexpressed in the “cluster1” group (Figure 5D; Figure 6A),
suggesting that hub genes may be immunologically relevant in
the pathogenesis of RA. To study the potential correlation
between the hub genes MYC and MAP1LC3B and the efficacy
of immunotherapy, we analyzed the correlation between the
hub genes and the immune microenvironment and found that

FIGURE 3
Molecular subtype consensus clustering and functional enrichment analysis of liquid–liquid phase separation-related genes. (A) The heat map represents
theconsensusmatrixwith a cluster count of 2. (B)Consensus clustering cumulativedistribution function (CDF) for k= 2–9. (C)Relative change in area under the
CDF curve for k= 2–9. (D)Box plot display of gene expression differences between the twogroupsofmolecular typing. (E)Heatmapdisplay of differential gene
expression for two groups of molecular typing. (F) Functional enrichment analysis of differential gene expression in two groups of molecular typing.
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FIGURE 4
Screening of hub genes. (A,B): Random forest (RF) model; (A) Out-of-bag error rate curve (RF model). Black line-overall accuracy; red line-
sensitivity; Green line-specificity. The X axis indicates the number of decision trees, and the Y axis rep-resents the error rate. (B) Significant features
identified by RF. Candidate genes are identified according to the algorithmic requirements of the RF. We selected Gini coefficients >1. (C) A plot of
biomarkers selection via support vector machine-recursive feature elimination (SVM-RFE) algorithm. (D) Hierarchical clustering dendrogram of
DEGs, with assigned module colors and based on the topological overlap. (E) Heatmap of the correlation of modular signature genes with status and
liquid–liquid phase separation (LLPS) database types in RA patients. Each cell contains the Pearson correlation coefficient and p-value, with blue
indicating a negative correlation and red a positive correlation. (F)Multi-algorithm results overlay to screen RA pathogenicity models from LLPS-related
genes. (G)Differential gene and hub gene association network analysis from LLPS differential genotyping. (H) Establishment of a nomogrammodel based
onmultiple algorithm screening. (I) Predictive robustness of the nomogrammodel based on the calibration curve. (J)Decisions based on the nomogram
model may benefit RA patients. (K) The clinical impact of the nomogrammodel, as assessed by the clinical impact curve. (L,M) ROC curves of MAP1LC3B
and MYC in the nomogrammodel. (N) A scatter plot showing the different cellular fractions of the arthritic knee synovium by color. (O) and (P) show the
expression ofMYC andMAP1LC3 in all cells, respectively. (Q) The average expression and percentage expression ofMYC andMAP1LC3 in the four types of
RA synovial cells. (R,S) MYC and MAP1LC3 expression levels in RA and adjacent normal tissue (*p < 0.05).
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the hub genes MYC and MAP1LC3B had a significant
positive and negative correlation with the degree of infiltration
of various innate and acquired immune cells(|cor|>0.4)

(Figures 5E–U, Figures 6B–R). The results of the correlation
between hub genes and immune cells are presented in Additional
file 4.

FIGURE 5
Hub gene MYC immune infiltration characteristics. (A) Matrix heat map, rows and columns are samples. (B) Cumulative distribution function curve
showing different k values. (C) Delta area score of the Cumulative Distribution Function curve. (D) Differential ex-pression of hub gene: MYC in immune
subtypes (***p < 0.001). (E–U) Correlation analysis of MYC and immune cells.
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3.7 Validation of immune function of hub
genes in LLPS genotyping of RA

To further confirm the hub gene functions, we performed a
clustering analysis within the RA sample group based on LLPS-
related DEGs (Figure 7A). All samples were divided into two RA
molecular subtypes (cluster A, n = 13; cluster B, n = 9), and the
PCA results showed a high-quality separation of the two RA
molecular subtypes (Figure 7B). We also showed LLPS-related
differential gene expression in the RA sub-molecular typing base
using a heat map (Figure 7C). Figure 7D shows the differences in
gene ex-pression in the two molecular subtype classifications,
while Figure 7E shows differences in immune infiltration in
immature dendritic cells, myeloid-derived suppressor cells,
macrophage, mast cells, natural killer cells, and type 17 helper
cells in the two subtypes.

To study the potential correlation between the hub genes,MYC and
MAP1LC3B, and the efficacy of immunotherapy, we analyzed the
correlation between hub genes and the immune microenvironment
and found that MYC was significantly correlated with the degree of
infiltration of various innate and acquired immune cells, such as
monocytes, natural killer T cells, and T.follicular.helper.cell
(Figure 7F) and MAP1LC3B had a significant correlation with the
degree of infiltration of various innate and acquired immune cells, such
as T follicular helper cell and Type 2 T helper cell (Figure 7G).

3.8 Hub genes functional analysis and drug
sensitivity analysis

Single gene GSEA enrichment analysis revealed that the GO
enrichment function of MYC (Figure 8A) included positive

FIGURE 6
Hub gene MYC immune infiltration characteristics. (A) Differential analysis of immune cells between the RA group and control group (***p < 0.001,
**p < 0.01, *p < 0.05, ns: no significant difference). (B–R) Correlation analysis of MYC and immune cells.
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regulation of sprouting angiogenesis, regulation of chromosome
separation, b cell mediated immunity, positive regulation of stem
cell population maintenance, negative regulation of cell matrix
adhesion, lipid storage, chromosome separation, metaphase
anaphase transition of cell cycle, microtubule cytoskeleton
organization involved in mitosis, regulation of cell cycle
checkpoint. The KEGG enrichment functions of MYC
(Figure 8B) include primary immunodeficiency, ErbB signaling
pathway, adipocytokine signaling pathway, cell adhesion
molecules cams, B cell receptor signaling pathway, leukocyte
trans endothelial migration, intestinal immune network for iga
production, oocyte meiosis. The GO enrichment functions of
MAP1LC3B (Figure 8C) include microtubule cytoskeleton
organization involved in mitosis, mitotic spindle organization,
positive regulation of cell cycle checkpoint, regulation of
chromosome segregation, cytoskeleton-dependent cytokinesis,
nuclear chromosome segregation, B cell activation, positive

regulation of stem cell population maintenance, negative
regulation of cell matrix adhesion, and positive regulation of
sprouting angiogenesis. The KEGG enrichment functions of
MAP1LC3B (Figure 8D) include primary immunodeficiency,
ErbB signaling pathway, adipocytokine signaling pathway, cell
adhesion molecules cams, intestinal immune network for IgA
production, leukocyte trans endothelial migration, B cell
receptor signaling pathway, allograft rejection, and insulin
signaling pathway. The detailed enrichment results of the two
hub genes are shown in Additional file 5.

Drug sensitivity analysis (Figures 9A–R) showed that DMAPT,
palbociclib, imexon, carmustine, oxaliplatin, lomustine,
hydroxyurea, isocyanide, dromostanolone propionate, 3-
bromopyruvate (acid), chelerythrine, fenretinide, obatoclax,
parthenolide, fenretinide, belinostat, curcumin and PX-316 were
each positively correlated with MYC expression, while irofulven was
negatively correlated with MYC expression.

FIGURE 7
Validation of immune function of hub genes in genotyping (A) Matrix heat map, rows and columns are samples. (B) Principal component analysis
(PCA) of different immune signature subtypes; blue indicates cluster 1, red indicates cluster 2. (C)Heatmap of differential gene expression associatedwith
liquid–liquid phase separation in RA submolecular typing. (D) Significant DEGs in clusters A and B. (E) Significantly different immune infiltrated cells in the
two groups A and B. (F,G) Correlation analysis between the expression levels of hub genes MYC and MAP1LC3B and immune cells.
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4 Discussion

RA is the most common inflammatory arthritis and a major
cause of disability. Immune mechanisms are at the forefront of
RA pathogenesis (Firestein, 2003). According to in-depth
studies of its genomics and based on its pathogenesis, specific
prophylactic measures can be designed to suppress synovitis and
arthritis. LLPS is becoming a widely accepted theory explaining
the spatial and temporal control of complex intracellular
biochemical reactions by membraneless organelles (Banani
et al., 2017; Shin and Brangwynne, 2017). These condensates,
the so-called MLOs, represent distinct liquid phases that are
selectively enriched in certain macromolecules and fulfill
essential cellular functions under normal conditions and in
response to stress (Alberti, 2017; Li et al., 2018; Alberti et al.,
2019; Pancsa et al., 2019). Emerging studies (Su et al., 2016;
Sheu-Gruttadauria and MacRae, 2018; Zhang et al., 2018;
Nozawa et al., 2020) have shown that LLPS is involved in
diverse pathological and physiological processes, such as
adaptive and innate immune signaling, stress granule assembly,
heterochromatin formation, transcription, miRISC assembly, and
autophagy, LLPS also plays a role in the development of cancer and
neurodegenerative and inflammatory diseases. However, the
importance of LLPS in RA has not yet been fully elucidated.
This study aimed to investigate the effects of LLPS-related
genes on RA.

In this study, we performed a multi-machine algorithmic
analysis of RA multiomics data to determine the expression,
heterogeneity, and immunological value of LLPS-related genes in
RA.We first analyzed the phenotypic characteristics of LLPS-related
genes in RA, focusing on the distribution of LLPS-related GESs in
RA and on chromosomes, and the structure of the interaction
network constructed based on gene expression values. By
applying two algorithms widely used in the fields of pattern
recognition and machine learning to predict the impact of LLPS-
related genes on the pathogenesis of RA, simultaneous WGCNA
identified blue modules that were highly associated with LLPS in RA.
By crossing the genes in this module with two previous machine
algorithm model genes, these genes (including MYC and
MAP1LC3B) were identified as key genes associated with the
regulation of LLPS in RA. Meanwhile, we constructed nomogram
models for RA risk assessment model expression (MYC and
MAP1LC3B), and multiple validations of the nomograms
demonstrated that the nomogram models have a strong clinical
predictive power for RA. One study (Van Raemdonck et al., 2021)
found that IL-34 arthritic joint C-MYC (3x) was upregulated to
trigger increased glucose uptake compared with that in non-arthritic
mice; however, blood glucose concentrations were downregulated in
arthritic mice 15 and 30 min after glucose injection. In addition,
MYC may also promote an increase in glycolysis-dependent
oxidative phosphorylation during RA osteoclast development
(Sakuraba et al., 2022). A osteoclast development. It has also

FIGURE 8
Hub gene single gene enrichment analysis. (A) The GO enrichment analysis of MYC. (B) The KEGG enrichment analysis of MYC. (C) GO enrichment
analysis of MAP1LC3. (D) KEGG enrichment analysis of MAP1LC3.
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been suggested that MYC may be an important bridge between
inflammation and heterotopic ossification in ankylosing spondylitis
(Jin et al., 2023). In a study (Fang et al., 2021) on the association
between tumor grade and LLPS-related genes, the LLPS-related
genes E2F and MYC may be important determinants of survival
in high-risk groups. The hub gene of interest in our study,
MAP1LC3B, is an important link in biological autophagy. Mitotic
receptors with a conserved MAP1LC3/LC3 interacting region mark
damaged mitochondria for recruitment to the autophagy machinery
through direct interaction with LC3 and other ATG proteins (Chen
et al., 2016). In a study of ischemic stroke, MAP1LC3B was identified
as a diagnostic marker for ischemic stroke and was highly expressed
in the disease group, and MAP1LC3B was also found to be a
potential biomarker for docosahexaenoic acid sensitivity in
colorectal cancer cells (Chen et al., 2021).

Based on the results of the ssGESEA analysis, we used
consensus clustering to classify RA patients into different
immune subtypes, and the model hub genes MYC and
MAP1LC3B were significantly highly expressed in the immune
subtype “cluster 1” group. We also performed correlation
analysis of the hub genes with the degree of infiltration of
various immune cells and sensitivity analysis with drugs to
provide a basis for elucidating the pathogenic mechanism and
immunotherapy of LLPS-related hub genes in RA. MYC was
found to be associated with CD56bright natural killer cell, CD8 +
T cell, activated B cell, gamma delta T cell, Myeloid-derived
suppressor cell (MDSC), regulatory T cell, natural killer cell,
immature B cell, T follicular helper cell was significantly
negatively correlated with eosinophil, neutrophil immune cells
and positively correlated with eosinophil, neutrophil immune

FIGURE 9
Hub gene drug sensitivity analysis. (A–K, M–R) Expression of MYC was correlated with the sensitivity for DMAPT, palbociclib, imexon, carmustine,
oxaliplatin, lomustine, hydroxyurea, ifosfamide, dromostanolone propionate, 3-bromopyruvate (acid), chelerythrine, fenretinide, obatoclax,
parthenolide, fenretinide, belinostat, curcumin, PX-316, and (L) irofulven were positively correlated with drug sensitivity but was negatively correlated
with that for irofulven.
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cells. MAP1LC3B is significantly negatively correlated with
gamma delta T cell, activated B cell, activated CD8 T cell,
regulatory T cell, MDSC, natural killer cell, immature B cell,
monocyte, type 1 T helper cell, CD56bright natural killer cell and
other immune cells were significantly negatively correlated.

MYC proteins are master regulators of cellular programs
(Dhanasekaran et al., 2022). Previous studies (Guo et al.,
2022) have shown that MYC is involved in
immunopathological processes mediated by B cells and T cells
through various mechanisms, during the first division of
activated CD8 + T cells, cBAF and MYC are often
asymmetrically co-allocated to the two daughter cells,
daughter cells with high MYC and cBAF expression showed a
cell fate towards T cells, whereas daughter cells with low MYC
and cBAF expression preferentially differentiated towards T cells.
Di Pietro showed that deletion of Bmi1 restored c-Myc expression
in B cells and increased the quality of antibodies (Di Pietro et al.,
2022). Wang et al. (2017) found that MYC protein-positive
diffuse large B-cell lymphomas are characterized by highly
activated B-cell receptor signaling. It is well known that
MDSCs contribute to tumor immune evasion. MDSCs not
only significantly promoted tumorsphere formation, cell
colony formation, and cancer stem cell accumulation, but also
enhanced the expression of stemness biomarkers NANOG and
c-MYC in epithelial ovarian cancer cells during co-culture (Li
et al., 2020). It was shown that activated T cells and natural killer
cells infiltrating the RA synovium can induce apoptosis in RA
synovial cells through Fas/Fas-l interactions (Asahara et al.,
1996). In addition, MYC was found to be significantly
negatively correlated with follicular helper T cells in atrial
fibrillation (Liu et al., 2021b). Myc overexpression leads to an
increase in liver-infiltrating neutrophils, and this increase can
inhibit tumorigenic liver growth by suppressing neutrophil
differentiation through angiogenesis inhibitors or morpholino
knockdown (Zhao et al., 2016). In addition,MAP1LC3/LC3 could
be involved in autophagy-mediated B and T cell immune
responses through various mechanisms. In oral cancer and
hepatocellular carcinoma, MAP1LC3B expression was
significantly and positively correlated with the number of
MDSCs and monocyte density, respectively (Chen et al., 2018;
Wu et al., 2018).

Biological characterization of LLPS-related hub genes using
single-gene GSEA enrichment analysis showed that the GO
functions of MYC and MAP1LC3B are mainly enriched in
vascular, stromal, and immune regulation, cell cycle, and
immune regulation. KEGG functional enrichment analysis of
these two hub genes showed that they are mainly involved in
immune regulation and signaling. These results suggest that the
LLPS-related hub genes play an integral role in RA.

Hub genetic drug sensitivity analysis showed that although
onlyMYC had results with 19 drugs, some drugs are now used in
the clinical treatment of RA. Moreover, RA in patients
improved when these drugs were used in the treatment of
patients with cancer RA. Improvement in RA in breast
cancer patients treated with palbociclib has been reported
(Murakami et al., 2021). Low-dose hydroxyurea is safe and
effective in the treatment of RA (Ehrlich et al., 1995).

Chelerythrine ameliorates RA by modulating the AMPK/
mTOR/ULK-1 signaling pathway (Cai et al., 2022).
Fenretinide exhibited anti-inflammatory/anti-arthritic
properties (Paul et al., 2016). Parthenolide inhibited the
proliferation of fibroblast-like synoviocytes in vitro (Parada-
Turska et al., 2008). Furthermore, a review evaluated the
therapeutic efficacy and changes in inflammatory parameters
of curcumin in RA and reported various possible mechanisms of
curcumin in the treatment of RA (Pourhabibi-Zarandi et al.,
2021). Our bioinformatics algorithm was partially validated in
terms of the drug sensitivity of key genes, providing the basis for
our next study, focusing on investigating the role of LLPS-
related genes in the pathogenesis and clinical treatment of RA. It
also provides a guiding direction for future research and clinical
treatments. However, this study has certain limitations and did
not validate the role of LLPS in RA in molecular biology.
Therefore, further studies are necessary to establish the
correlation between RA and LLPS.

5 Conclusion

In conclusion, the present study demonstrated that the
expression of LLPS-related genes MYC and MAP1LC3B was
downregulated during the development of RA inflammation
and was accompanied by the accumulation of immune cells such
as CD56bright natural killer cells, gamma-delta T cells, MDSCs,
regulatory T cells and immature B cells, which are potential
targets for RA immunotherapy. However, we lack
corresponding clinical cohort to evaluate the practicality and
accuracy of this signature. We will improve it in the future.
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SUPPLEMENTARY FIGURE S1
(A)Chromosomal localization of differ-entially expressed liquid–liquid phase
separation (LLPS)-related genes. (B) The heat map of the consensus matrix
with a cluster count of 3 in the molecular subtype consensus clustering of
LLPS genes. (C)Tracking plot at k = 2–9 in the consensus clustering of
molecular subtypes of the LLPS gene. (D,E) ROC curves of MYC and
MAP1LC3B in the GSE55457 dataset. (F,G) MYC and MAP1LC3 expression
levels in RA and adjacent normal tissue in the GSE55457 dataset (*p < 0.05,
**p < 0.01). (H–J) Matrix heatmap of the consensus clustering of the hub
gene MYC immune signature subtypes, rows and columns are samples.

SUPPLEMENTARY FIGURE S2
(A) Heatmap of expression levels of significantly expressed genes in
5 fibroblasts types, with purple as low expression genes and yellow as high
expression genes. (B) A scatter plot showing the different fibroblasts of the
RA knee synovium by color. (C,D) show the expression of MYC and
MAP1LC3 in all fibroblasts, respectively. (E) The average expression and
percentage expression of MYC and MAP1LC3 in the five types of RA
fibroblasts.
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