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Livestock animals have been domesticated and raised by humans for thousands of years,
providing food, fiber, and other resources (Bruford et al., 2003). Over time, farmers have
selectively bred animals to improve their productive traits (Rauw et al., 1998). However, the
artificial selection process has also contributed significantly to the loss of genetic diversity
(Ajmone-Marsan et al., 2023). Therefore, the current Research Topic was planned and
researchers around the globe were invited to explore strategies to sustainably manage animal
biodiversity. This Research Topic collected a total of eight manuscripts, published by
60 authors, more than 3,331 downloads and 14 thousand views globally at the time of
this editorial. Keeping in view the importance of genetic diversity for a long-term potential
for survival in different livestock species, we received manuscripts regarding cattle, sheep,
chickens, and camels.

Among cattle, dairy animals are particularly prone to environmental stressors because they
have been exposed to intense artificial selection for milk production and composition traits,
thus losing the genetic variability that could be useful for new breeding orientations in the
context of climate change (Leroy, 2014; Doublet et al., 2019). Indeed, Cheruiyot et al. proposed
to include in the commercial cattle SNPs chip arrays some variants associated with the nervous
system and metabolic functions that are responsible for heat tolerance in dairy cattle. Dairy
cattle are also themost criticized for having a rather high environmental impact associatedwith
greenhouse gases emissions such as nitrous oxide and methane (Webster, 2021). Genetic
selection is a very attractive solution to identify and breed lower-methane emitter animals,
however, it requires multidisciplinary studies and a large number of methane records from
individual animal. Various studies have identified genetic markers linked with methane
emissions in cattle and sheep, providing opportunities for selective breeding to develop
animals with reduced methane production potential (Calderón-Chagoya et al., 2019;
Zhang et al., 2020; Hickey et al., 2022). On the other hand, the urinary nitrogen release
leads to high levels of environmental pollution (Uwizeye et al., 2020). Accordingly, Honerlagen
et al. have studied, through a GWAS approach, the genomic features behind this phenotype,
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and found genomic regions and candidate genes affecting nitrogen
excretion that could be included in a breeding selection scheme for
animals with lower environmental impact. For a faster progress,
genome editing techniques can improve livestock production
efficiency and reduce environmental impacts that could have
otherwise excessive cost using conventional breeding; however
ethical issues regarding animal genome editing are still under
debate and need to be concluded (Hallerman et al., 2022).

Specialized breeds are more likely to suffer from homozygosity,
which can have a negative impact on genetic variability (Muir et al.,
2008; Bosse et al., 2019). This loss of genetic diversity can lead to
reduced adaptability, increased vulnerability to disease, and decreased
resilience to environmental stressors (Grandin and Deesing, 2022).
The conservation of genetic biodiversity in livestock animals has
become a priority for a long-term sustainable agriculture (Pauls et al.,
2013; DeLonge et al., 2016). Biodiversity is also crucial for ensuring
adaptability to environmental stressors (Perini et al., 2020; Rovelli
et al., 2020). Genomic research has provided the tools for deep
characterization of genes responsible for certain phenotypes.
Starting from the microsatellites, many QTLs related to interesting
traits were mapped on chromosomes of livestock species (Hu et al.,
2013; Badbarin et al., 2021). Moreover, the microsatellite technology,
as well as the mitochondrial DNA, have been widely used to rapidly
evaluate the genetic variability among and within breeds belonging to
the same species (Perini et al., 2023a), and for the evaluation of their
evolutionary relationships (Lasagna et al., 2020). The evolution of
technology has led to the era of SNPs, a genomic tool much sharper
for phenotype-genotype linkage identification. This is the case of Ben-
Jemaa et al. that provides a glimpse into diverse selection signatures in
semi-feral Maremmana cattle breed. The results showed a set of genes
that are associated with theMaremmana breed’s ability to adapt to the
environment of the western-central part of Italy.

Camels are a species that used to cope with semi-arid and arid
environments and their characterization regarding phenotype,
microsatellites, mitochondrial DNA and SNPs have been
reviewed by Yakubu et al. The authors focused on the difficulties
into distinguishing sub-populations in many countries, except for
the populations in Kenya. Yakubu et al. also reported that several
studies have been conducted mainly to investigate the association
between SNPs markers and different traits.

Since SNPs technology is used as marker of genetic variability
within and between breeds (Ceccobelli et al., 2023), the study by Van
Marle-Köster et al. investigated inbreeding levels and the genetic
architecture of South African cattle and sheep breeds. The authors
found an abundance of short ROH fragments in both species
indicating ancient inbreeding. Using principal component analysis,
model-based clustering, and phylogenetic analyses, the eight cattle
populations studied were classified into indicine, taurine, or Sanga
subspecies. Considering the sheep population, a distinct separation
among dual-purpose, meat, and indigenous breeds was observed.

Since the percentage of livestock breeds at risk of extinction has
increased from 15% to 17% between 2005 and 2014 (FAO, 2015),
genomic characterization of indigenous breeds is an important start
of point for their conservation. Soglia et al. examined the genetic
diversity and the rate of extinction of 17 native Italian chicken
breeds starting from microsatellite genotyping. The study revealed
that 11 breeds were in endangered status. These findings highlighted
the need to preserve unique genetic diversity and special attention

should be given to the introduction of different genetic lines and the
use of mating schemes as a conservation strategy aimed at limiting
the inbreeding increase.

RNA-sequencing is a tool which sheds light on global gene
expressions of a given tissue, and it gave the possibility to discover
new genomic variants with high impact on specific traits. It is also
used to underline the adaptation of local livestock breeds to different
environmental challenges (Perini et al., 2023b). RNA-seq has been
used by Michailidou et al. for the evaluation of mammary gland
transcriptional activity comparing high and low yielding ewes of two
dairy sheep breeds reared intensively in Greece, the indigenous Chios,
and the cosmopolitan Lacaune breed. The study demonstrated that
the innate transcriptional activity of the mammary gland and the
health status set the base for ewe productivity.

Finally, Peixoto et al. focused on the improvement of productive
traits in Guzerá cattle. Due to its adaptation to harsh environments and
low feed quality, parasite resistance, and dual-purpose characteristics,
in 1994 breeding programs were implemented for the improvement of
Guzerá for dairy purposes, using two joint selection strategies, the
progeny test and the MOET nucleus schemes. The study provided
evidence of the significant contribution of the MOET nucleus scheme
to the breed’s phenotypic and genetic progress for milk traits.

This Research Topic has achieved its goal of kick-starting the
discussion and utilization the resources in terms of which strategies
and capacities will be more efficient to solve the primary challenges
that are affecting animal biodiversity around the world.
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