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Pharmacogenomics (PGx) aims at tailoring drug therapy by considering patient
genetic makeup. While drug dosage guidelines have been extensively based on
single gene mutations (single nucleotide polymorphisms) over the last decade,
polygenic risk scores (PRS) have emerged in the past years as a promising tool to
account for the complex interplay and polygenic nature of patients’ genetic
predisposition affecting drug response. Even though PRS research has
demonstrated convincing evidence in disease risk prediction, the clinical utility
and its implementation in daily care has yet to be demonstrated, and
pharmacogenomics is no exception; usual endpoints include drug efficacy or
toxicity. Here, we review the general pipeline in PRS calculation, and we discuss
some of the remaining barriers and challenges that must be undertaken to bring
PRS research in PGx closer to patient care. Besides the need in following reporting
guidelines and larger PGx patient cohorts, PRS integration will require close
collaboration between bioinformatician, treating physicians and genetic
consultants to ensure a transparent, generalizable, and trustful implementation
of PRS results in real-world medical decisions.
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Introduction

Precision medicine aims at tailoring disease prevention and management to identify
optimal therapies by considering individual factors, such as genetic profile, health
conditions, environmental exposure, and lifestyle. Although very promising, developing
and reaping the rewards of precision medicine has proven to be a challenging task, as it
requires dealing with the complex interplay between many non-linear associations from
factors that result in individual variability.

Many studies have shown that many complex diseases, such as mental disorders,
addiction, pain responses, etc., can have strong genetic underpinnings. By considering
patient-level genetic information, such as significant genomic loci and associated genes,
genomic medicine is a rapidly emerging field that is dedicated to improve healthcare practice
using an individual’s genomic information (NHGRI website, 2021). Over the last decade,
numerous genome-wide association studies (GWAS) have explored the contribution of
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inherited variants to common complex disorders involving many
genes and their variants. While many monogenic diseases have been
discovered and some have been successfully managed, diseases with
complex inheritance—the majority of diseases in terms of
population burden—are more difficult to tackle. Both the
influence of environmental factors in disease expression and the
interplay between polygenic predispositions limit the ability to
predict phenotypes (disease, drug-related endpoints, etc.)
probability based on genome analysis alone.

An adverse drug reaction (ADR) can be defined as “an
appreciably harmful or unpleasant reaction resulting from an
intervention related to the use of a medicinal product; adverse
effects usually predict hazard from future administration and
warrant prevention, or specific treatment, or alteration of the
dosage regimen, or withdrawal of the product” (Aronson and
Ferner, 2005). In addition to poor or even non-response to
treatment, ADRs cause a significant burden in healthcare and
where estimated in 1998 to represent the fourth leading cause of
death in the United States (Lazarou et al., 1998). Moreover,
differences in drug response are partially determined by genetic
factors (Pirmohamed, 2014; García-González et al., 2016), as
illustrated by different dosage regimen according to specific
polymorphisms in metabolic enzymes like the cytochrome
P450 superfamily (Caudle et al., 2017).

Pharmacogenomics (PGx) is the study of how an individual’s
genetic makeup affects the response to drugs. It can contribute to the
development of precision medicine by selecting drugs with better
efficacy while lowering the risk of ADRs during clinicians’
prescription decision making process. Many drug-gene pairs are
currently used in clinical practice to help in finding the beneficial
regimen for a specific patient with a specific condition. Evidence-
based guidelines have been developed for more than a decade to
advise prescribers in daily clinical practice on an optimal drug
regimen according to genotypes or predicted phenotypes (Swen
et al., 2011; Caudle et al., 2017). Unfortunately, this conventional
approach of drug response prediction based on a single PGx variant
biomarker depends on large effect size and the absence of
comorbidities modulating drug response. In many cases, it
cannot address the polygenic nature of most observable drug
response outcomes where the effects of individual genetic
variants are small. Many studies have showed the limitation of
individual genetic marker association models, which can only
explain small amounts of phenotypic variation of patients,
resulting in so-called “missing heritability” (Eichler et al., 2010).

Polygenic risk scores

One promising approach in PGx is the use of patient-level
polygenic risk scores (PRS). In simple terms, PRS reflects the
genetic predisposition for a phenotype of interest. More precisely,
PRS calculates the sum of genome-wide risk alleles that are weighted
by their corresponding effect size estimates (e.g., odds ratio) derived
from GWAS summary statistic data (Choi et al., 2020). Importantly,
this additive property ignores any gene-environment or gene-gene
interactions (Lewis and Vassos, 2020). PRS has a significant higher
capacity to predict risks of complex diseases and other health-related
conditions by considering small impacts of many variants from

genome-wide scope in a single numeric index, making it efficient
and convenient for large-scale population risk screening and disease
diagnosis prediction.

Polygenic risk scores in disease risk
prediction

The clinical utility of PGS has already been highlighted in recent
research. For example, Khera et al. (Khera et al., 2018) demonstrated
that PRS used in coronary artery disease was shown to predict a risk
comparable to the one caused by rare and highly penetrant
monogenic mutations, but with the ability to generalize to a
broader population. In addition, atrial fibrillation, type 2 diabetes,
breast cancer, and inflammatory bowel disease represent other
common conditions in which populations have been identified as
having disease risk at least three-fold higher than the general
population, with a proportion of identified individuals ranging
from 1.5% to 8% depending on the disease. Even though these
effects may sound modest compared to some clinical factor-based
indices, they may also be more clinically relevant as a genetic tool
since, compared to monogenic mutations, a higher proportion of
individuals can be classified with a high risk of disease. Further,
osteoporotic fractures prediction using PRS was able to decrease by
41% the proportion of patients requiring screening tests, while
maintaining sensitivity and specificity high enough to identify
individuals who could benefit from an intervention. This also
illustrates how negative prediction could be exploited with
genetically more complex diseases that lead to a rarity of events
and therefore often lower precision due to a low cases/controls’ ratio.
This approach is likely to prove beneficial in PGx, not only in
positive prediction by ensuring optimal therapy for each patient (the
right medication to the right person at the right time), but also to
prevent use of ineffective drugs. Thus, using PRS to avoid
unnecessary prescription should be a primary concern, both for
medical and economic reasons as preventing ADR rates, improving
therapeutic success, and reducing time to find optimal drug regimen
is cost-effective at patient and healthcare levels.

Polygenic risk scores in PGx

Like what has been done in genomic medicine, most progress
from pharmacogenetic studies has allowed to identify rare
mutations carrying high-risk of poor outcomes. Some examples
of common drug-variant pairs implemented in clinical practice to
decrease ADR risk are abacavir and HLA-B*5701, thiopurines (e.g.,
6-mercaptopurine) and TMPT, among many others. It is also well
established that allelic variations of genes involved in drug
elimination, such as CYP2D6, can impact drug response both in
terms of efficacy and toxicity depending on the metabolic profile of
specific drugs. Moreover, predicting PGx endpoints like pain
response with a polygenic polymorphisms combination and
related gene set involved both in drug response (OPRM1) and
disposition (ABCB1, COMT) has already been proposed (Lötsch
and Geisslinger, 2006; Campa et al., 2008).

While showing great promise, the potential impact of PRS in
PGx remains largely unknown. This may be not surprising since
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using PRS with PGx endpoints (safety or efficacy) is more
challenging. High fidelity of patients’ response phenotypes to
drugs is one of the major limiting factors for this type of
research. In addition to compare uniformly treated patients, PGx
studies must rely on well-defined endpoints (e.g., clinical scales for
specific disorders like depression) which requires patient data with
high level of granularity in a strictly-defined time duration. This type
of information is often only available or recorded patient-level
clinical databases. Another difficulty resides in polypharmacy
(i.e., co-administration of multiple drugs - usually more than 5 -
in a specific patient) that increases the risk of drug-drug interaction,
or underlying diseases like kidney failure, both may increase
susceptibility to toxicity and then modulate estimation of genetic
effect sizes.

More specifically, a review by (Johnson et al., 2022) found that
most published research focused on the treatment of psychiatric
disorders (n = 31/50), followed by circulatory and digestive
conditions. Among the 105 drug phenotypes that were analyzed,
82 were related to drug efficacy and response and 23 were related to
ADR phenotypes. Phenotypes for which GWAS summary data were
used to compute PRS were grouped in three distinct categories, i)
disease-related phenotype (e.g., PRS for antipsychotic response
using schizophrenia GWAS data), ii) pharmacogenomic-related
phenotype (e.g., drug-induced phenotype), and iii) ADR-related
phenotype (e.g., PRS for antipsychotic-induced weight gain using
obesity GWAS data).

Cross et al. have also reviewed common drugs associated with
PRS studies in ADR and efficacy prediction (Cross et al., 2022).
Frequently prescribed medication like statins, clopidogrel, warfarin
(more and more substituted by newer direct oral anticoagulants),
antipsychotics, and antidepressants have been associated to some
degree with genetic susceptibility to pharmacological endpoints.
However, the contribution of PRS in explaining phenotype
variance remains low, illustrating the fact that effort in PGx
studies must continue.

Calculation and optimization of PRS

As briefly mentioned before, PRS construction is based on the
weighted sum of risk alleles across the genome. More specifically,
PRS analyses need two independent datasets: i) a discovery (base)
dataset, that is made of summary statistics (e.g., beta coefficients,
odds ratio) obtained from GWAS and made available online, and
ii) a target dataset, that is made of genotypes from individuals for
whom we want to compute PRS. The PRS are then estimated for
target samples from information obtained in discovery samples.
Of note, although incorporating only genetic variants reaching
genome-wide significance level may sound intuitive, improving
PRS predictability by including many variants showing weaker
associations with a phenotype has also been described (Cecile
et al., 2019; Konuma and Okada, 2021). This approach could
reflect the fact that original GWAS with limited sample size may
not show sufficient power because the full heritability could be
distributed over a very high number of common SNPs with very
low effect size (Chatterjee et al., 2016). This limitation could
result in potentially missed genuine trait-variant associations and
justify parameter optimization in order to select an optimal

threshold that could vary depending on the target trait (Choi
et al., 2020).

SNP effect size estimation must be done cautiously given their
uncertainty, the fact that not all of them influence phenotypes under
study and independence between SNP is not guaranteed.
Unadjusted values could result in poor estimation and high
standard error. To mitigate this risk, different methods can be
used to construct PRS (Choi et al., 2020; Zhai et al., 2022).

Regularization techniques

These techniques, such as Lasso or Ridge regression, are
commonly exploited (not only in PRS) to reduce (shrink)
model complexity by adding a penalty factor to focus on more
important variables. Differences between both techniques reside
in the way parameters are tuned to create penalty. Briefly, LASSO
regression can reduce variable effect to zero (decreasing the
number of variables in a model), while Ridge regression tends
to decrease large effects more than LASSO but keeping all
variable values more than zero. While combinations of LASSO
and Ridge exist, the most appropriate regression methods that
should be applied may depend on the underlying phenotype
under study and effect size distribution. These are very
commonly in machine learning applications (not the scope of
this paper), and model parameters can be optimized through
iterative process.

Clumping and thresholding (C + T) method

A potential issue can arise when summing SNP effect sizes
whereas independent genetic effects do not occur, as this could be
the result of non-random association of alleles at different loci
correlation, a phenomenon known as linkage disequilibrium
(LD) (Slatkin, 2008). This issue specifically arises when PRS is
calculated from GWAS that evaluated one SNP at a time. To
alleviate this correlation between polymorphisms and getting
closer to independent data, SNPs can be clumped (C) by
prioritizing SNP with the smallest GWAS p-value so that only
variants that are weakly correlated are retained. Thresholding
(T), the second filtering step, consists in removing variants with a
p-value that exceeds a predetermined level of significance (Privé
et al., 2019).

Bayesian modeling

Although C + T approach looks attractive because of
computational and conceptual simplicity, some authors
mentioned that prediction accuracy can be limited (Vilhjálmsson
et al., 2015; Ge et al., 2019). Another method that is gaining more
interest relies on using prior effect size distribution to accommodate
varying effect size distributions across complex traits and varying
genetic architecture. Different Bayesian regression frameworks have
been developed to infer the posterior mean effect size of each genetic
marker from GWAS summary statistics while accounting for LD
(Ge et al., 2019).
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Recent simulation studies by Zhai et al. (Zhai et al., 2022) using
PGx data to build PRS have compared Bayesian, C + T methods and
regularization techniques. Bayesian approaches, under different
genetic architectures, showed superiority to all other methods. In
addition, the C + T method outperformed LASSO regression
techniques, suggesting that the latter was sensitive to small
signal-to-noise ratio.

Implementation of PRS

Clinical implementation of PRS is a topic of active research
(Shieh et al., 2017; Brockman et al., 2021). However, several steps
are necessary to translate PRS promise into daily clinical routine
and many hurdles still must be overcome as illustrated by the
recent GenoVA study of Hao et al. who implemented PRS
information in the clinic (Hao et al., 2022). In short, they
proposed to conceptualize the way from PRS assay
development to its clinical use as a three-step path: the first
step involves epidemiology and statistical genetics and is related
to PRS development, validation, and improvement; the second
step involves laboratory pipeline translating PRS calculation to
actionable results; the third and final step involves medical
decisions where reported PRS information is integrated into
patient clinical information. While PRS calculation and
statistical methods are showing great progress, challenges
persist in how laboratory pipeline and medical interpretation
can bring PRS closer to clinical routine. An example of reporting
workflow is illustrated in Figure 1.

First, a significant well-established bias resides in the predominance
of European ancestry in GWAS effect size estimation, limiting the
generalizability of PRS results to other populations that are already
underserved (Martin et al., 2019; Tata et al., 2020; Peterson et al., 2019;
Popejoy and Fullerton, 2016). Second, regardless of genetic origin,
analytic validity of laboratory pipeline for clinical implementation must
be ensured since the standards used for research purpose may not be
sufficient. Finally, implication of both laboratory and treating physician
in this process implies defining everyone’s role and area of expertise. In
addition, uncertainty remains regarding the extent of information and
the support that should be provided to the physician to facilitate PRS
integration in medical decisions.

Converting good intentions and existing promises into concrete
actions necessitates to understand clinicians’ expectations about PRS
and the way to develop their trust in genetic clinical tool. As
proposed by Hao et al., a transparent PRS report containing
directive-free guidelines, along with evidence and limitations
about PRS interpretation may be beneficial. This is important at
least for two reasons: 1) in order to establish trust, laboratory choices
and associated resources that were used to define risk thresholds and
interpretation (e.g., dichotomous vs. continuous risk assessment)
must be clearly explained, also knowing that these interpretation
parameters may vary between risk phenotypes; 2) considering the
current absence of demonstrated clinical utility on patient outcomes,
physician support through educational resources and genetic
counseling should be provided since they are responsible for
making the final medical decisions. The importance of reporting
informational guidelines is primordial given the need to
contextualize PRS results with patient’s medical history.

FIGURE 1
Implementation of PRS results into medical decision process. In phase 1, GWAS summary statistic data is searched for PGx endpoint (e.g., non-
response to drug) effect size (e.g., odds ratio) adapted to the targeted patient genotype. In phase 2, PRS is calculated from the sum of genome-wide risk
alleles that are weighted by their corresponding effect size estimates derived from GWAS data. In phase 3, PRS results are contextualized by the medical
team (treating physician, genetic consultant, etc.) by incorporating patient’s medical history and all non-genetic factors (comorbidities, laboratory
values, etc.) to ensure appropriate medical decisions.
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Discussion

Genetic variants are nowadays commonly analyzed in PGx, both
a posteriori when ADR or drug unresponsiveness are suspected but
also preemptively when optimal dosage of a drug with a narrow
therapeutic index (i.e., ratio of the dose that produces toxicity to the
dose that produces a clinically desired or effective response) must be
determined as quickly as possible. However, like for many chronic
conditions, pharmacological drug response depends on a myriad of
factors, whether related to drug properties, patient’s
pharmacokinetic profile (i.e., the way the body impact the time
course of the drug in the body—metabolism playing a substantial
role), or patient’s pharmacodynamic profile (i.e., the way the body
responds—or not—after drugs have reached their target). We can
therefore easily imagine that multiple variations in the genome can
affect drug response, and this is the reason why PRS looks promising
in PGx.

However, as already mentioned earlier, PGx data are not as
available for PRS as is disease information. In addition, as mentioned
by Kumuthini et al. (Kumuthini et al., 2022), further research is
needed before widespread use in clinical practice as only near-
evidence of clinical utility was identified. This is illustrated even in
fast-moving fields like cancer research where evidence of clinical
utility and validation of biomarkers are not always adequate
(Horgan et al., 2014). Even though barriers are still to be
overcome, propositions have been made to make the most of the
potential of the PRS.

Even though phenotype variance explained by PRS is frequently
low, this number is expected hopefully to increase with larger
cohorts of patients, predominantly in ethnic population under-
represented in currently available biobanks, including UK
Biobank and All of US research program (Sudlow et al., 2015; All
of Us Research Program Investigators Denny et al., 2019). Moreover,
it has been observed that targeting the top deciles in terms of genetic
risk may prove useful as this population may carry a significant
higher risk (the opposite reasoning can be made for bottom deciles
group). In this context, PRS may help in better stratifying patients
between groups, and be a useful tool, for example, to refine screening
guidelines. PRS may also gain interest in reclassifying intermediate-
risk level patients defined by clinical scores into higher or lower risk
group. This may lead to avoid unnecessary-yet-toxic treatment in
newly low-risk patients or, on the contrary, to treat previously
unidentified high-risk patients. This PRS population-centric
application will contribute to amplify the role of prevention that
resides at the heart of precision medicine, as well as potentially save
significant costs in an already economically pressured healthcare
environment. The ability to improve stratification could also be of
interest in clinical trials where genetically unmatched patients after
randomization were identified as a potential source of therapeutic
effects confounding (Leonard et al., 2020). Adjusting for underlying
differences in genetics could thus decrease trial failure and drug
development costs.

An important issue has emerged due to the lack of reporting
guidelines in PRS, along with gaps in data transparency and
availability. As previously described, different approaches and
parameters thresholds are available to estimate effect sizes. This

makes difficult the comparison between PRS and some authors have
proposed the Polygenic Risk Score Reporting Standards (PRS-RS) to
facilitate translation of PRS research into clinical care (Wand et al.,
2021; National Institute of Health, 2022).

From a clinical perspective, confidence in generalization of
research-derived PRS to real-world patients would be essential to
ensure appropriate medical decisions. In addition, it will be essential
to determine how to deliver this information in ways that providers
will find acceptable. Another issue is that careful attention must be
paid in a similar way to what must be done when extrapolating the
results of clinical trials to a population frequently suffering from
additional comorbidities that the one used to derive GWAS effect
size data. Despite the above-mentioned barriers in implementing
PRS, the effort in developing PRS guidelines and promising
examples of reporting workflow are preparing the ground for an
effective PRS integration in electronic health records.

In conclusion, PRS have the potential to move
pharmacogenomics a step further by providing a more
personalized and comprehensive view of an individual’s genetic
susceptibility to drug response. As illustrated by promising examples
of PRS integration into clinical workflow, and while awaiting more
robust genetic data across a bigger spectrum of genetic architecture,
transparent information about the promise and limitations of PRS
interpretation is key to help in its implementation for patient care.
As PRS is expected to keep on improving in their ability to capture
heritability of polygenic traits, there is good reason to expect that
appropriate clinical trials will soon prove their clinical utility.
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