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Gliomas are highly heterogeneous and aggressive. Malignant cells in gliomas can
contact normal neurons through a synapse-like structure (called neuron-to-
glioma synapse, NGS) to promote their proliferation, but it is unclear whether
NGS gene expression and regulation show species- and tumor-specificity. This
question is important in that many anti-cancer drugs are developed upon mouse
models. To address this question, we conducted a pan-glioma analysis using nine
scRNA-seq datasets from humans and mice. We also experimentally validated the
key element of our methods and verified a key result using TCGA datasets of the
same glioma types. Our analyses revealed that NGS gene expression and
regulation by lncRNAs are highly species- and tumor-specific. Importantly,
simian-specific lncRNAs are more involved in NGS gene regulation than
lncRNAs conserved in mammals, and transgenic mouse gliomas have little in
common with PDX mouse models and human gliomas in terms of NGS gene
regulation. The analyses suggest that simian-specific lncRNAs are a new and rich
class of potential targets for tumor-specific glioma treatment, and provide
pertinent data for further experimentally and clinically exmining the targets.
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1 Introduction

In humans and mice, 95% of protein-coding genes are conserved, but substantial
lncRNA genes are species-specific; moreover, lncRNA expression is highly tissue-specific
(Derrien et al., 2012; Necsulea et al., 2014; Lin et al., 2019). Further, many simian-specific
lncRNA genes are expressed only in the brain (Derrien et al., 2012). These three factors make
gene regulation by lncRNAs in the brain highly species- and tissue-specific. Since most drugs
developed upon mouse models fail to cure human patients, revealing the species- and tissue-
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specificities and the underlying implications upon big data is
important for glioma diagnosis and therapy. However, to what
extent gene expression regulation by lncRNAs is species- and
tissue-specific is poorly understood, especially in the brain and
brain tumors.

Gliomas are highly aggressive and heterogeneous, and the two
properties greatly influence glioma therapy and survival. High-grade
gliomas are especially aggressive, with a 5-year survival rate of < 5%
(Ostrom et al., 2014). Currently, all therapies (including surgical
resections, radiotherapy, and chemotherapy) have very limited
effects (Amarouch and Mazeron, 2005; Reitman et al., 2018),
making identifying new therapeutic targets a pressing need.
Increasing evidence indicates that interactions between cells in
the tumor microenvironment (TME) play vital roles in glioma
generation, migration, and responses to chemotherapy and
immunotherapy (Osswald et al., 2015; Wang et al., 2017; Wu and
Dai, 2017). A specific kind of intercellular interactions is between
glioma cells and neuronal cells. NLGN3, a protein normally on the
neuron surface, can be secreted as a mitogen and promote the
growth and infiltration of glioma cells through the PI3K-mTOR
pathway (Venkatesh et al., 2015). Multiple studies have confirmed
that glioma cells can contact neurons through a synapse-like
structure called neuron-to-glioma synapse (NGS), by which
malignant cells mimic normal neurons and hijack potassium
currents to promote their aggression and proliferation
(Venkataramani et al., 2019; Venkataramani et al., 2022b;
Venkatesh et al., 2019). Such synapses also form between the
brain-metastatic breast cancer cells and neural cells to facilitate
breast-to-brain metastasis (Zeng et al., 2019). Studies also
demonstrate that NGS and neuronal activity-dependent paracrine
contribute to forming neuron-tumor networks in gliomas
(Venkataramani et al., 2022a). These discoveries indicate that the
NGS is an important mechanism underlying glioma aggression and
should be a key target for glioma therapy.

According to experimental studies, NGS formation and function
rely on a set of genes involved in microtube formation,
synaptogenesis, neurotransmitter receptors, and neuronal
paracrine (hereafter termed NGS genes) (Venkatesh et al., 2019).
The knockout ofNLGN3 (an NGS gene) can decrease the invasion of
glioma in vivo in mouse models (Venkatesh et al., 2015), supporting
that NGS genes can be therapeutic targets. However, researchers
who use transgenic and patient-derived xenograft (PDX) mouse
models to study tumors find that many drugs tested successfully in
mice fail in human clinical trials (Mak et al., 2014; Gould et al.,
2015). A previous study focusing on PDGF signaling in glioblastoma
in humans, rats, mice, and dogs revealed that glioblastoma in these
species shows highly distinct gene expression (Connolly et al., 2018).
To explore NGS genes as targets for gliomas, more studies
addressing the two questions are needed: whether NGS gene
expression shows species- and tumor-specificity, and how the
specificity is regulated, especially by lncRNAs (Yao et al., 2015;
Alinejad-Rokny et al., 2020).

Pan-cancer analyses are highly valued in cancer studies. Many
pan-cancer analyses have revealed shared features of different
tumors (Ma et al., 2018; Campbell et al., 2020). Cross-species
cancer analyses, which try to identify shared and species-specific
features of tumors, have also drawn attention. Reported cross-
species cancer analyses focused either on a specific aspect, such

as PDGF signaling (Connolly et al., 2018), cancer genome (Robles-
Espinoza and Adams, 2014), and cancer resistance-associated genes
(Ulhas Nair et al., 2022), or on a specific cancer, such as pancreatic
cancer (Elyada et al., 2019). To make the most of published data and
to address the above-mentioned two questions, cross-species pan-
gliomas analyses are required. In this study, we examined NGS genes
and their potential regulation by lncRNAs using nine single-cell
RNA-sequencing (scRNA-seq) datasets covering 5 glioma types in
humans and mice. The examined gliomas include
oligodendroglioma (Tirosh et al., 2016), anaplastic astrocytoma
(Venteicher et al., 2017), medulloblastoma (Hovestadt et al.,
2019; Cheng et al., 2020), glioblastoma (Neftel et al., 2019; Weng
et al., 2019), and diffuse H3K27M glioma (Filbin et al., 2018), which
range from the WTO II grade to the WTO IV grade. We found that
NGS gene expression is highly tumor-specific and that multiple
lncRNAs, especially simian-specific ones, critically regulate tumor-
specific NGS genes. Importantly, we found that mouse and human
gliomas have very limit similarities in NGS regulation by lncRNAs,
including that transgenic mouse gliomas have little in common with
PDX mouse models and human gliomas in terms of NGS gene
regulation. We experimentally validated the key element of our
methods and verified a key result using TCGA datasets of three
glioma types. The combined TCGA and scRNA-seq data analysis
reveals that malignant cells with NGS are indeed associated with
worse survival. These results help identify the mechanisms behind
gliomas’ species- and tumor-specificity and provide pertinent data
for further experimentally and clinically identifying tumor-specific
targets for glioma treatment.

2 Materials and methods

2.1 Data collection and pre-processing

Nine scRNA-seq datasets of gliomas (GSE131928, GSE89567,
GSE70630, GSE102130, GSE119926, GSE122871, and GSE150752)
were downloaded from the GEO website (Supplementary Table S1).
GSE131928 contains two datasets that are adult and pediatric
glioblastoma. GSE119926 contains two datasets that are human
medulloblastoma and medulloblastoma PDX in mice. These
datasets were generated by Drop-seq (GSE122871), 10X
Genomics (GSE150752), and Smart-seq/Smart-seq2 (all others).

Batch effects may exist in samples of different studies and
different sequencing protocols. Whether a researcher chooses to
eliminate or not eliminate batch effects depends on the study’s
primary purpose and the data’s property. Because gliomas are
characterized by intra- and inter-tumoral heterogeneity,
eliminating batch effects by integrating data using specific
methods may risk removing real biological signals (including
glioma heterogeneity). To preserve as much heterogeneity as
possible between glioma samples, we did not remove the batch
effect. However, we normalized each dataset using the Seurat
(v3.6.1) package as follows (Satija et al., 2015).

For smart-seq datasets, transcripts per million (TPM) were first
log-transformed using the equation Eij � log2(TPMij

10 + 1) where “i”
refers to gene and “j” refers to cell. After the transformation, we used
the CreateSeuratObject function in Seurat to read the Eij expression
matrix. For datasets generated by Drop-seq or 10X Genomics, we
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used the read10X function to read the UMI data directly. For all
datasets generated by the three sequencing protocols, cells with
nFeature_RNA < 3,000 and nCount_RNA < 4,000 were removed, all
mitochondrial genes were removed, and each dataset was
normalized using the NormalizationData function (with default
parameters) to eliminate the effect of library size across cells. The
numbers of remaining cells and genes in each dataset are listed in the
(Supplementary Table S1). By default, the default parameters were
used in the analyses described in the following sub-sections.

2.2 Cell clustering

For each dataset, the following steps were performed to cluster
cells into clusters. First, we used the FindVariableFeatures function
to identify the top 2000 highly variable genes, with the selection
method set as “vst”. Second, all cells were scaled using the ScaleData
function with the identified highly variable genes. Third, we used the
RunPCA function to perform a linear dimension reduction. Fourth,
we constructed the shared nearest neighbor (SNN) graph using the
FindNeighbors function, with the number of principal components
used for the FindNeighbors determined by the ElbowPlot function.
Finally, we clustered cells using the FindClusters function (with data-
specific resolution settings). This clustering method is based on
optimizing SNNmodularity. The data-specific resolution was 0.3 for
pediatric glioblastoma in GSE131928, 0.8 for GSE122871, 0.8 for
humanmedulloblastoma in GSE119926, 0.25 for GSE150752, 0.3 for
GSE70630, and 0.4 for all other datasets. Cell clusters were visualized
using t-distributed stochastic neighbor embedding (t-SNE) (using
the RunTSNE function).

2.3 Identifying normal cell clusters

For each dataset, after cell clustering, the following steps were
performed to identify normal cell clusters. First, we used FindMarkers
function in Seurat to identify differentially expressed genes (DEGs) in
each cluster compared to all cells in all other clusters (with
“only.pos” = TRUE, “min.pct” = 0, “logfc.threshold” = 0.5,
“test.use” = “wilcox”, and other parameters took the default
values). Genes with logFC > 0.5 and adjusted p-value < 0.01 were
defined as DEGs. Second, we applied gene set enrichment analysis to
DEGs in each identified cell cluster to detect if any marker genes
(i.e., DEGs) of normal cell types were enriched. Marker genes of
normal cell types were collected from the CellMarker database (Zhang
et al., 2019), and the gene set enrichment analysis was performed
using ClusterProfiler (v3.14.3) (with default parameters) (Yu et al.,
2012). If the DEGs of a cell cluster were significantly enriched in the
marker genes of a cell type in the CellMarker database, this cell cluster
was defined as this cell type (BH-adjusted p-value < 0.05).

2.4 Scoring cells using binary markers of
normal cell clusters

After identifying normal cell clusters upon the enrichment of
DEGs in annotated cell markers, we extracted the properties of each
identified normal cell cluster to refine the identification of normal

cells. First, we followed the approach developed by Hodge et al.
(2019) to detect “binary markers” for each normal cell cluster. This
method computed a binary score ranging from 0 to 1 to assess the
exclusivity of a DEG between clusters. A higher binary score
indicates greater exclusivity of gene expression in a particular cell
cluster, and a DEG in a normal cell cluster with a binary score above
0.7 was defined as a binary marker of that normal cell cluster. Then,
upon each set of binary markers, all cells in a dataset were scored
using the AddModuleScore function. If a cell was scored above a
dataset-specific cutoff, the cell was classified into the corresponding
normal cell cluster.

2.5 Copy number analysis of cells

For each dataset generated by Smart-seq/Smart-seq2 andDrop-seq,
we used a reported copy number analysis (CNA) method to evaluate
whether a cell underwent genome duplication (Tirosh et al., 2016). First,
we first sorted genes by chromosome and gene start position. Second,
we used cells defined as normal cells upon the score of AddModuleScore
as the reference. Third, we computed the aggregate expression of each

gene using the equation Ea(i) � log2(average(∑N

j�1TPMij) + 1),
where “i”, “j” and “N” refer to gene, cell, and the total number of
cells, respectively. Only genes with Ea > 4 (which indicates very high
expression levels) were selected for further analysis. Fourth, for each
selected gene, its relative expression in cell j was calculated by
Erij � Eij − average(∑N

j�1Eij). Fifth, the initial CNA of each gene

was averaged over the Erij values of this gene, its 50 genes upstream,
and its 50 genes downstream, and the CNA was denoted as

CNAij � ∑i+50
i−50 Erij / 101. Sixth, the baseline CNA of each gene was

defined as the average of CNAij of the reference cells and denoted as
Baseline CNAi. Seventh, the relative CNA of each gene was calculated
as CNAij − Baseline CNAi. Eighth, the CNA signal of each cell was
defined as the averaged square of the relative CNA of all genes, that is,
CNA Signalj � average(∑M

i�1(CNAij − Baseline CNAi)2), where
“M” specifies the total number of genes. Finally, the CNA
correlation of each cell was defined as the Pearson correlation
between the relative CNA and the average of the relative CNA of
non-reference cells from the same sample. The above CNA analysis was
not applied to GSE119926 because the analysis needs the normal cells as
the reference but no normal cell clusters were identified in GSE119926.

2.6 Identifying malignant cells

For datasets generated by Smart-seq/Smart-seq2 and Drop-seq,
malignant cells were identified jointly upon three criteria: (a) A cell
does not belong to normal cell clusters according to the cell cluster-
based classification (see Method 2.3), (b) a cell is not defined as a
normal cell when scored using the binary markers of normal cell
clusters (see Method 2.4), (c) a cell has CNA signal > 0.02 and CNA
correlation > 0.4 based on CNA analysis (see Method 2.5). For
datasets generated by 10X genomics, malignant cells were identified
based on the criteria (a) and (b) mentioned above. A cell was
classified as malignant only when all the corresponding criteria
gave concordant assignment. Since normal cell clusters were not
identified in GSE119926, all cells in this dataset were defined as
malignant cells.

Frontiers in Genetics frontiersin.org03

Xiong et al. 10.3389/fgene.2023.1218408

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1218408


2.7 Detection of NGS-negative and NGS-
positive cells

We collected NGS genes from related studies (Osswald et al.,
2015; Venkataramani et al., 2019; Venkatesh et al., 2019). Using the
NGS genes as a signature, we first used addmoduleScore (with
“nbin” = 30) in Seurat to score each cell to measure its potential
to form NGS with neurons. Malignant cells with a score > 0 were
identified as NGS-positive cells, which indicates they probably form
NGS with neurons. Malignant cells with a score < 0 were identified
as NGS-negative cells, which indicates they probably do not form
NGS with neurons. By doing so, we divided malignant cells further
into NGS-positive (NGS+) cells and NGS-negative (NGS−) cells.

2.8 Identifying malignant cells related to the
worse survival time of glioma patients

We used the Scissor (v2.0) package to identify malignant cells
associated with survival time (Sun et al., 2021). We conducted Scissor
analysis for GSE131928, GSE70630, and GSE89567 by integrating the
scRNA-seq datasets with the TCGA datasets of GBM,
oligodendroglioma, and astrocytoma as follows (other scRNA-seq
datasets lack the corresponding TCGA datasets). First, expression
files and sample information of TCGA GBM and LGG were
downloaded through TCGAbiolinks (v2.25.3). The
oligodendroglioma and astrocytoma TCGA datasets are referred to
as LGG because they belong to grade II low-grade gliomas. Second,
TCGA samples without survival time and status were excluded. Third,
we matched TCGA samples with scRNA-seq samples by age based on
the following two considerations. The first one is that age is an
important prognostic factor in glioma (Corell et al., 2018; Kim et al.,
2021; Jia et al., 2022; Ostrom et al., 2022). For example, the age-adjusted
incidence rate of GBM increases from 1.25 per 100,000 people among
adults 35–34 years to 8.05, 12.99, and 15.13 among adults 55–65, 65–74,
and 75–84 years, respectively (Ostrom et al., 2022); a recent finding
revealed that the risk of mortality increases with age in a J-shaped
pattern (Jia et al., 2022). The second consideration is that due to the
limited samples in the three glioma scRNA-seq datasets, the age
distribution in these datasets exhibits considerable variation and
differs significantly from that of the TCGA samples. Specifically, the
20 GBM samples were between 52 and 78 years old; the 7 anaplastic
astrocytoma samples were between 24 and 47 years old; the
3 oligodendroglioma samples were aged 31, 35, and 67 years old,
respectively (Supplementary Table S1). In order to minimize the
confounding effects of the age and tumor subtype, only TCGA
samples matching corresponding scRNA-seq samples were included
in the following analysis. Thus, only TCGAGBMsamples aged between
52 and 78 were included for analyzing GSE131928; only TCGA
oligodendroglioma samples with 1p/19q codeletion and aged
between 30 and 40 or between 60 and 70 were included for
analyzing GSE70630; only TCGA anaplastic astrocytoma samples
with IDH1 mutation and aged between 24 and 47 were included for
analyzing GSE89567. Fourth, for each of the three glioma types, the
Scissor program was used to identify Scissor+ cells and Scissor− cells,
with the parameter settings “cutoff” = 0.2, “family” = “cox”, and
“alpha” = 0.001/0.002/0.08 for astrocytoma/GBM/oligodendroglioma.
These parameters ensured that the ratio of selected cells did not exceed

50% of the total analyzed cells. Scissor+ cells are associated with worse
survival, while Scissor− cells are associated with good survival (Sun et al.,
2021). Finally, we used the one-sided Fisher’s exact test to investigate
whether Scissor+ or Scissor− cells were enriched with NGS+ cells, and
p-value < 0.01 was defined as the significant level.

2.9 Detection of differentially expressed
genes in NGS+ cells

We used the FindMarkers function in Seurat to identify
differentially expressed genes (DEGs) in NGS+ cells against NGS−

cells with the parameter settings “min.pct” = 0, “logfc.thresholds” =
0.5, “test.use” = “wilcox”, and other parameters adopting the default
values). Genes with logFC > 0.5 and adjusted p-value < 0.01 were
defined as DEGs. To reveal what the Biological Process gene ontology
(GO) terms DEGs are related to, gene set enrichment analysis was
performed using the ClusterProfiler (v3.14.3) R package (with
default parameters, BH-adjusted p-value < 0.05) (Yu et al., 2012).

2.10 Prediction of transcriptional regulation
of NGS genes by lncRNAs

To analyze NGS gene regulation by lncRNAs, we jointly used two
methods on the transcriptome and genome levels, respectively. The first
was the computation of Bayesian correlation between each pair of
lncRNAs and NGS genes using the Baco. R function (with default
parameters) (https://github.com/dsancheztaltavull/Bayesian-
Correlations/blob/master/BaCo.R). Bayesian correlation is a robust
measure for correlated genes in scRNA-seq data (Sanchez-Taltavull
et al., 2020). The second was the prediction of lncRNA/DNA binding
using the LongTarget program (with default parameters, all
DBSs > 50 bp) (He et al., 2015; Lin et al., 2019). Many lncRNAs
can bind to specific DNA sequences and recruit DNA and histone
modification enzymes to the DNA binding sites. LongTarget predicts
DNA binding domains (DBDs) in lncRNAs and DNA binding sites
(DBSs) in DNA sequences simultaneously. We predicted the DBSs of
lncRNAs in the promoter regions (+3,500 bp ~−1,500 bp upstream and
downstream transcription start site) of NGS genes. If a lncRNA and an
NGS gene have a Bayesian correlation > 0.4 (adjusted p-value < 0.05)
and the lncRNA has a DBSwith binding affinity> 100 (about > 150 bp)
in the promoter region of the NGA gene, the lncRNA was assumed to
be able to regulate theNGS gene. The networked regulations ofmultiple
NGS genes by multiple lncRNAs were visualized using the Cytoscape
program (3.9.1).

2.11 Validation of the analysis methods and
results

We validated the lncRNA/DNA binding prediction using two
methods. First, we identified human-specific lncRNAs from the
13562 GENCODE-annotated human lncRNAs, predicted their DBSs
genome-wide using the LongTarget program (He et al., 2015; Lin et al.,
2019), used the CRISPR/Cas9 technique to knock out the predicted
DBDs in three human-specific lncRNAgenes in theHeLa cell line, RKO
cell line, and SK-MES-1 cell line, and performed RNA-seq before and
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after the DBD knockout, then analyzed DEGs in each cell line. Second,
the genome-wide DNA binding sites of NEAT1, MALAT1, and
MEG3 were experimentally identified using ChIRP-seq (West et al.,
2014; Mondal et al., 2015), we predicted the genome-wide DBSs of the
three lncRNAs (NEAT1, MALAT1, and MEG3, compared predicted
DBSs with the experimentally identified ones and examined whether
the two groups overlap significantly (Wen et al., 2022).

We validated the contribution of NGS+ cells to the poor survival
of glioma patients by performing two survival analyses. First,
expression files and sample information of TCGA GBM and
LGG were downloaded through TCGAbiolinks (v2.25.3). TCGA
samples without survival information were discarded. To remove
the confounding effect of sex and age, we set these factors as fixed
effects in the coxph function. Using the Scissor program (Sun et al.,
2021), we then identified malignant cells associated with patient
survival time. We used Fisher’s exact test to examine whether the
Scissor + cell group was predominantly composed of NGS + cells.
Second, to verify that lncRNAs involved in regulating NGS genes
influence survival time, we used the Cox proportional hazards model
(in the R package survival v3.2.7) to examine whether lncRNAs
regulating NGS genes correlate with survival time.

XIST is an important lncRNA and regulates many genes
genome-wide (Statello et al., 2021). We observed that XIST has
DBSs in 12 out of 15 NGS genes in the oligodendroglioma dataset.
To examine whether these DBSs could be determined by chance, we
conducted a permutation test. First, we predicted XIST’s DBSs
genome-wide. Of all the 45,515 annotated genes examined,
13,504 genes have DBSs. Second, we randomly sampled 15 genes
from the whole genome and calculated the ratio of genes having DBS
of XIST, repeated the process 1,000,000 times, and obtained an
empirical distribution of this ratio. Finally, we compared 12 out of
the 15 NGS genes with this distribution and obtained the p-value.

3 Results

3.1 NGS gene expression characterizes
glioma types, cell clusters, and patients

We downloaded nine scRNA-seq datasets of five gliomas from
the GEO website, including glioblastoma (GBM), diffuse H3K27M
glioma (H3K27M glioma), medulloblastoma (MB), 1p/19q
codeleted oligodendroglioma (oligodendrocyte or OD), and
IDH1-mutant anaplastic astrocytoma (astrocytoma or IDH1-
mutant AA) (Supplementary Table S1). We integrated NGS
genes in these datasets (Supplementary Table S2). Upon gene
annotations, these NGS genes are involved in microtube
assembly, synaptogenesis, neurotransmitter receptors, and
neuronal paracrine based on the experimental studies
(Venkataramani et al., 2019; Venkatesh et al., 2019; Zeng et al.,
2019).

For each dataset, we first identified normal cells using two
methods. The first method includes clustering cells into clusters,
identifying DEGs in each cluster, and checking whether DEGs in a
cluster are enriched in annotated marker genes of cell types collected
in the CellMarker database (Zhang et al., 2019). If DEGs in a cell
cluster were significantly enriched in the annotated marker genes of
a cell type, this cell cluster was defined as the cell type and identified

as a normal cell type (all cell types in the CellMarker database are
normal cells) (Figures 1A, B). In the medulloblastoma and
medulloblastoma PDX mouse models, no cell cluster was
identified as normal cells. The second method includes extracting
the properties of each identified normal cell cluster to refine normal
cell identification. We used a method to detect “binary markers” for
each normal cell cluster (Hodge et al., 2019). In this method, a binary
score ranging from 0 to 1 was computed to assess the exclusivity of a
DEG between clusters. A DEG in a cell cluster with a binary
score > 0.7 was defined as a binary marker of that cell cluster.
Upon each set of binary markers, all cells in a dataset (but not in any
identified cluster) were scored. If a cell was scored above a dataset-
specific cutoff, the cell was classified into the corresponding normal
cell cluster.

Then, we determined whether a cell was a malignant cell jointly
upon three criteria: a) It did not belong to any normal cell cluster, b)
it could not be defined as a normal cell when scored by binary
markers of normal cell clusters, and c) copy number analysis (CNA)
revealed that it underwent abnormal genome duplication. Since no
normal cells were identified in the medulloblastoma and
medulloblastoma PDX mouse models, all cell clusters were
malignant cells. In these gliomas, malignant cells can be divided
into multiple clusters (Figures 1A, B), and some malignant cell
clusters are present only in very few patients (Supplementary Table
S3). For example, malignant cells in GBM were divided into
14 clusters, with clusters 7, 8, 9, and 12 comprising cells from a
single patient. Thus, gliomas have high inter- and intra-tumor
heterogeneity, as previously reported (Patel et al., 2014; Neftel
et al., 2019).

Since gliomas are highly heterogenous, we next examined
whether NGS gene expression is highly heterogeneous. We found
that, generally, NGS genes were expressed tumor-specifically, with
distinct expression in different tumors and even in patients with the
same tumor. Nevertheless, the NGS genes PTPRS, MAP2, and
CADM1 were expressed in most malignant cells across these
gliomas (Figures 2A, B), consistent with the observed
neurological associations of these genes (Zhou et al., 2015;
Hendriks et al., 2018; Pan et al., 2020). To examine whether NGS
genes characterize malignant cells, we scored malignant cells upon
NGS gene expression and divided malignant cells into NGS-negative
(NGS−) and NGS-positive (NGS+) ones (Figure 1C). In each glioma,
the NGS score in malignant cells is significantly higher than the NGS
score in non-malignant cells (p-value = 3.664e-06), suggesting
reasonable identification of malignant and normal cells. The ratio
of NGS+ malignant cells varies not only among different types of
gliomas (Figure 2C) but also among different cell clusters
(Figure 2D). For example, the ratio of NGS+ cells in GBM in
clusters 4, 9, and 12 is much lower than the ratio in other
clusters (Figure 2D). Thus, different subsets of NGS genes
characterize glioma types, cell clusters, and aggression ability.

3.2 Dysregulated genes in malignant NGS+

cells are enriched in neurodevelopment-
and synapse-related GO terms

Based on our definition, the critical difference between NGS+

malignant and NGS− malignant cells is whether a malignant cell can
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form synapses with neurons. Thus, if our method of classifying
malignant cells into NGS+ and NGS− groups is valid, DEGs between
NGS+ and NGS− malignant cells should have an association with
synapse formation. To verify this, we first identified DEGs between
NGS+ and NGS− malignant cells in each glioma (Supplementary Table
S4), then applied gene set enrichment analysis to DEGs using the
ClusterProfiler program and the Gene Ontology (GO) database. DEGs
in all gliomas are significantly enriched in neurodevelopmental-related
GO terms, and DEGs in many gliomas are enriched in synapse-related
GO terms (Figure 3), supporting a strong association between neurons
and NGS+ malignant cells. In addition, different gliomas show
somewhat different GO terms and levels of enrichment, suggesting
differences in NGS formation in different gliomas. These results also
support the validity of classifying malignant cells into NGS+ and NGS−

cells.

3.3 LncRNAs transcriptionally regulate NGS
gene expression

As abundant lncRNA genes are expressed in the human brain, it
is sensible to conjecture that they also contribute to tumorigenesis in
the brain. We identified differentially expressed lncRNA genes
between NGS+ and NGS- malignant cells to reveal the
contribution. Multiple top differentially expressed lncRNA genes
(Supplementary Table S4), including LINC00599, MEG3, and
TTTY15, were identified in NGS+ malignant cells. We next
examined the tumor-specificity of lncRNA expression because
lncRNA gene expression is highly tissue-specific. Distinctively
dysregulated lncRNAs in gliomas include LOC150622 and
LINC00645 in glioblastoma, LOC100216479 in diffuse H3K27M
glioma, FLJ41350 and FTX in medulloblastoma, TPTEP1 and

FIGURE 1
tSNE plots show the clustering of cells in the 9 glioma datasets. OD, IDH1-mutant AA, H3K27M glioma, MB, MB PDX, GBM, and p-GBM indicates 1p/
19q codeleted oligodendroglioma, IDH1-mutant anaplastic astrocytoma, diffuse H3K27M glioma,medulloblastoma, patient-derived xenografts model of
medulloblastoma, glioblastoma, and pediatric GBM, respectively. Each glioma consists of multiple cell clusters. (A) The distribution of cell clusters
(numbers indicate different clusters). (B) The distribution of malignant and non-malignant cells. (C) The distribution of NGS+ malignant cells, NGS−

malignant cells, and non-malignant cells.
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LOC100144595 in astrocytoma, and LOC100216545, FAM66B, and
LOC100499405 in oligodendroglioma.

To obtain evidence supporting that dysregulated lncRNAs
regulate NGS gene expression, we used two methods to examine
the relationships between lncRNAs and NGS genes. On the
transcriptome level, we calculated the pairwise Bayes
correlation between all differentially expressed NGS genes
and all differentially expressed lncRNAs. On the genome
level, we used the LongTarget program to predict
differentially expressed lncRNAs’ DNA binding sites (DBS) in
the promoter regions of differentially expressed NGS genes (He
et al., 2015; Lin et al., 2019). Jointly upon the two methods,
28 lncRNAs were identified to regulate NGS genes in gliomas
(Supplementary Table S5). The most notable lncRNA is
LINC00599, which has DBSs in many NGS genes in most
gliomas, including GABBR1, NRCAM, PTPRS, GLRB, GRIA4,
GRIK3, and MAP2 (Figures 4A–G), and the most notable NGS
gene is MAP2, which is associated with microtube assembly and
regulated by multiple lncRNAs through the same DBS
(Figure 4H) (Osswald et al., 2015).

3.4 NGS gene regulation by lncRNAs is
species- and tumor-specific

Many studies reported tissue-specific expression of lncRNA
genes in tumors (Mattioli et al., 2019; Liu et al., 2021), suggesting
their tumor-specific regulatory functions. To examine whether
tumor-specific lncRNA gene expression causes tumor-specific
NGS gene expression, we generated the regulatory networks of
lncRNAs and NGS genes in different gliomas based jointly on the
Bayes correlation and predicted lncRNA-target NGS gene
relationship (Figure 5). First, 61% of lncRNAs regulate NGS
genes in one specific glioma (Supplementary Table S5),
suggesting that most lncRNAs regulate NGS genes tumor-
specifically. Second, some essential NGS genes such as MAP2
are regulated by different lncRNAs in different gliomas;
meanwhile, important lncRNAs such as LINC00599 regulate
different NGS genes in different gliomas (Figure 5). Third, an
NGS gene can be regulated by different lncRNAs in humans and
mice. Notable examples are MAP2, PTPRS, and INA which are
expressed in MB and mouse MB PDX; these genes are regulated

FIGURE 2
NGS gene expression in different gliomas, GBM samples, and cell clusters. (A)NGS gene expression in different gliomas. (B)NGS gene expression in
different GBM samples. In (A, B), the color bar indicates the percentage of expressed cells. (C) The percentages and numbers of NGS+ andNGS−malignant
cells in different gliomas. (D) The percentages of NGS+ cells in the 13 clusters of malignant GBM cells.
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by multiple lncRNAs in human MB but only by LINC00461 in
mouse MB PDX. Similarly, a lncRNA can target different NGS
genes in humans and mice. We found that LINC00461 regulates
NGS genes in mouse MB PDX but does not regulate any NGS
gene in human gliomas. These suggest that NGS gene regulation
by lncRNAs relies on specific transcriptional landscapes, and
such landscapes may critically characterize patterns of NGS gene
regulation. In support of this interpretation, Miat was found to
regulate the NGS gene Gria2 in transgenic mouse MB, but MIAT
(the human orthologue of Miat) was found not to regulate any
NGS genes in these glioma datasets (Supplementary Table S5).
Fourth, NGS genes in mouse MB PDX showed similar expression
levels to NGS genes in human MB; however, NGS genes in mouse
transgenic MB showed different expression levels from NGS
genes in human GBM (Supplementary Table S6). Fifth, the
identified networks indicate that LINC00599 is a critical
lncRNA regulating NGS genes in multiple gliomas, with
LINC00599-MAP2 and LINC00599-NRCAM being the core
lncRNA-NGS gene pairs. These results suggest that NGS gene
regulation by lncRNAs is highly species- and tumor-specific, and
these lncRNAs provide a new class of targets for glioma
treatment.

3.5 Simian-specific lncRNAs are more
involved in NGS gene regulation

Clade-specific lncRNAs, such as simian- and rodent-specific
ones, are evolutionarily younger than lnRNAs conserved in
mammals. Since simian-specific lncRNAs in the human
genome have contributed specifically to the evolution of the
human brain (Derrien et al., 2012; Briggs et al., 2015; Rashighi
and Harris, 2017; Zimmer-Bensch, 2019), it is sensible to
conjecture that these lncRNAs may also greatly affect brain
tumorigenesis compared with lncRNAs conserved in mammals.
To test this conjecture, we examined the conservation of the
28 lncRNAs that regulate NGS genes in these gliomas
(Supplementary Table S5). Upon the whole-genome alignments
in the UCSC Genome Browser (https://genome.ucsc.edu) and the
simian-specific lncRNAs in the lncRNA database LongMan
(http://www.gaemons.net/LongMan) (Lin et al., 2019), we
found that 10 (35.7%) of the 28 lncRNAs are conserved in
mammals (i.e., having orthologues in non-primate mammals)
but 18 (64.3%) of the 28 lncRNAs are simian-specific
(i.e., having orthologues only in marmoset, macaque, and
chimpanzee) (Figure 6A). Additionally, compared with the

FIGURE 3
The enriched gene sets of DEGs in different gliomas (A–F). DEGs are enriched in neurodevelopmental-related GO terms in all gliomas (A–F) and
synapse-related GO terms in four gliomas (B,C,D,F). These results support the importance of dysregulated NGS genes for gliomas.
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ratio of all simian-specific lncRNAs to all ENCODE-annotated
human lncRNAs, the ratio of NGS gene regulation-related simian-
specific lncRNAs to all NGS gene regulation-related lncRNAs is
significantly higher (p-value = 0.047, Fisher’s exact test). This
suggests that simian-specific lncRNAs not only affect
tumorigenesis in the brain but also determine the differences
of gliomas in humans and mice. This lends an explanation for the
finding that NGS gene regulation by lncRNAs is highly species-
specific. In accordance, in the 17 (61%) lncRNAs that regulate
NGS genes in one glioma (Figure 6B), 11 are simian-specific.

Many human diseases have distinct evolutionary roots in the
genome (Maxwell et al., 2014; Benton et al., 2021), and the samemay
be true for brain tumors. By checking lncRNAs regulating NGS
genes in different glioma, we found that most lncRNAs in diffuse
H3K27M glioma are simian-specific and most lncRNAs in OD are
conserved in mammals (Figure 6C). This probably highlights
different evolutionary origins of epigenetic regulation of genes in
different types of gliomas.

3.6 Validation of analysis methods and
results

A key component of the above human/mouse comparative
pan-gliomas analyses is analyzing the regulation of NGS genes by
lncRNAs through predicting DBDs in lncRNAs and their DBSs in
NGSs genes. Thus, we validated DBD/DBS prediction in three
ways. First, in a related study, we identified human-specific
lncRNAs from the 13562 GENCODE-annotated human
lncRNAs (http://www.gaemons.net/LongMan) and predicted
the genome-wide DBSs of these lncRNAs (He et al., 2015; Lin
et al., 2019). We used the CRISPR/Cas9 technique to knock out
the predicted DBDs in three human-specific lncRNA genes in the
HeLa, RKO, and SK-MES-1 cell lines and performed RNA-seq
before and after the DBD knockout. Differential gene expression
analysis revealed that the |fold change| of target genes (DEGs
whose promoter regions contain DBSs of these lncRNAs) was
significantly larger than the |fold change| of non-target genes

FIGURE 4
The predicted DNA binding sites (DBSs) of lncRNAs in the promoter regions of differentially expressed NGS genes. Panels are snapshots of the UCSC
Genome Browser wherein predicted DBSs were uploaded as a custom track. “TTS”means triplex-targeting sites, and a set of overlapping TTSs forming a
peak was a DBS. (A–G) The DBSs of LINC00599 in the promoter region of multiple differentially expressed NGS genes. The peaks in each panel’s
“LINC00599 TTS” track indicate LINC00599s DBSs. (H) The DBSs of FLJ46906, LINC00599, LIC00673, LOC150622, and LOC441204 in the
promoter region of MAP2.
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(DEGs whose promoter regions do not contain DBSs of these
lncRNAs) (one-sided Mann-Whitney test, p-value = 3.1e-72, 1.
49e-114, and 1.12e-206 for RP13-516M14.1, RP11-426L16.8, and
SNORA59B) (see Data availability statement). These results
suggest that the knockout of DBDs caused the changed
expression of target genes. Second, since the genome-wide
DNA binding sites of NEAT1, MALAT1, and MEG3 were
experimentally identified using ChIRP-seq (West et al., 2014;
Mondal et al., 2015), we predicted genome-wide DBSs of NEAT1,
MALAT1, and MEG3, compared predicted DBSs with the
experimentally identified one, and found that the two groups
of DBSs overlap well (Wen et al., 2022). Third, the LongTarget
program uses a variant of the Smith-Waterman algorithm to
identify all local alignments between a pair of RNA and DNA
sequences, thus identifying DBDs and DBSs simultaneously. We
computed the likelihood that an alignment could be generated by
chance. According to the alignment algorithm, a DBS of >140 bp
is extremely unlikely to be generated by chance (p < 8.2e-19 to 1.
5e-48). These results support the analysis of NGS gene regulation
by lncRNAs.

Malignant cells in gliomas hijack potassium currents to
promote their aggression and proliferation, suggesting that
glioma patients with substantial NGS formation should have a
worse prognosis. Therefore, we performed two survival analyses

of glioma patients. First, we downloaded the TCGA data of GBM,
oligodendroglioma, and astrocytoma (the three gliomas have
TCGA datasets) and identified malignant cells associated with
patient survival time using the Scissor program (Sun et al., 2021).
Scissor was developed to associate cells in scRNA-seq data with
some trait (here, the survival time) in the corresponding TCGA
data. According to the usage of Scissor, Scissor+ cells were defined
as cells associated with worse survival, while Scissor− cells were
defined as cells associated with good survival. We used Fisher’s
exact test to examine whether the Scissor+ cell group was
predominantly composed of NGS+ cells. Compared with the
malignant cell group as the background, the Scissor+ cell
group is significantly enriched in NGS+ cells, while the
Scissor− cell group is significantly lacking in NGS+ cells in
GBM, oligodendroglioma, and astrocytoma (Figures 6D–F;
p-value = 1.6e-4, 4.4e-19, and 9.9e-4, respectively).
Specifically, the Scissor program identified 189 Scissor+ cells
(including 55 NGS− cells and 134 NGS+ cells) and
2064 Scissor− cells (including 1102 NGS− cells and 962 NGS+

cells) in GBM, 713 Scissor+ cells and 5 Scissor− cells in
oligodendroglioma, and 730 Scissor+ cells and 189 Scissor−

cells in astrocytoma (Figures 6D–F). In line with the
relationship between NGS formation and survival time, these
results support that NGS+ cells contribute to the worse survival of

FIGURE 5
Networks of NGS gene regulation by lncRNAs based jointly on Bayes correlation and lncRNA-target gene relationship. (A–G) The networks in GBM
(A), MB (B), MB PDX (C), p-GBM (D), IDH1-mutant AA (E), OD (F), and H3K27M glioma (G).
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glioma patients. Second, to verify that lncRNAs involved in
regulating NGS genes influence survival time, we used the Cox
proportional hazards model (in the R package survival v3.2.7)
and lncRNAs to perform survival analysis. The analysis unveiled
that 5 of 28 lncRNA potentially regulating NGS genes were
correlated with survival. Among them, the lower
LINC00599 expression and higher XIST expression were
significantly correlated with worse survival of low-grade
glioma patients (Supplementary Table S7). This result is
supported by a related study (Fu et al., 2019).

Finally, we conducted a permutation test using the lncRNA
XIST and its target NGS genes in the oligodendroglioma dataset to
check whether NGS gene regulation by lncRNAs could occur by
chance. XIST has DBSs in 12 out of 15 NGS genes in the
oligodendroglioma dataset and has DBSs in 13,504 genes out of
the 45,515 Ensembl-annotated genes. We randomly sampled
15 genes from the whole genome, calculated the ratio of genes
having DBS of XIST, repeated the process 1,000,000 times, obtained
an empirical distribution of this ratio, and compared 12 out of the
15 NGS genes with the obtained distribution. The result suggests

that NGS gene regulation by XIST unlikely occurs by chance
(p-value = 8e-5, permutation test).

4 Discussion

Gliomas are the most lethal tumors in humans. NGS in gliomas
and brain-metastatic breast cancers were recently found to promote
tumor progression (Venkataramani et al., 2019; Venkataramani
et al., 2022b; Venkatesh et al., 2019; Zeng et al., 2019). This
finding greatly improves the understanding of why gliomas are
highly aggressive and highlights the potential of targeting NGS as a
treatment for gliomas. While NGS genes have drawn increasing
attention (Ji et al., 2020; Lin et al., 2021), some questions remain
unclear, including whether NGS gene expression shows species- and
tumor-specificity and whether lncRNAs regulate the specificity in a
species-specific manner. Since targeting NGS genes (which have
wide functions) may cause undesired side effects, and researchers
use PDX and transgenic mouse models to study gliomas, answering
the two questions and exploring targetable lncRNAs are important.

FIGURE 6
NGS regulation by lncRNAs has significant cross-species differences. (A) Conserved and simian-specific lncRNAs that regulate NGS genes in
gliomas. (B) The percentages of lncRNAs that regulate NGS genes in 1, 2, 3, and 5 gliomas. (C)Numbers of conserved and simian-specific lncRNAs in each
glioma. (D–F) Compared with the malignant cell group (as the background), the Scissor+ cell group is significantly enriched in NGS+ cells, while the
Scissor− cell group is significantly lacking in NGS+ cells, in GBM (D), oligodendroglioma (E), and IDH1-mutant anaplastic astrocytoma (F) (p-value =
1.6e-4, 4.4e-19, and 9.9e-4, respectively, Fisher’s exact test).
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This study addresses these questions by checking NGS gene
expression and regulation by lncRNAs in multiple gliomas in
humans and mice. The main results are that lncRNAs regulate NGS
genes highly species- and tumor-specifically and that simian-specific
lncRNAs in humans are more involved in NGS gene regulation than
conserved lncRNAs. These findings, with Supplementary Material,
suggest that lncRNAs are potential tumor-specific targets for human
gliomas. To verify that lncRNAs involved in regulating NGS genes
influence the survival time of glioma patients, we combined scRNA-seq
data and TCGA data to perform survival analyses using two methods.
These analyses generated consistent results.

Two studies examined 17 and 231 synapse-related genes in human
gliomas (Ji et al., 2020; Lin et al., 2021). Compared with them, our cross-
species pan-gliomas analysis focused on 34 NGS genes collected from
the literature. Despite using different genes, all of these studies
demonstrate the prognostic values of NGS genes. Previous studies
have also revealed that thousands of new lncRNAs have emerged
during primate nervous system evolution and that nearly half of the
identified lncRNAs are specifically expressed in the human brain
(Derrien et al., 2012; Rashighi and Harris, 2017; Zimmer-Bensch,
2019). Of interest, we found that simian-specific lncRNAs are more
involved inNGS gene regulation than lncRNAs conserved inmammals.
Thus, simian-specific lncRNAs contribute not only to the evolution of
the brain but also to the development of brain tumors.We also observed
that different types of gliomas may have different evolutionary origins.
For instance, most lncRNAs regulating NGS genes in diffuse H3K27M
glioma are simian-specific, while most lncRNAs regulating NGS genes
in OD are conserved in mammals. This finding supports the recent
viewpoint that many human diseases have distinct evolutionary roots in
the genome (Maxwell et al., 2014; Benton et al., 2021).

Some comparative cancer studies suggested conservation between
human and mouse tumors (Aytes et al., 2014; Onken et al., 2014; Woo
et al., 2021). However, many drugs tested successfully in mice failed in
human clinical trials (Gould et al., 2015). We observed that, although
NGS genes show a similar expression pattern in PDX mouse models,
which is consistent with the finding that more than 80% of glioma cells
in PDXmousemodels had tumormicrotubes (Drumm et al., 2020), the
patterns of NGS gene expression in transgenic mouse glioma models
and human gliomas are poorly comparable. When it comes to the
regulation of NGS gene by lncRNAs, neither PDX mouse models nor
transgenic mouse models share commonalities with human gliomas.
This agrees with the finding that phenotypic differences between
human and mouse orthologous genes are mainly caused by the
evolutionary rewiring of regulatory networks (Ha et al., 2022). In
brief, this study reveals that lncRNAs regulate NGS genes highly
species- and tumor-specifically and that simian-specific lncRNAs are
substantially involved in human gliomas. These findings help rational
design of mouse models for glioma studies (Landgraf et al., 2018), and
suggest that caution is needed when interpreting discoveries from
glioma studies using PDX and transgenic mouse models.

5 Conclusion

NGS genes are regulated by lncRNAs and this regulation is
highly species- and tumor-specific. NGS gene expression and
regulation in human gliomas are quite different from those in

PDX and transgenic mouse models. Simian-specific lncRNAs
with tumor-specific expression and function provide a new class
of potential targets for glioma treatment.
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