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Objectives: Bone immune disorders are major contributors to osteoporosis
development. This study aims to identify potential diagnostic markers and
molecular targets for osteoporosis treatment from an immunological perspective.

Method: We downloaded dataset GSE56116 from the Gene Expression Omnibus
database, and identified differentially expressed genes (DEGs) between normal
and osteoporosis groups. Subsequently, differentially expressed immune-related
genes (DEIRGs) were identified, and a functional enrichment analysis was
performed. A protein-protein interaction network was also constructed based
on data from STRING database to identify hub genes. Following external validation
using an additional dataset (GSE35959), effective biomarkers were confirmed
using RT-qPCR and immunohistochemical (IHC) staining. ROC curves were
constructed to validate the diagnostic values of the identified biomarkers.
Finally, a ceRNA and a transcription factor network was constructed, and a
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment
analysis was performed to explore the biological functions of these diagnostic
markers.

Results: In total, 307 and 31 DEGs and DEIRGs were identified, respectively. The
enrichment analysis revealed that the DEIRGs are mainly associated with Gene
Ontology terms of positive regulation of MAPK cascade, granulocyte chemotaxis,
and cytokine receptor. protein–protein interaction network analysis revealed
10 hub genes: FGF8, KL, CCL3, FGF4, IL9, FGF9, BMP7, IL17RA, IL12RB2,
CD40LG. The expression level of IL17RA was also found to be significantly
high. RT-qPCR and immunohistochemical results showed that the expression
of IL17RAwas significantly higher in osteoporosis patients compared to the normal
group, as evidenced by the area under the curve Area Under Curve of 0.802. Then,
we constructed NEAT1-hsa-miR-128-3p-IL17RA, and SNHG1-hsa-miR-128-3p-
IL17RA ceRNA networks in addition to ERF-IL17RA, IRF8-IL17RA, POLR2A-IL17RA
and ERG-IL17RA transcriptional networks. Finally, functional enrichment analysis
revealed that IL17RA was involved in the development and progression of
osteoporosis by regulating local immune and inflammatory processes in bone
tissue.

Conclusion: This study identifies the immune-related gene IL17RA as a diagnostic
marker of osteoporosis from an immunological perspective, and provides insight
into its biological function.
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1 Introduction

Osteoporosis is the most common metabolic bone disease,
characterized by reduced bone density and deterioration of bone
tissue microarchitecture, increases bone fragility and the risk of
fractures, leading to significant mortality (Chandra and Rajawat,
2021). Osteoporosis primarily affects postmenopausal women and
men over the age of 50 (Borgström et al., 2020). The pathogenesis of
osteoporosis exhibits noteworthy disparities between genders. In women,
age-related bone loss and decreased estrogen secretion after menopause
are the primary contributors to this condition (Shih et al., 2019). Estrogen
plays a pivotal role in augmenting bone cell activity, inhibiting bone
resorption, and averting calcium loss from bones. Moreover, estrogen
restrains osteoclast formation and induces apoptosis in these cells, thereby
curtailing bone resorption. In the absence of sufficient estrogen levels,
osteoclast function heightens, leading to accelerated bone loss and the
eventual onset of osteoporosis (Zhou et al., 2001). In men, the principal
causes of osteoporosis include advancing age, prolonged glucocorticoid
use, and declining testosterone levels (Vilaca et al., 2022). With age,
inadequate testosterone levels impede the proliferation and differentiation
of osteoblasts while intensifying osteoclast activity. Consequently, bone
resorption escalates, resulting in subsequent loss of bone mass (Diab and
Watts, 2021). It is evident that testosterone plays a pivotal role in the
development of osteoporosis among elderly men.

Dual-energy x-ray absorptiometry (DXA) is considered the gold
standard for diagnosing osteoporosis (Carey et al., 2022). Nonetheless, it
has limitations when it comes to detecting early-stage bone loss. Early
diagnosis and timely intervention are beneficial for preventing the
development of osteoporosis (Sakka, 2022). In recent years, numerous
studies have demonstrated that CUL1, PTEN, STAT1, MAPKAPK2,
RARRES2, FLNA, STXBP2, miR-340-5p, and miR-506-3p could
potentially serve as biomarkers for osteoporosis (Wang et al., 2022;
Zhao Y. et al., 2022; Lu et al., 2023; Yuxuan et al., 2023). However, the
majority of these molecular markers have not yet been validated using
clinical samples. Thus, their potential for clinical applications remain
limited. Therefore, there is still a need to find effective biomarkers for
osteoporosis.

Osteoclasts, originating from hematopoietic cells of the myeloid
lineage, play a crucial role in bone resorption (Thiolat et al., 2014).
These cells undergo differentiation from osteoclast precursors when
stimulated by M-CSF and RANKL (Zheng et al., 2014). Osteoblasts
play a fundamental role in the synthesis of mineralized bone and are
derived from a mesenchymal progenitor cell (Debnath et al., 2018).
Multiple immune cells are involved in the regulation of osteoclast
and osteoblast homeostasis. Th17 cells induce osteoclastogenesis by
IL-17, Th1 cells activate osteoclast function through TNF-α
(Adamopoulos and Bowman, 2008; Liu et al., 2011). Conversely,
Sato et al. (2006) demonstrated that Th2 cells can impede osteoclast
formation via IL-4. DCs enhance osteoclast activity by interacting
with T cells through the RANK-RANKL signaling pathway
(Santiago-Schwarz et al., 2001). Rivollier et al. (2004) revealed
that DCs can transdifferentiate into osteoclasts in vitro in the
presence of M-CSF and RANKL. Furthermore, B cells secrete
RANKL, promoting osteoclast function (Kanematsu et al., 2000).
Conversely, ILC2 cells suppress osteoclast formation through the
release of IL-4 and IL-13 (Omata et al., 2020). Treg cells can inhibit
monocyte differentiation into osteoclasts (Luo et al., 2011).
Neutrophils hinder bone formation by affecting osteoblast

function (Brunetti et al., 2013). M2 macrophages promote
osteoblast differentiation (Vi et al., 2015). Conversely,
M1 macrophages leads to bone resorption by increasing
osteoclast activity and suppressing osteoblast-mediated bone
formation (Bastian et al., 2011). In vitro studies have
demonstrated the direct enhancement of osteoblast function by
Treg cells (Lei et al., 2015). Additionally, B cells activate NF-κB
signaling pathways to inhibit the differentiation of mesenchymal
precursor cells into osteoblasts (Sun et al., 2018). Therefore,
exploring the molecular mechanisms of osteoporosis from an
immune perspective and developing new targets for
immunotherapy is of great relevance for osteoporosis treatment.

Here, we performed a differential gene expression analysis on an
osteoporosis microarray dataset downloaded from the Gene
Expression Omnibus (GEO) database, and identified the
intersection of differentially expressed genes (DEGs) with
immune-related genes (IRGs) to determined differentially
expressed immune-related genes (DEIRGs). Then, we constructed
a protein–protein interaction (PPI) network to identify hub genes,
and finally determined the immune-related gene IL17RA as a
potential biomarker for osteoporosis after validating it in another
dataset (GSE35959). RT-qPCR and immunohistochemical (IHC)
staining were performed, and then ROC curves were constructed to
verify its diagnostic value. In addition, we also explored the
biological function of IL17RA by constructing ceRNA and
transcription factor (TF) networks in addition to a Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis to further elucidate the molecular
mechanisms of osteoporosis in which IL17RA is involved.

2 Materials and methods

2.1 Microarray data

mRNA [GSE56116, https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE56116, GSE35959 (Benisch et al., 2012)], and miRNA
microarray datasets [GSE201543 (Zhao S.-L. et al., 2022)] were
downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/) by
GEOquery package (Davis and Meltzer, 2007). GSE56116 was
obtained from a GPL4133 Agilent-014850 Whole Human Genome
Microarray 4 × 44 K G4112F. GSE35959 was obtained from a
GPL570 (HG-U133_Plus_2) Affymetrix Human Genome U133 Plus
2.0 Array and GSE201543 was obtained from a GPL20712 Agilent-
070156 HumanmiRNA (miRNA version). The probes were labeled with
gene symbols, thenmultiple probes corresponding to the same gene were
randomly selected to remove duplicates, and finally the gene expression
matrix was obtained. GSE56116 contained 3 normal (healthy control)
and 10 osteoporosis samples (4 kidney Yin deficiency, 3 kidney Yang
deficiency, 3 non-kidney deficiency). GSE35959 contained 14 normal and
5 osteoporosis samples. GSE201543 contained 4 normal and
6 osteoporosis samples. GSE56116 (3 non-kidney deficiency
osteoporosis samples and 3 normal samples), GSE35959, and
GSE201543 were used as the training, validation, and miRNA
validation datasets, respectively. Data of IRGs was downloaded from
ImmPort database (https://www.immport.org/shared/), and finally
2,499 immune-related genes were obtained (Supplementary Table S1).
The flow chart followed this study is shown in Figure 1.
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2.2 Identification of DEIRGs

The data set was normalized using the normalizeBetweenArrays
function of the limma package (Ritchie et al., 2015). The sample
correction is visualized by box plots, and the clustering between
sample groups was visualized using PCA plots. Screen for DEGs
between patients and controls using the limma package, and p value
of lower than 0.05 and [log2 fold change (FC)] equal to or higher
than 1 were set as the threshold values for DEG identification. After
that, the intersection of DEGs and IRGs was determined to obtain
list of DEIRGs. The results were visualized using the ggplot2
(Wickham, 2009) and the VennDiagram packages (Chen and
Boutros, 2011). The results of DEGs and DEIRGs were visualized
using the ggplot2 package for volcano plots and the Complex
Heatmap package (Gu et al., 2016) for heat maps.

2.3 GO and KEGG enrichment analyses of
DEIRGs

GO and KEGG functional enrichment analysis of DEIRGs were
conducted using the cluster Profiler package (Yu et al., 2012). The
results were visualized using the ggplot2 package. The human
genome was used as a background reference, and a p.adj of lower
than 0.05 was set as cut-off.

2.4 Construction of PPI network and
selection of hub genes

The PPI network of DEIRGs was constructed using the STRING
database (https://string-db.org/) (Szklarczyk et al., 2019). Interaction
scores higher than 0.4 were considered significant. The results were
visualized using Cytoscape software (Version: 3.9.1). Top 10 genes were
determined as hub genes using the cytoHubba plugin and on the
maximum correlation criterion algorithm.

2.5 External validation of hub genes

To identify effective biomarkers of osteoporosis, differences in
hub gene expression levels between the osteoporosis and the normal
groups were validated using another dataset (GSE35959).

2.6 Construction of ceRNA network

MiRNAs were predicted using four different databases [miRDB
(https://mirdb.org/mirdb/index.html), TargetScanHuman (https://www.
targetscan.org/vert_80/), TarBase (https://dianalab.e-ce.uth.gr/html/
diana/web/index.php?r=tarbasev8) and miRWalk (http://mirwalk.
umm.uni-heidelberg.de/)]. Furthermore, lncRNA-miRNA relationships

FIGURE 1
Flow chart of the study.
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of predicted hub genes-associatedmiRNAswere obtained by overlapping
results from starBase (http://starbase.sysu.edu.cn/) and DIANA-LncBase
v3 (https://diana.e-ce.uth.gr/lncbasev3). The overlap was visualized by
ggplot2 and VennDiagram packages. Finally, a competitive endogenous
RNA (ceRNA) network regulating hub genes was constructed by using
Cytoscape software (Version: 3.9.1).

2.7 Construction of TF network

Prediction of hub genes and their TFs were performed by TF-
Marker (http://bio.liclab.net/TF-Marker/) and GRNdb (http://www.
grndb.com/), the overlap was visualized by ggplot2 and
VennDiagram packages. A TF network regulating hub genes was
constructed by using igraph package (Csardi and Nepusz, 2006).

2.8 Study subjects

Peripheral blood samples were obtained from nine patients with
osteoporosis and nine healthy adults who were hospitalized in the
Department of Spine Surgery at Xi’an Daxing Hospital, affiliated with
Yan’an University, and underwent BMD testing between January
2023 and April 2023 (Table 1). Those with a history of long-term use
of drugs affecting bone metabolism, endocrine system disorders, spinal
tumors or spinal tuberculosis were not included in this study. Bone tissue
samples were obtained from twelve patients with osteoporotic
compression fractures who were hospitalized for vertebroplasty
surgery, with mild osteoporosis (−3. 5 < T-score ≤ −2. 5) and severe
osteoporosis (T-score ≤ −3. 5), six in each group (Table 2). All patients
underwent MRI and DXA of the spine, which confirmed the presence of
fresh fractures and osteoporosis. Inclusion criteria were as follows: 1)
age ≥50 years, BMD T-score ≤ −2.5; 2) vertebral fragility fracture, biopsy
routinely performed during vertebroplasty. Exclusion criteria were as
follows: previous long-term use of drugs affecting bone metabolism,
presence of endocrine system diseases, spinal tumors and spinal
tuberculosis. The diagnosis of osteoporosis was confirmed based on
the classifcation criteria of theWorld Health Organization (WHO) based
on T-score of BMD testing (Yoshimura et al., 2022): T-score ≥ −1.0 was
considered normal bone mass, −2.5 < T-score < −1.0 was considered
decreased bone mass, and T-score ≤ −2.5 was considered osteoporosis.
All included subjects were informed of the medical record review and

study design and signed consent documents before data collection. The
Ethics Committee of the Xi’an Daxing Hospital, affiliated with Yan’an
University approved and reviewed the study protocol.

2.9 Peripheral blood collection

Five milliliters peripheral blood samples were collected the
morning following an overnight fast. The serum was obtained
following centrifugation (3,000 r/min, 5 min) of blood samples
and submitted for bone metabolism marker detection. Cell
sediment was collected for RNA extraction. All samples were
frozen at −80°C until analysis.

2.10 Bone tissue sample acquisition

The patient was placed in the prone position, and a 0.5–1 cm piece
of cancellous bone tissue was drilled using a 14G bone biopsy ring
perched on the fracture area within the vertebral body under local
anesthesia via the arch root approach. The bone tissue was fixed in 10%
neutral-buffered formalin for 1 week, followed by routine decalcification,
dehydration, and paraffin embedding for subsequent studies.

2.11 BMD measurements

BMD measurements of the lumbar spine were performed using
DXA (QDR X-Ray Bone Densitometer, Hologic, United States). All
data were measured by the same group of imaging physicians in
strict accordance with the specifications for measuring BMD
by DXA.

2.12 RT-qPCR analysis

Total RNA was extracted using RNA Extraction Solution (G3013,
Servicebio, Wuhan, China), and RNA concentration and purity were
measured by Nanodrop 2000 spectrophotometer (Thermo Scientific,
Waltham,United States). TheRNA sampleswere reverse transcribed into
cDNA using a reverse transcription kit (G3337, Servicebio, Wuhan,
china), and the cDNA was used as a template to amplify the IL17RA
gene. The reaction was performed via 40 amplification cycles using the
following protocol: Denaturation at 95°C for 30 s, annealing at 60°C for
30 s, extension at 72°C for 60 s. Samples were analyzed in triplicate, the
mRNA expression levels of IL17RAwas calculated by the 2−ΔΔCTmethod,
andGAPDHwas used as internal reference. The sequences of the primers
are listed in Table3.

2.13 HE and IHC staining

The wax blocks were placed in a paraffin slicer for continuous
sectioning, with each section having 4 μm thickness. HE staining
was performed using HE staining solution (G1003, Servicebio,
Wuhan, China). For IHC, paraffin tissue sections were
deparaffinized with xylene and rehydrated with an alcohol
gradient and water. Sections were incubated with primary

TABLE 1 Study subject demographics of peripheral blood.

Characteristics Normal Osteoporosis p Value

n 9 9

Gender, n (%) 1.000

Female 5 (27.8%) 5 (27.8%)

Male 4 (22.2%) 4 (22.2%)

Age (year) 56.11 ± 9.35 63 ± 11.12 0.174

BMI (kg/m2) 24.63 ± 3.33 23.65 ± 2.37 0.482

BMD (g/cm2) 0.98 ± 0.13 0.73 ± 0.08 < 0.001

T-score −0.87 ± 1.13 −3.07 ± 0.58 < 0.001
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antibodies IL17RA (Catalogue number: DF3602, diluted 1:100,
Affinity), at room temperature for 1 h and biotin-labelled
secondary antibodies for 30 min, and then stained with DAB
peroxidase substrate kit (G1212, Servicebio, Wuhan, China).
Finally, washed with water and counterstained with
haematoxylin. The results were observed and photographed by
an microscope (Eclipse C1, Nikon, Japan).

2.14 Statistical analysis

All data processing and analysis were conducted using R
software (version 4.2.1). RT-qPCR were repeated three times, and
data were represented as the mean ± SD. Normality was tested using
the Shapiro-Wilk normality test and chi-squaredness was tested
using Levene’s test. Student’s t-test or Wilcoxon rank sum test was
used to determine the significance of difference between two groups.
Correlation coefficients were calculated using Spearman correlation
analysis. ROCs were used to evaluate AUCs and predictive abilities.
A p value lower than 0.05 was considered statistically significant.

3 Results

3.1 Identification of DEIRGs

The median, upper and lower quartiles, maximum and
minimum values of each sample gene were significantly close to
each other upon normalization of GSE56116 data (Supplementary
Figure S1A, B). However, PCA revealed that the centers of the
osteoporosis group were farther apart than those of the control
group, indicating significant differences in gene expression between
the two groups (Supplementary Figure S1C, D). Using a p value of
lower than 0.05 and a [log2 fold change (FC)] equal to or higher than
1 as the threshold levels, we identified 307 DEGs, including 94 and

213 significantly up- and down-regulated genes, respectively
(Supplementary Table S2). Figures 2A, B show results in the
form of volcano plots and heat maps (Figures 2A, B). The
intersection of DEGs and IRGs included 31 genes (DEIRGs)
(Figure 2C; Supplementary Table S3), including 11 and 20 up-
and down-regulated genes, respectively (Figure 2D).

3.2 Functional enrichment analyses of
DEIRGs

We performed GO and KEGG enrichment analysis to
investigate the functions of DEIRGs. In the GO analysis,
biological processes (BPs), cell components (CCs), and molecular
functions (MFs) were distinguished. The BPs included regulation of
chemotaxis, positive regulation of MAPK cascade, granulocyte
chemotaxis, cell chemotaxis and granulocyte migration. CCs
included clathrin−coated endocytic vesicle membrane,
clathrin−coated endocytic vesicle, clathrin−coated vesicle
membrane, serine−type peptidase complex and semaphorin
receptor complex. Finally, MFs included signaling receptor
activator activity, receptor ligand activity, growth factor activity,
fibroblast growth factor receptor binding and growth factor receptor
binding. KEGG analysis showed that DEIRGs were mainly
associated with Cytokine−cytokine receptor interaction, Viral
protein interaction with cytokine and cytokine receptor. Figures
3A–D show the top five enrichment items of BP, CC, MF in GO and
KEGG analyses.

3.3 Construction of the PPI network and
identification of hub genes

The STRING database was used to construct a PPI network of
31 DEIRGs in order to investigate protein-protein interactions. A

TABLE 2 Study subject demographics of bone tissue.

Characteristics Mild osteoporosis Severe osteoporosis p Value

n 6 6

Gender, n (%) 1.000

Female 3 (25%) 4 (33.3%)

Male 3 (25%) 2 (16.7%)

Age (year) 65.33 ± 10.03 66.83 ± 12.62 0.824

BMI (kg/m2) 22.39 ± 1.45 20.79 ± 1.28 0.070

BMD (g/cm2) 0.73 ± 0.05 0.58 ± 0.08 0.002

T-score −2.78 ± 0.15 −3.95 ± 0.53 0.002

TABLE 3 Primer sequences used for RT-qPCR.

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

IL17RA CCAACATCACCGTGGAGACC GTGGCGACAGCACCCTTTAA

GAPDH GGAAGCTTGTCATCAATGGAAATC TGATGACCCTTTTGGCTCCC
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total of 30 nodes and 31 edges were identified in the PPI network
(Figure 4A). The cytohubba plug-in of Cytoscape software was then
used to select the top 10 hub genes based on their degree of
connectivity (Figure 4B; Table 4).

3.4 Validation of diagnostic biomarkers

In the GSE35959 dataset, osteoporotic patients had
significantly higher IL17RA expression levels than those of
patients in the control group (p < 0.05) (Figure 5A;
Supplementary Figure S2). To confirm the higher expression
level of IL17RA in osteoporotic patients and its diagnostic
performance, we validated this finding using clinical peripheral
blood and bone tissue. RT-qPCR results showed that mRNA
expression levels of IL17RA were significantly higher in
peripheral blood of patients with osteoporosis compared to
those of patients in the control group (p < 0.05) (Figure 5B).
The IHC results showed that IL17RA expression was higher in the
severe osteoporosis group compared to the mild osteoporosis
group (Figure 5C). The horizontal and vertical coordinates of
the ROC curve indicate sensitivity and specificity, respectively. A
larger AUC indicates a more accurate diagnostic model.
Accordingly, the AUC was 0.802 (Figure 5D), indicating

significant differences between OP and control groups. Hence,
IL17RA expression level could serve as a good diagnostic
biomarker.

3.5 Construction of ceRNA network

We analyzed upstream regulation of IL17RA, and screened
for miRNAs or lncRNAs targeting IL17RA. We identified 142,
1,423, 13, and 2,113 miRNAs possibly targeting IL17RA from
miRDB, TargetScanHuman, TarBase, and miRWalk databases,
respectively (Figure 6A). Consequently, we determined hsa-
miR-128-3p to be the most important miRNA regulator by
comparing predictions based on each database.
Complementary sequences between IL17RA and hsa-miR-
128-3p are displayed in Figure 6B. We validated hsa-miR-
128-3p expression in the GSE201543 dataset, and found that
expression level of hsa-miR-128-3p was significantly low in
osteoporotic patients (Figure 6C). Next, 30 lncRNAs that
could bind to hsa-miR-128-3p were obtained from the
overlapping results of DIANA-LncBase v3 and starBase
databases (Figure 6D). A lncRNA-miRNA-mRNA network
regulating IL17RA was constructed, in which lncRNAs
competitively bind to miRNAs and attenuate the inhibition

FIGURE 2
Identification of DEIRGs. (A) Volcano plot, (B) heatmap of DEGs between the osteoporosis and normal samples. (C) Venn diagram of overlapping
genes between the DEGs and IRGs. (D) Heatmap of DEIRGs.
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of IL17RA by miRNAs (Figure 6E). A review of the literature was
used to determine these 30 lncRNAs. Our findings indicated
that expression levels of NEAT1 and SNHG1 were significantly
high in osteoporotic patients. Since a significantly high level of
IL17RA expression and a significantly low level of hsa-miR-128-

3p were found in osteoporotic patients, the interactions
predicted by the above database (Figure 6F) further led us to
hypothesize that NEAT1 and SNHG1 bind to hsa-miR-128-3p,
and impair the inhibitory effect of hsa-miR-128-3p on IL17RA
in osteoporosis (Figure 6G).

FIGURE 3
Bar plots of 31 DEIRGs-enriched GO terms and KEGG pathways. (A–D) represent BP, CC, MF, and KEGG, respectively.

FIGURE 4
PPI network and hub genes. (A) PPI network constructed with the DEIRGs; (B) Top 10 hub genes.
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3.6 Transcriptome analysis

To better understand gene expression upstream of IL17RA, we
performed a transcriptome analysis. First, we obtained 607 and

166 TFs regulating IL17RA from the TF-Marker and GRNdb
databases, respectively. A total of 75 TFs were found in both
databases (Figure 7A). Using these, an IL17RA transcriptional
regulatory network was constructed (Figure 7B). We selected

TABLE 4 Top 10 hub genes.

Gene symbol Entrez id Full name logFC p-value

FGF8 2253 Fibroblast growth factor 8 −2.4426 0.008896

KL 9365 Klotho 2.327417 0.036147

CCL3 6348 C-C motif chemokine ligand 3 2.064109 0.002997

FGF4 2249 Fibroblast growth factor 4 −1.60047 0.003061

IL9 3578 Interleukin 9 −1.49079 0.037584

FGF9 2254 Fibroblast growth factor 9 −1.23376 0.024612

BMP7 655 Bone morphogenetic protein 7 −1.23075 0.028784

IL17RA 23765 Interleukin 17 receptor A 1.162541 0.022572

IL12RB2 3595 Interleukin 12 receptor subunit beta 2 1.093632 0.042559

CD40LG 959 CD40 ligand −1.07323 0.015333

FIGURE 5
Verification of the diagnostic effectiveness of IL17RA. (A) IL17RA expression in the GSE35959 dataset. (B) IL17RA expression in peripheral blood
samples. (C) IL17RA expression in bone tissue samples. (D) ROC curve.
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nine TFs that showed significant differential expression between the
osteoporosis and normal groups (Figure 7C). Among these TFs, ERF
(R = 0.661, p = 0.044), IRF8 (R = 0.709, p = 0.028), POLR2A (R =
0.867, p = 0.003) and ERG (R = −0.867, p = 0.003) were found to be
correlated with IL17RA (Figure 7D; Supplementary Figure S3).
Based on this, we constructed the osteoporosis ERF-IL17RA,
IRF8-IL17RA, POLR2A-IL17RA and ERG-IL17RA transcriptional
networks (Figure 7E).

3.7 GO and KEGG pathway enrichment
analysis of diagnostic biomarkers

To investigate the downstream regulatory roles of IL17RA, we
used the STRING database to predict 10 IL17RA-interacting genes
(using a confidence score of equal to or higher than 0.4), and
constructed a PPI network using Cytoscape (Figure 8A). A total
of five KEGG pathways were highlighted by KEGG analysis of
IL17RA and IL17RA-interacting genes: IL−17 signaling pathway,
Cytokine−cytokine receptor interaction, alcoholic liver disease,
inflammatory bowel disease, and RIG−I−like receptor signaling

pathway (Figure 8B). The GO enrichment analysis results
indicated that cytokine receptor binding, cytokine activity,
immune receptor activity, cytokine receptor activity, and
thioesterase binding were the top 5 MF terms (Figure 8C).
Cytokine−mediated signaling pathway, interleukin−17−mediated
signaling pathway, cellular response to interleukin−17, and
response to interleukin−17, positive regulation of
interleukin−6 production were the top 5 BP terms (Figure 8D).
Finally, plasma membrane signaling receptor complex, cytoplasmic
side of membrane, cytoplasmic side of plasma membrane,
CD40 receptor complex, and lipid droplet were the top 5 CC
terms (Figure 8E).

3.8 Gene Set Enrichment Analysis (GSEA)

To investigate the functions of IL17RA in osteoporosis, we
conducted Gene Set Enrichment Analysis (GSEA) by stratifying
samples based on IL17RA expression. The results enriched several
important pathways, including “INTERFERON_ALPHA_
RESPONSE,” “INTERFERON_GAMMA_RESPONSE,” “IL6_

FIGURE 6
The ceRNA regulatory network of IL17RA. (A) Prediction ofmiRNAs targeting IL17RA using four different databases. (B) Predicted interaction between
hsa-miR-128-3p and IL17RA. (C) Expression of hsa-miR-128-3p in the GSE201543 dataset. (D) Prediction of lncRNAs targeting hsa-miR-128-3p using
two different databases. (E) lncRNA-miRNA-mRNA network of IL17RA. (F) Predicted interactions between NEAT1, SNHG1 and hsa-miR-128-3p. (G) A
ceRNA network consisting of IL17RA, hsa-miR-128-3p, NEAT1 and SNHG1 in osteoporosis.
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JAK_STAT3_SIGNALING”, “INFLAMMATORY_RESPONSE”,
“REACTIVE_OXYGEN_SPECIES_PATHWAY”, and “TNFA_
SIGNALING_VIA_NFKB” (Supplementary Figure S4). These
pathways play a critical role in immune response, pro-
inflammatory reactions, cytokine signaling, and other vital
biological processes. The identification and enrichment of these
pathways shed light on the intricate connections between IL17RA
and multiple molecular mechanisms involved in maintaining bone
health and homeostasis.

4 Discussion

Osteoporosis is characterized by reduced bone strength and
an increased risk of fracture. It is estimated that more than
200 million people worldwide suffer from osteoporosis, with
30%–50% of women experiencing fractures due to osteoporosis
during their lifetime (Rachner et al., 2011). Since osteoporosis
patients typically exhibit no obvious clinical symptoms before
their first fracture, early diagnosis is crucial for timely
intervention and pain relief. Hence, there is an urgent need
for effective molecular diagnostic markers. Previous studies
suggested that the immune system may play a significant role

in osteoporosis development (Sapra et al., 2022; Wang et al.,
2022), yet the specific immune targets and molecular
mechanisms of osteoporosis remain unknown. Microarray
technology has enabled the exploration of genetic alterations
in osteoporosis, and has proven effective in identifying novel
biomarkers for other diseases. In this study, we used
bioinformatics methods to identify diagnostic markers for
osteoporosis, and validated their diagnostic value using
peripheral blood from osteoporosis patients.

An analysis of transcriptome data from peripheral blood
samples of osteoporosis patients and healthy individuals yielded
a total of 307 DEGs, including 94 up- and 213 down-regulated
genes, respectively. The intersection of DEGs and IRGs yielded
a total of 31 DEIRGs, including 11 and 20 up- and down-
regulated genes, respectively. GO enrichment analysis of
DEIRGs showed that the GO terms were associated with
positive regulation of MAPK cascade, granulocyte
chemotaxis, growth factor activity, and semaphorin receptor
complex. KEGG analysis showed that DEIRGs were mainly
associated with Cytokine−cytokine receptor interaction, Viral
protein interaction with cytokine and cytokine receptor. These
findings suggest that immunomodulation plays a significantly
role in the development of osteoporosis. MAPK and innate

FIGURE 7
Transcriptional network of IL17RA. (A) Predicted TFs associated with IL17RA based on TF-Marker and GRNdb databases. (B) IL17RA transcriptional
regulatory network. (C)Heatmap of TFs expression between osteoporosis and normal groups. (D) Spearman correlation between ERF, IRF8, POLR2A and
ERG and IL17RA. (E) Transcriptional network between ERF, IRF8, POLR2A, ERG and IL17RA in osteoporosis.
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immune signaling pathways are closely-linked through
feedback regulation (Kitajima et al., 2018). Previous studies
have reported that the MAPK signaling pathway is involved in
the regulation of bone metabolism and osteoclast formation
(Meng et al., 2021; Wang et al., 2021). Neutrophil chemokines
stimulate the growth and development of osteoblasts and
chondrocytes (Mori et al., 1997). Cytokine-cytokine receptor
interaction, and viral protein interaction with cytokine suggests
significant involvement of the immune system and
inflammatory cytokines in the progression of osteoporosis.
Inflammatory factors inhibit bone formation in part by
suppressing osteoblast differentiation, which includes
inhibition of Wnt signaling. In addition, they also promote
bone resorption by inducing osteoclast differentiation and bone
resorption functions, which in turn disrupt bone homeostasis
and contribute to the progression of osteoporosis (Ivashkiv
et al., 2011). Hence, dysregulation of the immune system can
have a detrimental effect on bone integrity, leading to
osteoporosis. Our results are consistent with previous findings.

The PPI network analysis revealed 10 key genes associated
with osteoporosis: FGF8, KL, CCL3, FGF4, IL9, FGF9, BMP7,
IL17RA, IL12RB2, CD40LG. Expression level of IL17RA was
found to be significantly high in osteoporotic patients upon
external dataset validation, suggesting that IL17RA may be an
effective biomarker for osteoporosis. To further confirm the

diagnostic performance of IL17RA, we verified IL17RA
expression by RT-qPCR and IHC, and plotted ROC curves.
RT-qPCR results showed that the mRNA expression level of
IL17RA was significantly higher in peripheral blood of
osteoporotic patients compared to that of the control
group. IHC results were in line with RT-qPCR. The Area
Under Curve (AUC) was 0.802, suggesting a high diagnostic
value and potential of IL17RA as a diagnostic marker for
osteoporosis.

The IL-17 family of inflammatory cytokines has gained
attention as major contributors to bone formation and bone
resorption. Most IL-17 cytokines act by signaling through the
receptor complex of IL17RA. IL17RA signaling in osteoclast
precursors were previously demonstrated to contribute to
osteoclast formation and subsequent bone loss. Moreover,
IL17RA deficiency increases bone mass by decreasing the
abundance of osteoclast precursors (Roberts et al., 2022). In
addition, IL17RA in osteoblasts/osteoclasts mediates
parathyroid hormone-induced bone loss and enhances
osteoblast RANKL production (Li et al., 2019). These studies
are in line with our findings. However, Goswami et al. (2009)
used the ovariectomy-induced osteoporosis (OVX) model in
IL17RA (−/−) mice to assess the role of IL17A in estrogen
deficiency-induced bone loss. The authors showed that IL17RA
(−/−) mice were consistently more susceptible to OVX-induced

FIGURE 8
GO and KEGG pathway enrichment analysis. (A) An PPI network of IL17RA constructed with data from STRING. (B) KEGG enrichment analysis
network diagram. (C) MF (D) BP (E) CC enrichment analysis bubble diagram.
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bone loss than controls. IL17A inhibits bone resorption-related
protease expression and osteoclast differentiation in
RAW264.7 cells via IL17RA (Kitami et al., 2010). These
findings suggests that IL17RA signaling plays an
osteoprotective role in ovariectomy-induced bone loss. This
also shows that the role of IL17RA in osteoporosis is still
controversial, and an increased sample size is needed for an
in-depth analysis.

The concept of CeRNA was introduced in 2011 (Salmena
et al., 2011). In the ceRNA network, non-coding RNAs, such as
lncRNAs or circRNAs, can compete to bind to miRNAs, and
thereby weaken the repression of mRNAs by miRNAs. We
identified hsa-miR-128-3p as a key regulatory miRNA for
IL17RA in osteoporosis. Previous research has indicated that
hsa-miR-128-3p can inhibit osteoblast differentiation of bone
marrow mesenchymal stem cells by downregulating RUNX1,
YWHAB and NTRK2 (Zhang W. et al., 2020). In addition,
hsa-miR-128-3p promoted the proliferation, migration and
osteoclast differentiation of RAW 264.7 cells and upregulated
the osteoclastogenic markers c-Fos, NFATc1 and Ctsk (Zhang
et al., 2022a). These findings suggests that hsa-miR-128-3p
inhibits osteoblast differentiation and promotes osteoclast
formation, which is inconsistent with our findings here.
Further studies are needed to explain this paradox, and
identify other mechanisms involving has-miR-128-3p in
osteoporosis. We hypothesize that NEAT1 and SNHG1 target
hsa-miR-128-3p. Studies have shown that NEAT1 promotes the
proliferation and differentiation of osteoblasts and, regulates the
development and progression of osteoporosis (Zhang Y. et al.,
2020; Zhao X. et al., 2022). SNHG1 expression is up-regulated in
OVX mice, which inhibits osteoblast differentiation and
angiogenesis while promoting osteoclast formation, leading to
osteoporosis (Yu et al., 2021; Yu et al., 2022). NEAT1 and SNHG1
are thus promising targets for the treatment of osteoporosis. The
above-mentioned findings support the conclusions of our study.
We constructed the NEAT1-hsa-miR-128-3p-IL17RA and
SNHG1-hsa-miR-128-3p-IL17RA networks to provide a
theoretical basis for understanding the molecular mechanisms
of IL17RA involvement in osteoporosis.

We performed a transcriptional analysis as well. The ERF
(ETS2 repressor factor) is located on Chromosome 19q13.2, and
encodes a transcription factor bound directly by ERK1/2 to
regulate the RAS-MEK-ERK signal transduction cascade (von
Kriegsheim et al., 2009). A study found that reduced doses of
ERF lead to complex cranial suture closure in humans and mice,
and highlighted ERF as a novel regulator of osteogenic stimulation
of RAS-ERK signaling (Sr et al., 2013). IRF8 inhibits
osteoclastogenesis, and is involved in the development and
progression of osteoporosis (Zhao et al., 2009; Jin et al., 2023).
RNA polymerase II subunit A (POLR2A) encodes the largest
catalytic subunit of the RNA polymerase II complex. Liu et al.
(2021) showed that POLR2A blocks osteoclastic bone resorption
and prevented osteoporosis by interacting with CREB1. ERG is
closely associated with Ewing sarcoma (Dunn et al., 1994), cervical
cancer (Zhang Z. et al., 2020) and prostate cancer (Dawoud et al.,
2021). However, its role in bone metabolism remains unexplored.
The TF network constructed here provides a clear direction to
better understand the upstream transcriptional mechanism of

IL17RA. To further investigate the downstream regulatory role
of IL17RA, we also performed a functional enrichment analysis of
IL17RA and its interacting genes. Accordingly, IL17RA may be
involved in the development and progression of osteoporosis by
regulating local immune and inflammatory processes in bone
tissue.

There were also some limitations in this study. First, the sample
size in the dataset selected for this study was small. Although we
standardized the raw data, a larger sample size and a higher quality
dataset are still needed to verify the reliability of the results.
Secondly, although we validated the diagnostic value of IL17RA
using patients’ peripheral blood samples and bone tissues, the
sample size of this study was also limited, and the clinical
translational value of IL17RA needs to be validated in a larger
number of clinical osteoporosis samples. Finally, a more
comprehensive study on molecular biological mechanisms
involving IL17RA on both cellular and animal levels is needed.

In conclusion, we identified the immune-related gene IL17RA as
a diagnostic marker of osteoporosis by elucidating its biological
function within the immune system. Our findings may provide with
a potential immune molecular target for the early diagnosis and
treatment of osteoporosis.
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