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1 Introduction

Since the publication of the first draft of the human genome sequence in 2001 and
especially within the past decade, genome-wide association studies (GWAS) have largely
contributed in accelerating the identification of genetic variants across the genomes of
millions of individuals, statistically associated with various specific traits and disease
phenotypes (e.g.,: Uffelmann et al., 2021). For common diseases, e.g., type 2 diabetes
mellitus (e.g., Mahajan et al., 2022), coronary artery disease (e.g., Musunuru and
Kathiresan, 2019), schizophrenia (e.g., Kato et al., 2023), lung cancer (e.g., Long et al.,
2022), thousands of susceptibility genetic loci have been determined, the analysis of which
may reveal valid functional information about the disorders, accelerate drug development,
and contribute to the design of predictive health diagnostics. However, the effect size of
each individual variant associated with a multifactorial disease is relatively small, the
overall disease risk corresponds to the cumulative effect size resulting from multiple genes
and their interactions. The information content of GWAS data can be upgraded in the
context of biomolecular interaction networks, selectively or in combination, e.g., protein
interaction, metabolic, RNA and/or gene regulatory networks (e.g., Tomkins and
Manzoni, 2021; Farrow et al., 2022). Such strategies have successfully been used for
the evaluation of GWAS combined with relevant gene expression data (e.g.,: Wainberg
et al., 2019) to a) prioritize groups of core susceptibility genes with respect to their position
in the biomolecular network (Zhang et al., 2021), b) reveal disease modules, pathways, and
disease subgroups (e.g., Wu et al., 2021), c) discover novel, and extent currently known
disease-associated biological mechanisms and pathways (e.g., Wang et al., 2020), d)
identify additional risk genes based on the network architecture of the disease (e.g.,
Meng et al., 2020), and e) suggest repurposing or development of new drugs to plausible
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targets through disease comorbidity assessment (e.g., Reay and
Cairns, 2021; Barrio-Hernandez and Beltrao, 2022). Integration of
GWAS data from various studies and experimental platforms
including SNP arrays, exome or whole genome sequencing or
single-cell omics, increases the number of identified genetic risk
variants, enhancing thus our knowledge about disease/trait
heritability (e.g., Wang et al., 2022). Integrated datasets widen
the risk allele frequency spectrum, and may contribute to the
identification of causal gene mutants for rare diseases. GWAS
integrated with genome-wide transcriptomics data subjected to
biomolecular network and pathway analysis would permit the
quantitative functional profiling of genetic variants and may
suggest novel disease-associated biological mechanisms and
regulatory structures.

Six original research articles covering various of the
aforementioned areas have been included in this Research Topic.

Rahmouni et al. identified novel biological pathways and genes
associated with four main characteristics of skin aging by analyzing
relevant GWAS genotyping data of 502 Caucasian women. Data
integration into the reference KEGG pathways and search for
associations with significant pathways by gene set enrichment
analysis, revealed the “nucleotide excision repair”, the “mTOR”
and the “proteasome” pathways involved in DNA maintenance,
protein integrity, and cell survival. XPC, AD23B, and DDB1 are
among top-ranked genes with the latter possibly involved in
photoaging, sagging, and wrinkling in response to UV exposure.
In addition, the “melanogenesis” pathway was revealed, a skin aging-
specific pathway, with WNT7B involved in Wnt/β-catenin pathway
playing critical roles in embryogenesis and adult tissue homeostasis,
and PRKCA involved in regulation of cell proliferation, apoptosis,
differentiation, adhesion, and tumorigenesis. According to the
authors some of the indicated pathways may participate in aging
characteristics of other organs, as well.

Azumah et al. associated the expression pattern of polycystic
ovary syndrome (PCOS) candidate genes during fetal development
with potential upstream regulators and related pathways. A
supervised heat map of RNA sequencing data correlated the
expression pattern of PCOS genes with the gestational age.
Ingenuity and conventional KEGG pathway analysis revealed
several key pathways associated with PCOS and co-expressed
genes. The early-expressed gene cluster was found involved in
mitochondrial function and oxidative phosphorylation with
upstream regulators including PTEN, ESRRG, ESRRA, and MYC.
The late-expressed gene cluster was found associated with stromal
expansion, cholesterol biosynthesis and steroidogenesis with
upstream regulators including TGFB1, TNF, VEGF, ERBB2, and
ERBB3. Noteworthy, many of the suggested upstream regulators like
MYC, ERBB2, TNF, and TGFB1 are genes with high network
connectivity, involved in several interconnected essential pathways.

Chen et al. have proposed an integrated procedure for the
identification the genes that participate in tumor initiation
(“leader genes”) in stomach, liver and colon cancer, contributing
to the elucidation of the mechanisms and early diagnosis of cancer.
Their approach included information derived from node
interconnectivity based on validated protein-protein interaction
networks, literature data on cancer-related characteristics and

experimental proteomic data including subcellular localization
information. A graph theory-based algorithm was proposed to
reveal and validate candidate leader genes. TRIP13, a gene
playing a key role in chromosome recombination and
chromosome structure development during meiosis, was
identified as a common leader gene. Overall, the authors’ lists of
leader genes for stomach, liver and colon cancer included 69, 43, and
64 genes, respectively.

Meng et al. integrated transcriptomic with GWAS data in
order to determine new biomarkers associated with atrial
fibrillation (AF). More specifically, they employed weighted
gene co-expression network analysis (WGCNA) to identify
significant network modules related to AF and fuse this
information with the GWAS discovery set produced from the
GWAS data from ProxyGeneLD. Two genes, ERBB2 and MYPN,
emerged as most associated with AF occurrence and form the
basis for further investigation.

Chimusa and Defo introduced the ancMETA tool, which
introduces a Bayesian graph-based framework connecting SNPs
to genes and genes to PPI networks, identifying the interaction
pathways underlying a pathophysiology across multiple ancestries.
The framework was evaluated based on simulated datasets and
demonstrated in the context of seven European bipolar disorder
cohorts.

In Dong et al. a weighted correlation network analysis was
performed on the integrated mRNA, miRNA and lncRNA datasets
of ulcerative colitis to reconstruct the competitive endogenous RNA
(ceRNA) network in the disease. The ceRNA network study through
Gene Ontology (GO), pathway enrichment and PPI network
analysis lead to the identification of two mRNAs as high
diagnostic accuracy biomarkers, providing also insight into the
pathogenesis of the disease.
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