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Machine learning for small
interfering RNAs: a concise review
of recent developments

Minhyeok Lee*

School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, Republic of Korea

The advent of machine learning and its subsequent integration into small
interfering RNA (siRNA) research heralds a new epoch in the field of RNA
interference (RNAI). This review emphasizes the urgency and relevance of
assimilating the plethora of contributions and advancements in this domain,
particularly focusing on the period of 2019-2023. Given the rapid progression
of deep learning technologies, our synthesis of recent research is paramount to
staying apprised of the state-of-the-art methods being utilized. It not only offers a
comprehensive insight into the confluence of machine learning and siRNA but
also serves as a beacon, guiding future explorations in this intersectional research
field. Our rigorous examination of studies promises a discerning perspective on
the contemporary landscape of machine learning applications in siRNA design and
function. This review is an effort to foster further discourse and propel academic
inquiry in this multifaceted domain.
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1 Introduction

Enveloped within the expansive discipline of RNA interference (RNAi) (Wilson and
Doudna, 2013; Mansoori et al., 2014; Rosa et al., 2018), the integration of machine learning
strategies (Walia et al., 2012; Liu, 2019; Petegrosso et al., 2020) in the design and analysis of
small interfering RNAs (siRNAs) marks a significant step in the advancement of this field.
siRNAs, as vital components of the RNAi pathway, play an indispensable role in post-
transcriptional gene silencing, influencing various genetic processes and, by extension, the
potential for therapeutic interventions (Reynolds et al., 2004; Kanasty et al., 2013; Resnier
etal, 2013; Dana et al., 2017; Tatiparti et al., 2017; Hu et al., 2020). Our review ventures into
this rapidly evolving field, providing a detailed narrative of the seminal research
contributions that blend the potent capabilities of machine learning with the inherent
complexities of siRNA design and function.

Machine learning employs algorithms that improve automatically through experience
(Jordan and Mitchell, 2015; Waring et al., 2020; Greener et al., 2022). It is employed across a
myriad of applications, ranging from recommendation systems (Batmaz et al., 2019) to
autonomous driving Bachute and Subhedar (2021), and now, increasingly in life sciences
(Roscher et al, 2020). The unprecedented pace of machine learning advancements
accentuates the need for an in-depth review of the most recent studies, ensuring that
researchers and practitioners are abreast with state-of-the-art applications in the field.

It is this synthesis of machine learning and siRNA, an emergent and vital topic, that
captures our academic interest. As the landscape of machine learning continues to diversify
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TABLE 1 Overview of recent studies using machine learning methods in siRNA.

Research topics

siRNA Efficacy Prediction

Brief description

Predictive models built with GNN, ANN, and SVM for siRNA efficacy and targeting

Studies

La Rosa et al. (2022), Metwally et al.
(2022)

Cancer Research

Identification of prognostic genes and drug release behavior prediction in cancer studies using siRNA
and machine learning

Kukita et al. (2022), Kavya et al.
(2022)

Cellular Uptake Prediction

Prediction of siRNA nanoparticle uptake in cancer cell lines with Random Forest, Multilayer
Perceptron, and Linear Regression models

Nademi et al. (2021)

siRNA Off-Target Effect

RNA Production Regulation

Mitochondrial Dysfunction

Analysis of siRNA off-target effects based on thermodynamic properties of siRNA subregions

Genome-wide siRNA screen to discover global RNA production regulators using supervised machine
learning

Application of machine learning to analyze mitochondrial dysfunction in siRNA-based screening data

Kobayashi et al. (2022)

Miiller et al. (2021)

Scott et al. (2020)

Gene Delivery

Proteome Regulation

Live-cell analysis device combined with deep learning for gene delivery analysis

Machine learning used on proteomics data to explore proteome regulation; validation of new
replication factors through siRNA knockdowns

Patino et al. (2022)

Kustatscher et al. (2023)

Diagnostic Gene Biomarkers

Machine learning used to identify potential diagnostic gene biomarkers with subsequent siRNA
knockdown for validation

Sun et al. (2022)

In Silico Drug Discovery

Machine learning integrated with high-content analysis data for in silico drug discovery and kinase
target identification

Kuthuru et al. (2019)

High-Throughput Screening

High-throughput siRNA knockdown screening with light-sheet microscopy and CNN-based
phenotype classification

Eismann et al. (2020)

Nanopore Trapping

Machine learning algorithm developed to aid nanopore trapping/translocation for structural profiling
of low molecular weight RNAs

Wang et al. (2021)

vsiRNA Prediction

mRNA Cleavage Site
Identification

Prediction model based on deep CNN for identifying virus-derived small interfering RNAs (vsiRNAs)

Deep learning CNN model used to distinguish true mRNA cleavage sites from false ones in the small
RNAs (sRNA) landscape

He et al. (2019)

Persson Hoden et al. (2021)

and mature, and siRNA’s influence in genetic research and
therapeutic innovation becomes more profound, our review
serves as a catalyst for fostering academic dialogue and nurturing
exploratory research. Herein, we have carefully investigated studies
published between 2019 and 2023 through Web of Science (WoS)
using keywords of machine learning and siRNAs. The utilization of
the WoS platform stems from its comprehensive incorporation of
solely peer-reviewed journal articles of high quality. The specific
timeframe of 2019-2023 was chosen not solely based on the quantity
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of research produced, but also due to the significant advancements
in machine learning techniques, particularly deep learning
methodologies, during this period.

This academic landscape is mirrored by a discernible gap in
research studies focusing on machine learning applications for
siRNAs, as shown in Figure 1. The result through the Web of
Science database reveals a significantly lesser number of publications
on machine learning and siRNAs as compared to other RNA-related
topics, such as CRISPR and RNA-binding proteins (RBPs). This

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1226336

Lee

indicates an under-explored niche in the application of machine
learning methods for siRNA analysis and design. The reviewed
in Table
comprehensive and up-to-date review of this intersectional field.

studies are summarized 1, weaving together a

In the course of our comprehensive review of recent developments
in the application of machine learning for siRNAs, it is observed that an
intriguing distribution of machine learning models were implemented
in the examined studies. The predominant model of choice was the
Neural Network (NN), utilized in a total of 10 studies, illustrating a
preference for its ability to model complex non-linear relationships and
its inherent aptitude for handling high-dimensional data typical in
siRNA research. The Support Vector Machine (SVM) model was
adopted in five studies, reflecting its well-regarded robustness and
efficacy in dealing with both linear and non-linear classification
problems. Meanwhile, the Random Forest (RF) model was
employed in three studies, underscoring its suitability for managing
multi-dimensional datasets with its ensemble-based approach and
inherent feature selection mechanism. Lastly, the Partial Least
Squares (PLS) model was applied in two studies, illustrating its
utilization in situations where predictors are highly correlated, a
common occurrence in biological data. The majority of studies
employed correlation and least squares as performance metrics in
their analyses. Notably, some studies deployed multiple models,
acknowledging the unique strengths of each model and adopting a
more holistic, hybrid approach to tackle the multifaceted complexities
inherent in siRNA design and analysis.

2 Machine learning methods for small
interfering RNAs

2.1 Predictions of siRNA efficacy and off-
target effects

Machine learning has emerged as a crucial tool in the field of siRNA
research, facilitating nuanced investigations into the complex dynamics
of siRNA. Two particularly salient areas of exploration are the
prediction of siRNA efficacy and the elucidation of off-target effects.
A comparative analysis of the studies by La Rosa et al. (2022) and
Metwally et al. (2022) reveals distinct approaches to the application of
machine learning methodologies for predicting siRNA efficacy.

La Rosa et al. (2022) implemented a novel Graph Neural Network
(GNN) for evaluating siRNA-mRNA interaction networks, with an aim
to predict siRNA efficacy. This approach marked a significant stride in
the research area as GNNs, which outperformed conventional machine
learning algorithms, were introduced for the first time in this context.
Their method proved successful with a notable Pearson correlation
coefficient of approximately 73.6%, representing the siRNA’s ability to
bind and silence a gene target effectively.

On the other hand, Metwally et al. (2022) took a different approach
by constructing a machine learning model for in silico prediction of
siRNA ionizable-lipid nanoparticles’ in vivo efficacy. The authors
adopted an array of machine learning techniques, including Artificial
Neural Networks (ANNs) and SVM, for Quantitative Structure-Activity
Relationship (QSAR) modeling, signifying a broader perspective of
machine learning implementation. Notably, their model successfully
predicted the siRNA dose, with ANNs delivering the most robust
performance.
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Exploring off-target effects and RNA production regulation,
Miillerr et al. (2021) utilized supervised machine learning to adjust
for variables that indirectly influence global RNA production in HeLa
cells. This work provides an extensive dataset that paves the way for
future exploration into global RNA metabolism regulation and its
correlation with cellular states. Conversely, Kobayashi et al. (2022)
focused on the off-target effects of siRNA, demonstrating that such
effects are influenced by the base-pairing stability of two distinct regions
with contrasting effects. Their thorough examination of siRNA’s
subregions via an array of machine learning techniques established
an important correlation between thermodynamic properties and off-
target influence, thereby enhancing our understanding of siRNA’s off-
target effects.

Both the methodological approaches, i.e., GNN and ANNs/
SVM, show significant potential in siRNA research, albeit in
different contexts. While GNN exhibited a superior ability in
siRNA-mRNA interaction analysis, the versatility of ANNs/SVM
was beneficial in predicting in vivo efficacy of siRNA nanoparticles.
Further,
understanding off-target effects and RNA production regulation,

machine learning proved to be instrumental in
demonstrating the versatility and potential of these techniques in
decoding the complexities of siRNA.

2.2 Unveiling cellular processes involving
siRNA

The integration of high-throughput screening in siRNA studies has
ushered in a new era of comprehensive insights into cellular behavior
and mechanisms under the influence of genetic modification. These
following articles underscore this trend, showcasing how machine
learning techniques are employed to delve deeper into proteome
regulation, cellular delivery, and phenotype expression.

Scott et al. (2020) and Kustatscher et al. (2023) provide perspectives
on the use of machine learning in high-content screening and proteome
regulation. Both studies underscore the effectiveness of machine
learning in uncovering complex biological systems. Scott et al
(2020) used multiparameter principal component analysis and an
unbiased, parameter-agnostic machine learning approach to uncover
genes and pathways that regulate mitochondrial clearance. This
approach allowed the exploration of siRNA-based screening data in
detail and led to the identification of modulators of parkin recruitment
to mitochondria.

On the other hand, Kustatscher et al. (2023) took a higher-level
perspective, using machine learning to analyze proteomics data and
discover co-regulation modules, termed “progulons”. This approach
offered a robust framework for studying the human proteome,
identifying 31 progulons that constitute core cellular functions.
Supervised machine learning, in this case, not only facilitated
data processing but also uncovered new replication factors. The
comparison underscores the flexibility and utility of machine
learning applications in different research settings and objectives,
both achieving significant findings in their respective domains.

Two recent studies provided insights into the usage of machine
learning for precision delivery and phenotype assessment in siRNA
studies, respectively. Patino et al. (2022) demonstrated the use of a live-
cell analysis device (LCAD) coupled with deep learning to perform
localized

electroporation-induced membrane  permeabilization,
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allowing precise siRNA delivery and content extraction from live cells.
The combination of deep learning with LCAD technology represents a
synergistic integration of novel hardware and advanced analytical tools,
suggesting new opportunities for precise genetic interventions and real-
time cellular response monitoring. Eismann et al. (2020) introduced an
automated screening workflow using light-sheet microscopy to evaluate
mitotic phenotypes in 3D cell cultures following siRNA knockdown.
They employed a convolutional neural network (CNN) for phenotype
achieving high-throughput
spatiotemporal resolution. This methodology enables a precise

classification, screening with  high
assessment of mitotic phenotypes in an automated, high-throughput
manner, highlighting the power of deep learning in image processing
and phenotype recognition.

These studies underscore the significant potential of machine
learning, from neural networks to principal component analysis, in
advancing siRNA research. Whether it is the identification of new
cellular pathways, the precise delivery of functional molecules, or the
high-throughput screening of phenotypes, machine learning
methodologies emerge as vital tools, showcasing the increasing
intersection between computational and biological sciences.

2.3 Elucidating the role of siRNA in diseases

Biomedical research has witnessed the transformative potential
of machine learning, catalyzing breakthroughs in disease diagnosis
and prognosis. Two notable applications of these technologies
involve the identification of prognostically significant genes in
cancer and the discovery of diagnostic gene biomarkers. In these
contexts, the incorporation of deep learning methods has yielded
significant insights.

The study by Kukita et al. (2022) demonstrated the use of
machine learning in combination with siRNA, chromatin
immunoprecipitation sequencing, and RNA sequencing for
pinpointing prognostically significant genes, focusing on
endometrial cancer. The researchers identified that the histone
SETD8 regulates gene

H4K20 methylation and the p53 signaling pathway. Interestingly,

methyltransferase expression  via
they observed that suppressing SETD8, through siRNA or a selective
inhibitor, could potentially inhibit cell proliferation and instigate
apoptosis in endometrial cancer cells. This example of machine
learning implementation showcases the potency of these methods in
generating meaningful and impactful discoveries in cancer research.

On the other hand, Sun et al. (2022) used machine learning to
identify diagnostic gene markers associated with immune
infiltration in patients with renal fibrosis. They integrated
Support Vector Machine Recursive Feature Elimination (SVM-
RFE) and Least Absolute Shrinkage and Selection Operator
(LASSO) regression models to achieve this. Their study identified
nine key genes, with the knockdown of ISG20 via siRNA
significantly inhibiting renal fibrosis progression in vitro. This
study is a compelling example of how machine learning can
drive novel insights in diagnostic biomarker discovery and
influence therapeutic strategies.

Both studies demonstrate the profound potential of machine
learning in the exploration of disease genetics, either in a prognostic
or diagnostic capacity. However, the approaches vary in their
specificity. The approach by Kukita et al. (2022) primarily
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focused on the downstream effects of a specific gene (SETDS),
whereas the method by Sun et al. (2022) was more general,
analyzing a broader set of potential markers. Despite these
both
learning to inform and enrich our understanding of disease biology.

differences, studies effectively incorporated machine

2.4 siRNA delivery and drug discovery

The convergence of deep learning and machine learning
techniques is propelling siRNA research, particularly in designing
efficient delivery systems and accelerating the drug discovery
process. As exemplified in the study by Kavya et al. (2022), an
Artificial Neural Network (ANN) model was utilized to predict the
release behavior of drugs and genes from a curcumin-loaded
polymer synthesized in supercritical CO,, encapsulating both
curcumin and Bcl, siRNA. The promising results obtained
underscore the potential of deep learning models in predicting
siRNA  delivery and thus
revolutionizing the design of more effective siRNA delivery systems.

On the other hand, Kuthuru et al. (2019) leveraged machine
learning methodologies to predict drug-kinase-target interactions

release  patterns, potentially

from a high-content analysis data from an siRNA human kinome
screen. They developed two types of kinase descriptors and applied
machine learning models to predict these interactions, with the top
model achieving an area under the ROC curve of 0.86. This clearly
indicates the potential of machine learning in expediting the process
of drug discovery by accurately predicting drug-target interactions.

2.5 Other emerging topics in siRNA research

The rise of machine learning techniques has brought about a
significant paradigm shift in siRNA research. Recent investigations
have successfully harnessed both traditional machine learning and
deep learning approaches to address challenges and answer pivotal
questions in the field. This subsection provides the recent trend of
emerging machine learning methodologies in siRNA studies,
their
particular roles in advancing siRNA research.

focusing on unique applications, effectiveness, and

In relation to nanopore technology, Penguin (Hassan et al., 2022)
and Sequoia (Koonchanok et al., 2023) have emerged as significant tools
that leverage machine learning for direct RNA sequencing data analysis.
Penguin is designed to identify pseudouridine sites in RNA, employing
machine learning models such as SVM, RF, and NN to process the raw
signal generated by Oxford Nanopore sequencing. On the other hand,
Sequoia provides a comprehensive framework for visual analysis of RNA
modifications from nanopore sequencing data, enabling users to
interactively analyze and cluster signals based on electric-current
similarities. In structural profiling of low molecular weight RNAs,
Wang et al. (2021) proposed a novel machine learning algorithm to
augment nanopore trapping/translocation. This algorithm transformed
raw event characteristics into interpretable data, with an impressive
accuracy of approximately 93.4%. Importantly, the algorithm was able to
distinguish between various RNA types, demonstrating its potential for
future siRNA studies. On a different note, He et al. (2019) applied a deep
learning-based approach for predicting virus-derived small interfering
RNAs (vsiRNAs) in plants. Their deep Convolutional Neural Network
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(CNN) PVsiRNAPred, trained on vsiRNA
demonstrated superior performance to five conventional machine

model, sequences,
learning classifiers, achieving an accuracy of 65.70%. Both studies
utilized machine learning, but their focus and approach differed,
reflecting the versatility of machine learning applications in siRNA
research.

Nademi et al. (2021) employed machine learning for predicting the
cellular uptake of hydrophobically modified Polyethylenimine (PEI)/
siRNA nanoparticles in various cancer cell lines. Using three regression
models, the study revealed that non-linear models, such as RF and
Multilayer Perceptron (MLP), outperformed the Linear Regression
model in predictive accuracy. The predictive performance of these
non-linear models shows their potential in improving our
understanding of siRNA nanoparticle uptake in cancer research.

Meanwhile, Persson Hoden et al. (2021) developed an R
package, smartPARE, that utilizes a deep learning CNN for the
identification of true mRNA cleavage sites. Applied to high-
smartPARE identified true

cleavage sites, providing crucial insights into the small RNA

throughput datasets, effectively
(sRNA) landscape in complex biological systems.
In conclusion, the application of machine learning, from traditional
algorithms to deep learning methods, is proving vital in various aspects
of siRNA research, including structural profiling, prediction of
vsiRNAs, cellular uptake prediction, and identification of mRNA
cleavage sites. Although the methods and applications vary, the
overall advancement in the field signifies the transformative
potential of machine learning in this area. The comparison further
highlights the benefits of non-linear and deep learning models over
traditional linear models in terms of predictive accuracy and versatility,
leading to valuable discoveries in the field of siRNA research.

3 Discussions: Future perspectives and
challenges

The confluence of machine learning and siRNA research has
already brought to light numerous applications and technological
advancements. From predicting siRNA efficacy and off-target
effects, to uncovering cellular processes involving siRNA and
elucidating the role of siRNA in diseases, the combination of
these fields has opened up new avenues for scientific exploration
and innovation. However, similar to all emerging fields, it comes
with its own set of unique challenges and limitations.

The application of machine learning techniques in siRNA research
is hampered by the lack of expansive, high-fidelity datasets. This is a
common problem in many machine learning applications, but it is
particularly pronounced in the field of biological research, where
experimental data can be costly and time-consuming to generate.
However, as techniques such as high-throughput screening continue
to advance, the availability of high-quality datasets for siRNA research is
expected to increase. Moreover, strategies such as transfer learning and
data augmentation could be leveraged to overcome the scarcity of data
and enhance the learning capacity of machine learning models. As an
alternative approach, the high-content screening techniques proposed
by Scott et al. (2020) can be used to address this limitation of high-
fidelity datasets.

Another significant challenge is the inherent complexity of
biological systems. The multitude of interacting factors and the
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non-linear nature of biological processes pose significant difficulties
for the construction and optimization of machine learning models.
However, novel machine learning methods, such as GNN and deep
learning (La Rosa et al., 2022), have demonstrated promising results
in dealing with such complexities. Future work should continue to
explore and optimize these techniques for application in siRNA
research.

Finally, the lack of interpretable machine learning models in this
field is a crucial area that needs to be addressed (Murdoch et al.,
2019). Despite the promising results achieved by complex models
such as deep learning, their black-box nature poses a significant
challenge for their broader acceptance and utilization. Therefore, the
development and application of more transparent, interpretable
models should be a priority for future research.

While challenges and obstacles lie ahead, the potential
rewards of integrating machine learning and siRNA research
are vast. It is our hope that this review will provide a useful
roadmap for future researchers navigating this exciting and
rapidly evolving field.

4 Conclusion

In conclusion, the fusion of machine learning and siRNA marks a
promising Frontier in the realm of RNA interference. Although faced
with challenges, such as the need for large, high-quality datasets and the
intricate nature of biological systems, the continued development of
advanced machine learning models and feature engineering techniques
offers an optimistic outlook on the field’s future.

The rapidly evolving landscape of machine learning necessitates
frequent and thorough investigation of recent studies, particularly
when coupled with the emergent field of siRNA. This review has
thus aimed to provide a comprehensive, timely exploration of these
two intertwined fields, bridging the gap between computational
advancements and biological complexities. It is our fervent hope
that this work will serve as a foundation for future explorations and
will inspire novel, cross-disciplinary endeavors.
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