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Background: Periodontits (PD) and Alzheimer’s disease (AD) are both associated
with ageing and clinical studies increasingly evidence their association. However,
specific mechanisms underlying this association remain undeciphered, and
immune-related processes are purported to play a signifcant role. The accrual
of publicly available transcriptomic datasets permits secondary analysis and the
application of data-mining and bioinformatic tools for biological discovery.

Aim: The present study aimed to leverage publicly available transcriptomic
datasets and databases, and apply a series of bioinformatic analysis to identify
a robust signature of immune-related signature of PD and AD linkage.

Methods: We downloaded gene-expresssion data pertaining PD and AD and
identified crosstalk genes. We constructed a protein-protein network analysis,
applied immune cell enrichment analysis, and predicted crosstalk immune-related
genes and infiltrating immune cells. Next, we applied consisent cluster analysis
and performed immune cell bias analysis, followed by LASSO regression to select
biomarker immune-related genes.

Results: The results showed a 3 gene set comprising of DUSP14, F13A1 and SELE as
a robust immune-related signature. Macrophages M2 and NKT, B-cells, CD4+

memory T-cells and CD8+ naive T-cells emerged as key immune cells linking PD
with AD.

Conclusion: Candidate immune-related biomarker genes and immune cells
central to the assocation of PD with AD were identified, and merit investigation
in experimental and clinical research.
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Introduction

With the rapid ageing of global populations, the burden of Alzheimer’s disease (AD) is
rising. AD is a neurodegenerative disease marked by the formation of amyloid-β peptide
(AβP) plaques aggregate in brain tissues. Inflammation and pathological aberrations in
central and peripheral immune responses are implicated in AD (Campbell and Gear, 1995;
Bettcher et al., 2021).While the relationship of systemic or peripheral inflammation with AD
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has been inconsistent (Eriksson et al., 2011), accruing research has
highlighted the role of peripheral inflammation in AD pathogenesis.
Gut microbiome dysbiosis is associated with neuroinflammation
and synaptic dysfunction characteristic of AD (Bairamian et al.,
2022). Research using a murine model of AD has demonstrated that
low-grade peripheral inflammation is capable of aggravating brain
pathology (Xie et al., 2021). ApoE4 allele of the Apolipoprotein E
gene, a well-known genetic risk factor of AD, when coupled with
chronic low-grade peripheral inflammation leads to earlier onset
and greater morbidity from AD (Tao et al., 2018). Peripheral
inflammation also alters the connectivity of large-scale cognitive
networks in older individuals, particularly in ApoE4 carriers
(Walker et al., 2020). Elevated levels of both peripheral and CSF
inflammatory markers are associated with AD (Shen et al., 2019).
Systemic infections are associated with enhanced
immunosuppressive processes in the brains of patients with AD,
with an increase in anti-inflammatory proteins including IL4R and
CHI3L1 and a decrease in certain proinflammatory proteins, along
with lowered T-cell recruitment (Rakic et al., 2018). Systemic
inflammation can affect intra-brain drug distribution by altering
ABCB1 and ABCG2 protein expression and can also perturb
GluN1 protein expression in AD affected brains (Puris et al.,
2021). Circulating IL-21, a key immunomodulatory cytokine is
elevated in AD, possibly due to immune activation, resulting in
neuroinflammation, microglial activation, and deposition of Aβ
plaques (Agrawal et al., 2022).

Ageing is associated with higher levels of chronic inflammation
and immune deregulation. Infections cause immune dysregulation,
an increase circulating pro-inflammatory mediators such as TNFα
and IL-6 along with the brain levels of IL-1β and IL-6 levels,
aggravating neuroinflammation and accelerating cognitive decline
in older adults (Holmes et al., 2011; Lopez-Rodriguez et al., 2021).
Immune perturbation in AD is not restricted to the central nervous
system (CNS), and peripheral immune dysregulation appears to
affect homeostasis in AD-affected brains, where the barrier function
is disrupted, allowing an ingress of T-cells (van Olst et al., 2022).
Perturbed naive andmemory CD4+ T cell subsets have been noted in
the peripheral blood of patients with mild AD and dementia, with a
lower proportion of naive cells and an increased proportion of
effector memory and terminal differentiation effector memory
(TEMRA) CD4+ cells (McManus et al., 2015). The deregulation
of both the peripheral and central immune compartments marks
AD. Peripheral immune activation is associated with
neuroinflammation and AD pathogenesis. Sustained activation of
the brain’s microglia and other immune cells is found to exacerbate
both amyloid and tau pathology and may serve as the link between
infections, chronic peripheral inflammation and AD (Kinney et al.,
2018).

Periodontitis is a highly prevalent oral infectious disease that
imposes both oral and systemic health burdens. It is an
inflammatory disease caused by a complex interplay between
dental plaque microbes and the host immune system
(Hajishengallis, 2014a). The deposition of a microbial plaque
biofilm initiates immune cell migration, and its dysbiosis sustains
a local inflammatory response (Murakami et al., 2018). Key
periodontal pathogens such as Porphyromonas gingivalis are
immune evasive and can activate the complement system and
pathogen recognition receptors such as TLRs, leading to chronic

inflammation and periodontal tissue destruction (Xu et al., 2021).
Virulence factors like Porphyromonas gingivalis fimbriae can
activate TLR2 expressed by innate immune cells (Maekawa et al.,
2014), leading to a cascade of cellular and humoral immune
responses, and induction of adaptive immune responses
(Hajishengallis, 2014a). Ageing is associated with a steep increase
in the incidence and severity of periodontitis, attributed in part to
increased susceptibility from age-dependent alterations in host
innate immunity and inflammatory status (Hajishengallis, 2014b).
Cellular senescence, stem cell failure, and immune senescence
inherent to biological ageing impair periodontal tissue
homeostasis and contribute to the pathophysiology of
periodontitis (Baima et al., 2022).

Evidence showing the association of AD with periodontitis is
rapidly accumulating (Dominy et al., 2019; Dioguardi et al., 2020;
Hu et al., 2021). Porphyromonas gingivalis has been found to
infiltrate the brains of tissue in AD and is proposed to be an
important mechanistic link between periodontitis and AD
(Ryder, 2020). Periodontitis also causes widespread systemic
immune dysfunction, showing heightened pro-inflammatory
responses to Porphyromonas gingivalis and attenuated T-cell
responses (Gaudilliere et al., 2019). In the present study, we
aimed to identify immunological perturbations and immune
crosstalk potentially linking periodontitis with AD by leveraging
gene expression data.

Materials and methods

Gene expression datasets

We downloaded gene expression profile datasets related to
periodontitis (PD) and Alzheimer’s disease (AD) from the GEO
(https://www.ncbi.nlm.nih.gov/geo/) database. For PD, we chose
gingival tissue and for AD, we chose brain tissue data. The
datasets are listed in Table1.

Differential gene expression analysis

First, we converted the probe names into gene names based on
the downloaded data. If the same gene had multiple expression

TABLE 1 Statistical analysis of periodontitis and Alzheimer’s disease samples.

Disease Datasets Platform Case Control Total

PD GSE10334 GPL570 241 69 310

GSE16134 GPL570 183 64 247

GSE106090 GPL21827 6 6 12

AD GSE33000 GPL4372 310 157 467

GSE36980 GPL6244 33 47 80

GSE122063 GPL16699 56 44 100

GSE48350 GPL570 80 173 253

GSE5281 GPL570 87 74 161
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values in the same sample, we obtained the mean of the expression
values. As differences existed between the datasets, we first
combined the datasets for AD and PD each based on common
genes, and then applied the “ComBat” method in the R package
“SVA” for batch correction. Among the datasets related to AD, since
the series matrix of GSE33000 was a standardised dataset, the other
four datasets were standardised separately. We then combined the
5 standardised datasets and applied the “ComBat” method to
perform batch correction.

Differential expression gene analysis of the corrected datasets
was performed using the R package “limma”. For the AD datasets,
we used a threshold of p-value < 0.05, with | log2 (FC) | > 0 for
upregulated genes and log2 (FC) < 0 for downregulated genes. For
PD datasets we used p-value < 0.05, log2 (FC) ≥ 0.5 for upregulated
genes and log2 (FC) < =0.5 for downregulated genes.

Identification of crosstalk genes

The differentially expressed genes of AD and PD were
intersected and the shared genes were regarded as potential
crosstalk genes. Functional enrichment analysis of the crosstalk
genes was performed using “clusterProfiler” (GO Biological
processes and KEGG pathways, at a threshold of p-value < 0.05.

Crosstalk genes’ protein-protein interaction
(PPI) network analysis

We downloaded protein-protein related gene pairs from MINT
(http://mint.bio.uniroma2.it/mint/Welcome.do), HPRD (http://
www.hprd.org/index_html), BIOGRID (http://thebiogrid.org/),
DIP (http://dip.doe-mbi.ucla.edu/dip/Main.cgi), mentha (http://
mentha.uniroma2.it/index.php), PINA (http://cbg.garvan.unsw.
edu.au/pina/), InnateDB (http://www.innatedb.com/), and
Instruct (http://instruct.yulab.org/index.html) databases. Next,
PPI relationship pairs for the crosstalk genes were extracted, and
a PPI network was constructed using Cytoscape software, with the
plug-in “NetworkAnalyzer” to analyse the network’s topological
properties.

Crosstalk genes’ immune cell enrichment
analysis

XCell (https://xcell.ucsf.edu/) was used for cell type enrichment
of the crosstalk genes. XCell includes 64 cell types involving multiple
adaptive and innate immune cells, hematopoietic progenitors,
epithelial cells, and extracellular matrix cells, comprising
48 tumor microenvironment-related cells. We first extracted Case

FIGURE 1
(A, B) Principal coordinate analysis (PCA) plot of AD samples clustering before and after batch correction; (C, D) PCA analysis plot of PD samples
clustering before and after correction. The “ComBat” method in the R package “SVA” was used for batch correction.
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samples from AD and PD datasets and obtained the expression
values of crosstalk genes. The gene number limit for the raw
enrichment analysis method in the xCell package was reset and
the scores for immune-infiltrating cells corresponding to the
samples were calculated. Next, “transform scores” and “spill
over” were used to obtain the final corrected immune infiltrating
cell scores.

Analysis of immune-related genes and
infiltrating immune cells

Immune-related genes were downloaded from an earlier
publication (Charoentong et al., 2017) (782 genes, including
431 genes related to 15 adaptive immune cell types and 351 genes
related to 13 innate immune cell types) and combined with immune-
related genes from Innate DB (https://innatedb.com/annotatedGenes.
do?type=innatedb) and ImmPort (https://www.immport.org/home)
datasets. The expression values of these immune-related genes in the
AD and PD case samples were extracted and the xCell algorithm was
used to obtain the expression scores of infiltrating immune cells. The
differences between the immune cell fractions in the two diseases was
tested using the Wilcoxon’s test (p < 0.05).

Consensus cluster analysis of AD and PD
samples based on immune-related genes

We applied consensus clustering to the expression matrix
profiles of immune-related genes in AD and PD each, using the

“ConsensusClusterPlus” package. Average silhouette width, gap
statistic, and the elbow method were used to determine the
optimal number of clusters. Next, the samples were clustered
using clustering consistency.

Adaptive and innate immune cell bias
analysis

We combined the immune cell fractions and sample clusters of
case samples from AD and PD. For each consensus cluster, statistics
for cluster distribution of xCell scores for adaptive and innate
immune-related genes were computed. The difference between
scores of immune cells in different clusters was tested using the
Kruskal Wallis test. We also noted the overall scores of immune cells
in different clusters to determine immune cells that characterized a
cluster.

Identification of potential biomarkers using
LASSO logistic regression

We extracted the expression values of the crosstalk genes for the
case and control groups and applied LASSO logistic regression.
From the screened crosstalk genes, those common to AD and PD
were considered biomarker crosstalk genes. Next, adaptive immune
cell-related genes were identified based on the literature, and their
expression profiles in AD and PD datasets were screened using
LASSO logistic regression. The intersecting genes were recorded as
biomarker adaptive immune genes. For Innate immune cell-related

FIGURE 2
Volcano map depicting differentially expressed genes. (A) Volcano map ofdifferentially expressed genes in AD; (B) Volcano map of differentially
expressed genes in PD. The R package “limma”was used for differential gene expression analysis. For the AD datasets, a threshold of p-value < 0.05,| log2
(FC) | > 0 for upregulated genes and log2 (FC) < 0 for downregulated genes was used. For PD datasets, a p-value < 0.05, log2 (FC) ≥ 0.5 for upregulated
genes and log2 (FC) < = 0.5 for downregulated genes was used.
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genes, we combined those obtained from literature with those
obtained from the InnateDB dataset and obtained 1,335 innate
immune-cell related genes. LASSO logistic regression was
similarly applied, and biomarker innate immune genes were

identified. In the next step, the intersections of biomarker
crosstalk genes with biomarker adaptive immune cell-related
genes and biomarker innate immune cell-related genes were
determined. Receiver operating curve (ROC) analysis was

FIGURE 3
Crosstalk genes and functional enrichment analysis. (A) Venn diagram of differentially expressed genes obtained from AD and PD (B, C) Heat maps
showing the expression levels of the cross talk genes in AD and PD (D) Top 20 enriched biological processes in the crosstalk genes; (E) KEGG pathways
significantly enriched in the crosstalk genes. The top 50 crosstalk genes were used as input for the visualizations.
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performed using these genes’ expression values. Human KEGG
pathways and related genes were obtained from the KEGG
database (https://www.kegg.jp/) and pathways that correspond to
these intersecting genes were identified and all genes in each such
pathway were listed. Interactions between the KEGG pathways,
biomarker crosstalk genes, biomarker adaptive immune-cell
related genes, and biomarker innate immune cell-related genes
were identified.

Results

Differentially expressed genes

As evident in Figure 1, significant clustering by batch was noted for
both AD and PD gene expression datasets before correction and was
reduced post batch correction (Figure 1). Using the batch corrected data,
we obtained 4,398 differentially expressed genes in AD and
1,041 differentially expressed genes in PD, respectively. A volcano map
was used to display the distribution of the differentially expressed genes
(Figure 2).

Crosstalk genes enrichment in immune
related pathways

A total of 364 Crosstalk genes were obtained (Figure 3A) by
intersection of the differentially expressed genes of PD and AD. To
visualize changes in the expression values of crosstalk genes in different
sample types, heat maps were plotted using the “pheatmap” R package,
using top 50Crosstalk genes as the input (Figures 3B,C). To further analyze

the functions of the crosstalk genes functional enrichment analysis was
performed and significantly enriched GO Biological process and KEGG
Pathways were identified and the top 20 were visualized (Figures 3D–E).

Gene ontology analysis showed that the crosstalk genes mainly
regulated several leukocyte functions including chemotaxis,
migration, differentiation, and myeloid leukocyte related
immunity. In particular, neutrophil activation, degranulation, and
associated immunity. Blood coagulation, hemostasis and body fluid
balance regulation were also enriched among the crosstalk genes
(Figure 3D). Among the enriched KEGG pathways, leukocyte
transendothelial migration, S. auerus infection, and complement
and coagulation cascades showed the top-most significance. Innate
immune pathways including chemokine signaling, NF kappa beta
signaling, and TNF signaling pathways were noted. Lipid and
atherosclerosis pathway, epithelial cell signaling and cell-mediated
immune pathway B cell receptor signaling were also notably
enriched among others including rheumatoid arthritis, Fc epsilon
R1 signaling and viral protein interaction with cytokine receptor
(Figure 3E).

Key crosstalk genes identified through PPI
network analysis

We extracted PPI relationship pairs for the 364 crosstalk genes
and constructed a PPI network (Figure 4), which showed
4,870 nodes and 9,657 edges. The topological properties of the
network were analyzed, and the top 30 hub node genes (Table 2)
were identified based on the degree of gene connectivity and
considered as the most important genes nodes in the protein
interaction network relationship.

VCAM1, ITGA4 and VIM, were noted as the top genes playing
an important role in the network, and were upregulated in both AD
and PD. Several of the gene nodes showed opposing patterns of
regulation in the two diseases. KRT10, WNK1, MAPK13, TUBB2A
and CCND1 were upregulated in AD but downregulated in PD.
Conversely, RABAC1 and HYOU1 were downregulated in AD but
upregulated in PD.

Immune cell fractions enriched by the
crosstalk genes show comparative
differences between AD and PD

Using the xCell package, scores of immune-infiltrating cells
corresponding to the 364 Crosstalk genes were calculated and
“transform scores” and “spillOver” were applied to obtain the final
corrected immune cell scores. Scores of 55 immune cell types in the AD
and PD datasets were noted and a heatmap was used to display the
scores of immune infiltrating cells in AD and PD datasets (Figure 5A).

A violin diagram drawn using “vioplot” was used to depict the
scores of each immune infiltrating cell in both diseases (Figures
5B–D). The difference in scores of immune infiltrating cells for the
Case samples of AD and PD datasets was tested using Wilcoxson’s
test. The cells were grouped in three categories and displayed
(Figures 5B–D). We can see that several immune cell types are
closely related in both diseases. AD samples showed highly
significantly higher scores for adipocytes, CD4+ and CD8+ T-cell

FIGURE 4
Crosstalk genes’ protein-protein interaction (PPI) network
analysis (30 hub nodes obtained from the topological analysis are
displayed).
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subsets, cDC and DC cell types. Endothelial cells, mast cells and
macrophage cells, along with neutrophils, MSC, Th2, HSC, iDC,
plasma cells and pro-B cells were comparatively overexpressed in
AD, in particular, M2 macrophage cells. Chondrocytes, osteoblasts
and fibroblast cells showed greater overexpression in PD.

To test the correlation between immune cells, a correlation
analysis of xCell scores for Case samples for each immune cell
type in the two data sets was applied (Figures 6A, B).

For AD, immune cell CD8+ Tem and Th2 cells were highly
positively correlated (COR = 0.8196), CD8+ Tcm and CD8+ Tem
were highly positively correlated (COR = 0.8127), CD8+ T-cells and

CD8+ Tcm were highly positively correlated (COR = 0.7822). B-cells
were highly negatively correlated with Basophils (COR = −0.7763).
For PD, CD8+ Tcm and CD8+ Tem were highly positively correlated
(cor = 0.9695), Tgd cells and Th2 cells were highly positively
correlated (cor = 0.9657), CD8+ Tem and Tgd cells were highly
positively correlated (0.9500), CD8+ Tem and Th2 cells were highly
positively correlated (cor = 0.8954). MSC and Preadipocytes were
highly negatively correlated (cor = −0.7754), CD4+ memory T-cells
and Pericytes were highly negatively correlated (cor = −0.7173),
Memory B-cells and pro B-cells were highly negatively correlated
(cor = −0.6979).

TABLE 2 Topological characteristics of the top 30 gene nodes in the crosstalk-gene PPI network.

Name AD_PD Degree Average shortest
path length

Betweenness
centrality

Closeness
centrality

Clustering
coefficient

Topological
coefficient

VCAM1 up_up 673 2.612737 0.150601 0.38274 0.002503 0.003982

ITGA4 up_up 528 2.611707 0.099121 0.382891 0.003996 0.004326

VIM up_up 320 2.645095 0.105724 0.378058 0.003174 0.006497

SHC1 up_up 273 2.812861 0.065675 0.35551 0.005602 0.009555

LYN up_up 243 2.731451 0.072094 0.366106 0.006462 0.007585

IL7R up_up 199 2.86892 0.035555 0.348563 0.002335 0.010105

UBC 184 2.253504 0.340648 0.443753 0.005702 0.010612

TXN down_down 132 2.796785 0.027568 0.357553 0.0096 0.011983

TNFRSF1B up_up 131 2.958368 0.032291 0.338024 0.001174 0.011297

TUBB2A up_down 124 2.865829 0.030234 0.348939 0.003278 0.012209

CCND1 up_down 121 3.020816 0.02919 0.331036 0.00124 0.017982

BTK up_up 112 2.934048 0.022542 0.340826 0.015766 0.017501

AIM2 up_up 109 3.370363 0.02737 0.296704 0 0.016514

PTP4A3 up_up 109 3.336974 0.024112 0.299673 1.70E-04 0.017308

MAPK13 up_down 103 3.092745 0.013791 0.323337 0 0.024619

HCK up_up 100 2.968879 0.018268 0.336827 0.012525 0.020322

SERPINH1 up_up 96 2.955894 0.020851 0.338307 0.003728 0.017841

VAV1 up_up 95 2.930338 0.014357 0.341258 0.028219 0.019849

GNAI1 down_down 93 3.09357 0.029624 0.323251 0.001636 0.015197

WNK1 up_down 92 3.109439 0.022769 0.321601 4.78E-04 0.022952

UCHL3 down_down 90 3.072135 0.018117 0.325507 0.002747 0.021144

HYOU1 down_up 80 3.079555 0.015011 0.324722 0.001266 0.02724

RPN2 up_up 79 3.097486 0.01577 0.322843 0 0.027241

TXNDC5 up_up 78 3.068219 0.019356 0.325922 0 0.025968

RABAC1 down_up 71 3.022465 0.01991 0.330856 0.002414 0.016747

APOE up_up 70 2.906018 0.020983 0.344113 0.004555 0.016556

PLCG2 up_up 69 2.955482 0.010744 0.338354 0.047315 0.024349

KRT10 up_down 68 2.854699 0.00891 0.3503 0.04302 0.027171

NRIP1 down_down 68 3.084295 0.015047 0.324223 0 0.027749

EAF1 down_down 67 3.571517 0.019232 0.279993 0.003618 0.02098
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Immune-related genes and immune cells
enriched in AD and PD

The immune-related genes downloaded from the literature
included genes related to 15 Adaptive immune cell and 13 Innate

immune cell types (Figure 7A). Further immune-related genes
were obtained from InnateDB and ImmPort databases. We
merged the immune-related genes acquired from literature,
InnateDB, and ImmPort databases to obtain 3,046 immune
genes as the final immune-related gene dataset. We extracted

FIGURE 5
Expression of immune cells in AD and PD. (A) Thermographic representation of immune cell expression scores in AD and PD. (B–D) Violin diagram of
immune cells expression scores in AD and PD. The “xCell” package was used to obtain scores of 55 immune infiltrating cells in both disease sample
datasets and differences were tested using Wilcoxon’s analysis.

Frontiers in Genetics frontiersin.org08

Jin et al. 10.3389/fgene.2023.1230245

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1230245


the expression values of these 3,046 immune genes in the Case
samples of AD and PD and found that 1,142 immune genes were
expressed in AD whereas 2,396 immune genes were expressed in
PD. Using the xCell algorithm, we obtained the expression scores

of immune cells in the Case samples of AD and PD. Since the
names of 64 cell types included in xCell were different from the
names of 28 cell types listed in literature, we identified and listed
the cell types (Table 3).

FIGURE 6
Correlation of immune cell scores in Case groups of (A) AD and (B) PD. xCell scores for each immune cell type in the case samples were subjected to
Spearman’s correlation analysis.
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10 adaptive and 10 innate immune cell types were noted in xCell
and are marked with different colors. These 20 cell types were
extracted for subsequent analysis and their scores were analysed.
The fraction of these immune cells is depicted in Figure 7B.

Among the adaptive immune cells, most cells showed higher
expression in AD, while CD4+ naive T−cells and B−cells were highly
expressed in PD samples as compared with AD samples. The
expression of Eosinophils was higher in AD disease samples than
in PD disease samples. Macrophages M2, Natural killer T cell (NKT)
and CD8+ naive T-cells were highly expressed in AD and PD
samples. Macrophages M2 and Natural killer T cell (NKT) are
innate immune cells, while CD8+ naive T-cells are adaptive.

A violin diagram was drawn to depict the scores of each immune
infiltrating cell in both diseases (Figure 8A) and differences between
AD and PD datasets were tested using Wilcoxon’s test (p < 0.05).

Macrophages M2, Natural killer T cell (NKT) and CD8+ naive
T-cells were found to be significantly different in AD and PD.
Then, we examined the correlation between the 20 immune cells in
AD and PD (Figures 8B, C). CD8+ T-cells and CD8+ naive T-cells,
CD4+ memory T-cells and CD4+ T-cells were highly positively
correlated in AD and PD (Table 4).

Consensus cluster analysis of immune cells
based on immune genes

1,142 immune genes found expressed in AD and 2,396 immune
genes found expressed in PD were subjected to Consensus
Clustering. The maxK values were determined using average
silhouette width, gap statistic, and the elbow method to find the

FIGURE 7
(A) Adaptive immune gene-associated immune cells and Innate gene-associated immune cells. (B, C) Expression levels of 20 Adaptive and Innate
immune cells in AD and PD.
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optimal number of clusters for the AD and PD expression matrices
(Figures 9A–F).

As seen in Figure 9, the number of optimal clusters denoted by
the three methods were different, which may be related to the large
number of gene features and the differences in the algorithms. In
AD, the maximum number of clusters was 5 and the minimum
number was 2. In PD, the maximum number was 6 and the
minimum number was 1. Clustering consistency results for

2-5 clusters in AD, and 2-6 clusters in PD were analysed. Key
clustering consistency results for AD and PD are depicted in Figures
10A–F.

The results show that to get the final k value, the descending
slope of the Central Line and the relative change of the area under
the CDF curve between K and K-1 should be as small as possible. We
finally choose K = 4 for AD and PD both. Figure EF shows the
correlation between AD and PD samples at the selected k values. The

TABLE 3 Common immune cells xCell and literature (Charoentong et al., 2017).

[xCell] cells 1 [xCell] cells 2 [Charoentong et al., 2017]Cells [Charoentong et al., 2017] cells immunity

aDC iDC Activated B cell Adaptive

Adipocytes Keratinocytes Activated CD4 T cell Adaptive

Astrocytes ly Endothelial cells Activated CD8 T cell Adaptive

B-cells Macrophages Central memory CD4 T cell Adaptive

Basophils Macrophages M1 Central memory CD8 T cell Adaptive

CD4+ memory T-cells Macrophages M2 Effector memeory CD4 T cell Adaptive

CD4+ naive T-cells Mast cells Effector memeory CD8 T cell Adaptive

CD4+ T-cells Megakaryocytes Gamma delta T cell Adaptive

CD4+ Tcm Melanocytes Immature B cell Adaptive

CD4+ Tem Memory B-cells Memory B cell Adaptive

CD8+ naive T-cells MEP Regulatory T cell Adaptive

CD8+ T-cells Mesangial cells T follicular helper cell Adaptive

CD8+ Tcm Monocytes Type 1 T helper cell Adaptive

CD8+ Tem MPP Type 17 T helper cell Adaptive

cDC MSC Type 2 T helper cell Adaptive

Chondrocytes mv Endothelial cells Activated dendritic cell Innate

Class-switched memory B-cells Myocytes CD56bright natural killer cell Innate

CLP naive B-cells CD56dim natural killer cell Innate

CMP Neurons Eosinophil Innate

DC Neutrophils Immature dendritic cell Innate

Endothelial cells NK cells Macrophage Innate

Eosinophils NKT Mast cell Innate

Epithelial cells Osteoblast MDSC Innate

Erythrocytes pDC Monocyte Innate

Fibroblasts Pericytes Natural killer cell Innate

GMP Plasma cells Natural killer T cell Innate

Hepatocytes Platelets Neutrophil Innate

HSC Preadipocytes Plasmacytoid dendritic cell Innate

Smooth muscle pro B-cells

Tgd cells Sebocytes

Th1 cells Skeletal muscle

Th2 cells Tregs
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rows and columns of the matrix represent the samples. Consistency
matrix values are shown in white to dark blue on a scale from 0
(impossible to cluster together) to 1 (always cluster together). The
consistency matrix is arranged according to the consistency
categories (tree at the top of the heatmap). The bar between the
tree and the heat map is the category. The more scattered the dark
blue squares, the weaker the clustering results. The cluster-
consensus and item-consensus for AD and PD was analysed
using the calcICL method in the ConsensusClusterPlus package
(Figures 11A–D).

From Figure 11 we can see whether the classification of each
sample has sufficient fidelity, to help determine the k value. As
shown in Figures 10, 11 we clustered the AD and PD disease samples
in 4 clusters each. The sample clustering results and the 20 Adaptive
and Innate immune cell scores for AD and PD across all samples are
shown (Figure 7B). Next, we combined the immune cell fractions

and sample cluster results for the Case samples from AD and PD for
subsequent analysis.

Adaptive and innate immune cell bias
analysis

For each consensus cluster, we calculated the cluster distribution
of xCell scores of Adaptive and Innate immune genes in AD and PD
and presented these in a box plot (Figures 12A–D). The Kruskal.
Wallis test was performed to test differences in scores of immune
cells in different clusters.

In Figure 12 we can see that there were significant differences
between immune cells in different clusters, and the greater this
difference, the more marked the difference between the clusters. We
can also see the overall scores of immune cells in different clusters.

FIGURE 8
(A) Comparison of scores of 20 immune infiltrating cell scores in AD and PD; (B) Correlation between infiltrating immune cell scores in AD;
Differences were tested using Wilcoxon’s analysis. (C) Correlation between infiltrating immune cell scores in PD. Spearman’s correlation analysis was
performed.
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The top 3 immune cells from the significant clusters in AD and PD
were considered high expression immune cells that play an
important role in disease pathology (Table 5).

The results showed that B-cells, CD4+ memory T-cells and CD8+

naive T-cells were adaptive immune cells that were highly expressed
in all 4 clusters of both diseases, and innate immune cells
Macrophages M2 and NKT, were similarly highly expressed in all
clusters. Adaptive immune cells CD8+ naive T− Cells were
significantly different between cluster 2 and cluster 3 in AD, and
in PD, both.

We extracted the immune-related genes from the Crosstalk gene
dataset and obtained 112 genes in total. Then we extracted the
expression values of these 112 genes in the Case samples of AD and
PD. Correlation analysis was conducted by combining these values
with the xCell scores. These two datasets pertaining to each cluster
were subjected to correlation analysis. Correlation results were
obtained for each of the 8 clusters and are depicted (Figures 13A,
B) allowing an estimation of immune cells bias in the different
clusters, and also to allow for selection of specific cluster of subjects
for longitudinal study.

The results show immune cell biases in different clusters. For
adaptive immune-related genes, cluster1 and cluster4 in PD were
highly correlated with a variety of immune cells. In cluster2 and
cluster3, immune genes were positively correlated with immune
cells. Adaptive immune related genes were highly correlated with
a variety of immune cells in cluster 4 of AD, and participated in a
variety of immune patterns (Figure 13A). For innate immune
related genes, multiple immune cells in cluster4 of PD and
cluster4 of AD were highly correlated, suggesting that innate
genes were more active in cluster4 samples of PD and AD
(Figure 13B).

Candidate biomarkers identified using
LASSO logistic regression

Datasets of expression values for Case and Control samples of
AD and PD were obtained. The expression values of the crosstalk
genes were subjected to LASSO Logistic Regression to screen the
crosstalk genes (Figures 14A, B). The intersecting genes were
selected and 127 genes were recorded as the candidate biomarker
crosstalk genes.

For Adaptive immune-related genes, we extracted 431 genes’
expression profiles, which included 210 genes found in AD and
408 genes found in PD datasets and applied LASSO Logistic
Regression (Figures 14C, D). The intersecting genes among AD
and PD were selected and a total of 78 genes were recorded as the
biomarker adaptive immune genes.

For Innate immune genes, we combined the innate immune
genes obtained from literature with those obtained from InnateDB
data to obtain 1,335 Innate immune genes. 571 such genes were
found in AD and 1,183 in PD. LASSO Logistic Regression was
applied (Figures 14E, F) and a total of 32 intersecting genes were
recorded as biomarker Innate immune gene. A diagram displayed
the variation of the remaining variables’ gene coefficients with
different lambda values from the LASSO regression analysis.

We obtained 3 genes from the intersection of the biomarker
crosstalk genes and the biomarker adaptive immune genes, and
1 gene (DEFB1) from the intersection of the biomarker crosstalk
genes with the biomarker innate-immune genes. ROC analysis using
the expression values of these 4 genes yielded 3 genes (DUSP14,
F13A1, SELE) (Figures 15A, B).

AUC (AUC>70%) values obtained for DUSP14, F13A1, SELE
and DEFB1 in discriminating PD were higher than those for AD
prediction. SELE performed better than the other 3 genes in
discriminating both AD and PD. To further analyse the functions
of these genes, we obtained datasets of human KEGG pathways and
related genes and mined the corresponding pathways, and then
isolated all the genes in each pathway.We examined whether there is
interaction between each pathway and the biomarker crosstalk
genes, biomarker adaptive immune genes, and biomarker innate
immune genes (Figure 15C). The results showed that SELE, an
adaptive immune gene, mainly regulates the TNF signalling
pathway, cell adhesion molecules (CAMs) and fluid shear stress
and atherosclerosis. Within the TNF signalling pathway,
VCAM1 represents a specific type of Cell adhesion Molecule
(CAM). Within Cell adhesion Molecules (CAMs), the adaptive
immune gene ITGB2 regulates both Staphylococcus aureus
infection and complement and coagulation cascades. From
Figure 15C, we can see that F13A1 is mainly involved in the
regulation of complement and coagulation cascades pathway.
DEFB1, an innate immune-related gene, is mainly involved in
the regulation of S. aureus infection and ABC transporters.
Within S. aureus infection, other crosstalk genes such as
KRT24 and FCGR2B also participate in the regulation. In
addition, ITGB2 and other genes are associated with other
pathways to regulate the immune function in both AD and PD.
It can be inferred from the above that immune-related crosstalk
genes interact with other genes and jointly influence the two
diseases.

TABLE 4 20 types of immune cells highly positively correlated (COR ≥0.6) in AD
and PD.

Cell1 Cell2 PD_cor PD_p-value

CD8+ naive T-cells CD8+ T-cells 0.81793 8.186E-105

CD4+ memory T-cells CD4+ T-cells 0.801068 1.9407E-97

CD4+ naive T-cells CD4+ T-cells 0.799333 1.0145E-96

B-cells CD4+ naive T-cells 0.660739 2.7763E-55

CD8+ Tem NK cells 0.654085 7.5844E-54

CD4+ naive T-cells CD8+ T-cells 0.652631 1.5451E-53

B-cells CD8+ T-cells 0.643272 1.3744E-51

CD4+ T-cells CD8+ T-cells 0.633225 1.433E-49

CD4+ naive T-cells Macrophages 0.628991 9.6533E-49

Cell1 Cell2 AD_cor AD_p-value

CD8+ naive T-cells CD8+ T-cells 0.854951 6.467E-163

Macrophages Macrophages M1 0.796427 2.673E-125

CD4+ memory T-cells CD4+ T-cells 0.767739 4.144E-111

CD4+ T-cells Mast cells 0.62343 2.8898E-62

Eosinophils NKT 0.620524 1.5309E-61
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Discussion

The present bioinformatic study applied immunocorrelation
analysis to identify immune-related genes, cells and pathways

that might serve as key linkage mechanisms between AD and
PD. We found that innate immune cells M2 macrophages and
NKT are highly expressed in both AD and PD. M2 macrophages are
primarily involved in the Th2 immune response. Th2 cells produce

FIGURE 9
Cluster number analysis using different methods (A–C) Average silhouette width, Gap statistic, and Elbow method to analyse the number of AD
clusters; (D–F) Average silhouette width, Gap statistic, and Elbow method to analyse the number of PD clusters. The “ConsensusClusterPlus” R package
was applied for cluster analysis.
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FIGURE 10
Cluster consistency analysis. (A, B) Consistent cumulative distribution function (CDF) plots for AD and PD. This figure shows the cumulative
distribution function of scores with different values of K, which is used to determine the approximate maximum value of CDF for a selected k value, and
the cluster analysis result that is the most reliable. That is, the k value with a small descending slope of CDF is considered. (C, D)Delta Area Plot of AD and
PD: This figure shows the relative changes of areas under the CDF curve compared to k and k-1. When k = 2, since there is no k = 1, the first point
represents the total area under the CDF curve at k = 2 (that is, the area of the center line in Figure AB), rather than the relative change in area. (E, F)
Consistent clustering diagram of AD and PD.
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cytokines that promote the humoral immune response, including
IL-4, IL-5, IL-6, IL-10 and IL-13 (Sun et al., 2021). NKT cells
mediate proinflammatory and immunomodulatory effects, which
range from B-cell regulation, production of specific antibodies,
suppression of autoimmunity to cytokine production, dendritic
cell crosstalk, and T/B cell interactions (Seidel et al., 2020a).
Infiltration of the brain by peripheral NK cells with altered
cytotoxic properties has been documented as a contributory
mechanism to neuroinflammation in AD but the specific roles of
infiltrating NKT cells, which share phenotypic and functional
properties are less well understood in AD (Busse et al., 2021; Lu
et al., 2021). In PD, NKT cells are known to be activated by several
Gram-negative periodontal pathogens can play proinflammatory
roles (Seidel et al., 2020b). Of note, gene expression based immune

cell infiltration analysis may include the extrapolation of certain
genes that may also be expressed in non-immune cell lineages under
conditions such as stress or inflammation, and this could account for
the prediction of adipocytes and hepatocyte expression, which is
unsupported by experimental evidence. For instance, ICAM-1,
expressed on immune cell lineages, is overexpressed on
adipocytes and hepatocytes (Farhood et al., 1995; Singh et al., 2023).

Among the adaptive immune cells, B-cells, CD4+ memory
T-cells and CD8+ naive T-cells were found highly expressed in all
4 clusters of AD and PD. B cells might exert protective functions in
periodontitis. B-cell-deficient mice show alveolar bone loss without
bacterial infection, while clinical evidence shows that B cells and
plasma cells, along with osteoclastogenic factors, are involved in
alveolar bone destruction in periodontitis (Zouali, 2017). AD is

FIGURE 11
Cluster-consensus and item-consensus for AD and PD. (A–B) Cluster-Consensus Plot for AD and PD. These figures show the cluster-consensus
value of each cluster under AD and PD (The mean value of pairwise consensus values of members in the cluster). The higher the value, the higher the
stability. It can be used to assess the cluster-consensus values under the same and between different k values. We can see in (A), for AD, when k = 4, the
mean values are high. In (B), for PD, when k = 4, the mean values are also very high. (C, D) Item-consensus Plot for AD and PD: This figure shows the
score of each sample for AD and PD when k = 4.
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associated with B cell accumulation in brain tissue which can
produce IgG to induce microglial activation (Park et al., 2022).
Experimental evidence supports the notion of infectious disease
driven microglial activation in AD (Hao et al., 2022) along with

peripheral leukocyte infiltration of brain tissue secondary to
persistent systemic inflammation (Lu et al., 2021), as seen in
periodontitis, in particular NK cell infiltration (Le Page et al.,
2018), and our findings were largely consistent. High levels of

FIGURE 12
Cluster level expression of Adaptive and Innate immune genes in AD and PD. (A, B) Adaptive immune gene expression in AD and PD. (C, D) Innate
immune gene expression in AD and PD. ns: p > 0.05; *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001. The xCell scores of Adaptive and Innate
immune genes in AD and PD were compared using Kruskal. Wallis tests to test differences in scores of immune cells in different clusters.
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NKT cell-related immune genes were also implicated in AD in our
results, and aberrant NKT cell homeostasis has been reported in AD
(Sh et al., 2021). The CD8+ naïve T cell subset was also
overrepresented in AD samples, consistent with experimental
evidence demonstrating CD8+ T cell infiltration of AD-affected
brain parenchyma which have been associated with upregulated
IFN-β signalling and infection (Altendorfer et al., 2022).
Eosiniophils were also markedly overrepresented, and
eosinophilic inclusions are well documented in Alzheimer’s
neurofibrillary tangles (Qian et al., 2022). Eosinophilic signatures
have also been inversely correlated with AD stage. The
M2 macrophage signature noted in AD samples is corroborated
by peripheral macrophage infiltration in experimental models of AD
(Rentsendorj et al., 2018) and the M2 phenotype has been correlated
with AD but not experimentally validated (Lin C. et al., 2022). M1/
M2 phenotype switch is also a key feature of microglial changes in
AD, and while P. gingivalis infection is associated with M1 type
microglial switch, the stage of AD is an important determinant of
M1/M2 microglial balance (Lin J. et al., 2022). Ageing and
senescence are associated with deregulation of immune responses,
and higher risk of both AD and PD. Furthermore, gender-based
differences in AD pathology are recognised. A limitation of this
investigation is that the datasets were not matched for age, gender,
and disease stage which may induce confounding and should be
addressed in future clinical investigations. Cluster analysis revealed
innate immunity associated genes were comparatively highly
expressed in cluster4 samples of AD and PD, and whether these
samples represent a distinct phenotype, a later stage of disease
progression, or represent more advanced age, begets further
questions which should be dissected in future longitudinal studies
to fully understand the PD-AD link.

Using a data mining approach with a series of reductive analyses,
we obtained a 3 gene set, DUSP14, F13A1 and SELE, as key crosstalk
genes linking PD and AD, which was largely supported by
experimental and clinical data. The mechanistic role of
DUSP14 in mediating AD and PD is not investigated but several
DUSP genes are shown to be deregulated during AD pathogenesis
(An et al., 2021). Targeting DUSP 14 can counter
NLRP2 inflammasome mediated immune-inflammatory pathways
and has shown positive effects in ameliorating neuroinflammtion
and cognitive dysfunction (Que et al., 2020). There are few reports
regarding the roles of DUSP14 in the literature, mainly focusing on

pathways related to T cells. DUSP14 can downregulate T-cell
receptor signalling by inhibiting TGF-β-activated kinase 1-
binding protein 1 (TAB1) activation (Yang et al., 2014).
DUSP14 is a mitogen-activated protein kinase phosphatase that
plays a critical role in the regulation of T cell activity.
TRAF2 mediated Lys63-linked ubiquitination of DUSP14 leads to
DUSP14 activation in T cells (Yang et al., 2016). DUSP14 directly
interacts with TGF-beta-activated kinase 1 (TAK1)-binding protein
1 (TAB1) and dephosphorylated TAB1 at Ser(438), leading to
TAB1-TAK1 complex inactivation in T cells and can
downregulate T-cell receptor (TCR) signalling by inhibiting
TAB1 activation (Yang et al., 2014). Activated DUSP14 also
directly dephosphorylates extracellular signal-regulated kinases
(ERK) and attenuates the ERK signalling pathway. TRAF2-
mediated ubiquitination of Lys63-linked DUSP14 also enhances
its phosphatase activity (Chen et al., 2019). Protein arginine
methyltransferase (PRMT)5-mediated arginine methylation may
sequentially stimulate TRAF2-mediated DUSP14 ubiquitination
and phosphatase activity, leading to inhibition of TCR signalling
(Yang et al., 2018). Therefore, enhancement/activation of
DUSP14 or DUSP14 upstream molecules is a potential modality
for the attenuation of autoimmune diseases such as systemic lupus
erythematosus (SLE) (Chuang and Tan, 2019).

F13A1 is involved in clot stabilization and implicated in a
number of immunoinflammatory diseases (Dull et al., 2021). The
role of F13A1 has been investigated in AD. F13A1 subunit was
detected by immunohistochemistry in a subset of AD reactive
microglia, while F13A1 Val34Leu gene polymorphism is
associated with sporadic AD where homozygous LL genotype
shows about a fourfold higher risk of developing AD compared
to the homozygous VV genotype (Gerardino et al., 2006).
F13A1 may also influence the maintenance of neural connections
(Festoff et al., 2001). The F13A1 204Phe allele is strongly associated
with ischemic stroke in young women and the homozygous
genotype (Phe/Phe) are associated with manyfold higher stroke
risk than heterozygous (Tyr/Phe) genotype (Pruissen et al., 2008).
Functionally, a pro-angiogenic function of F13A1 is affected by the
interaction between vascular endothelial growth factor receptor 2
(VEGFR2) and integrin αvβ3 on the cell membrane, which facilitates
important steps in granulation tissue formation at wound sites.
F13A1 deficiency can thus present as intracranial haemorrhage,
delayed bleeding or chronic wounding of the skin and impaired

TABLE 5 Significant immune cell populations in AD and PD.

Adaptive immune cells top 3 Innate immune cells top 3

AD cluster1 B-cells CD4+ memory T-cells CD8+ naive T-cells Eosinophils Macrophages M2 NKT

cluster2 B-cells CD8+ T-cells CD8+ naive T-cells Eosinophils Macrophages M2 NKT

cluster3 B-cells CD4+ memory T-cells CD8+ naive T-cells Eosinophils Macrophages M2 NKT

cluster4 B-cells CD4+ memory T-cells CD8+ naive T-cells Eosinophils Macrophages M2 NKT

PD cluster1 B-cells CD4+ memory T-cells CD8+ naive T-cells Macrophage Macrophages M2 NKT

cluster2 B-cells CD4+ memory T-cells CD8+ naive T-cells Macrophage Macrophages M2 NKT

cluster3 B-cells CD4+ memory T-cells CD8+ naive T-cells Macrophage Macrophages M2 NKT

cluster4 B-cells CD4+ memory T-cells CD8+ naive T-cells Macrophage Macrophages M2 NKT
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mucosal healing. F13A1 thus functions to link primary hemostasis,
coagulation, and definitive tissue healing. Another important
recently identified function of F13A1 is its ability to control
cellular infiltration by binding to specific macromolecules,

thereby limiting bacterial spread at the wound site and
promoting host cell migration and survival (Gemmati et al.,
2016). In the brain, F13A1 expression has been detected by
immunohistochemistry in reactive microglia during glioma

FIGURE 13
Correlation analysis applied to immune cell scores in different clusters. (A) The correlation of adaptive immune-related genes in different clusters in
AD and PD; (B) The correlation of innate immune-related genes in different clusters in AD and PD. Spearman’s correlation analysis was performed.
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FIGURE 14
The optimal lambda values obtained from LASSO regressionmodelling of innate immune genes and adaptive immune genes. (A, B)Crosstalk genes:
relationship between lambda value and mean square error in AD and PD Lasso regression analysis. The abscissa is log (lambda) and the ordinate is mean
square error. There are two dashed lines in the figure, one is the value of λ with the minimummean square error and the other is the value of λ with the
standard error from the minimum mean square error. (C, D) Adaptive immune genes: lambda value and mean square error in AD and PD Lasso
regression analysis. (E, F) Innate immune genes: lambda value and mean square error in AD and PD Lasso regression analysis.
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formation, which is a distinctive feature of AD pathogenesis
(Gerardino et al., 2006). F13A1 levels are gradually elevated from
controls to mild cognitive impairment (MCI) and AD. More
importantly, F13A1 in the serum proteome can serve as a

potential non-invasive early diagnostic marker of MCI and AD
(Kang et al., 2016). Of note, PD pathogens can induce the
upregulation of the coagulation cascade-related genes in
endothelial cells (Salmina et al., 2010) and may contribute the

FIGURE 15
Predictive efficacy of DUSP14, F13A1, SELE and DEFB1 in AD and PD. (A, B) ROC results of DUSP14, F13A1, SELE and DEFB1 in AD and PD; (C)
Functional correlation analysis results of DUSP14, F13A1, SELE and DEFB1.
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endothelial dysfunction inherent to AD pathogenesis (Hossain et al.,
2020).

SELE encodes for E-selectin and is involved in Leukocyte/
endothelial cell adhesion, and its expression is reported to
increase 4-fold in Treponema denticola oral infections
(Chukkapalli et al., 2014), a subgingival oral spirochete species
which is a key periodontal pathogen (Zeng et al., 2021). Its role
in several age-associated conditions such as age-related macular
degeneration (Mullins et al., 2011) and other conditions. SELE has
been found to be related with peripheral arterial occlusive disease
(Shaker et al., 2010). The serum level of SELE has been found
significantly elevated in systemic sclerosis with early onset disease
(Hasegawa et al., 2014). Regarding periodontitis, the Ser128Arg
polymorphism is associated with periodontitis (Houshmand et al.,
2009). SELE expression is also found positively correlated with the
duration of Sjogren’s syndrome, characterised by dysregulation of
circulating immune cells, T cells and antigen presenting cells and
vascular endothelial extravasation (Turkcapar et al., 2005;
Blochowiak et al., 2017). In an animal model of AD, SELE
expression was found significantly elevated, indicating its role in
AD development (Wang et al., 2020). The cell-surface glycoprotein
E selectin plays an important role in immune adhesion (McEver,
2015). It is also associated with the accumulation of white blood cells
at sites of inflammation by mediating cell adhesion to the intima of
blood vessels. As a clinical diagnosis, AD shows variable pathology.
Clinically, E-selectin has been found significantly raised in the
cerebrospinal fluid (CSF) of AD patients without typical
signature biomarker profiles, suggesting it may specifically mark
the vascular mechanisms underlying AD pathology (Li et al., 2015).
The SELE Ser128Arg gene polymorphism has also been associated
with AD (Horstmann et al., 2010; Ribizzi et al., 2010; Flex et al.,
2014) and SELE polymorphisms are also associated with Lewy body
dementias (Rajkumar et al., 2020). The findings of the functional
correlation analysis indicate an interaction between these candidate
biomarker genes with key pathways intersecting adaptive immune
responses, TNF alpha mediated inflammation, and endothelial
dysfunction, supporting PD infection-mediated systemic immune
dysregulation at the core of the AD-PD link.

Overall, the findings of this bioinformatic study were supported
by exisiting experimental evidence addressing PD and AD but the
roles of the discovered biomarkers DUSP14, F13A1 and SELE in
mediating the link between the two diseases has not been addressed.
A major limitation of the present study is the lack of validation
experiments using cell, animal or clinical data. Therefore, the
present data must be considered as a theoretical premise for
further investigation that explores the validity of these
biomarkers in large-scale clinical trials and their mechanistic
roles in experimental or translational research focused on
immune mechanisms implicated in AD and PD linkage.

Conclusion

Bioinformatic analysis integrating experimental
transcriptomic data from Alzheimer’s disease and
periodontitis revealed the most robust potentially shared
molecular linkages. Three biomarker crosstalk genes; DUSP14,
F13A1 and SELE were identified as the most robust signature.

Macrophages M2 and NKT among innate immune cells, and
B-cells, CD4+ memory T-cells and CD8+ naive T-cells among
adaptive immune cells emerged as top immune cells linking PD
and AD. These findings warrant future research in experimental
and clinical studies.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’ legal
guardians/next of kin in accordance with the national legislation and
the institutional requirements.

Author contributions

Conceptualization, XH and GS; methodology, JJ; software, MG,
and MC; validation, JJ, YL, and LZ; formal analysis, BZ;
investigation, MC; resources, JJ and MG; data curation, JJ and
MG; writing—original draft preparation, JJ and MG;
writing—review and editing, XH and GS; visualization, MG;
supervision, XH; project administration, XH. All authors
contributed to the article and approved the submitted version.

Acknowledgments

We want to thank my colleagues for their collaboration and help
during gathering data for my research project. We would also thank
my parents and my lovely kid for their kindness to let me have time
and energy to finish this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Genetics frontiersin.org22

Jin et al. 10.3389/fgene.2023.1230245

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1230245


References

Agrawal, S., Baulch, J. E., Madan, S., Salah, S., Cheeks, S. N., Krattli, R. P., Jr.,
et al. (2022). Impact of IL-21-associated peripheral and brain crosstalk on the
Alzheimer’s disease neuropathology. Cell Mol. Life Sci. 79 (6), 331. doi:10.1007/
s00018-022-04347-6

Altendorfer, B., Unger, M. S., Poupardin, R., Hoog, A., Asslaber, D., Gratz, I. K., et al.
(2022). Transcriptomic profiling identifies CD8+ T cells in the brain of aged and
alzheimer’s disease transgenic mice as tissue-resident memory T cells. J. Immunol. 209
(7), 1272–1285. doi:10.4049/jimmunol.2100737

An, N., Bassil, K., Al Jowf, G. I., Steinbusch, H. W., Rothermel, M., de Nijs, L., et al.
(2021). Dual-specificity phosphatases in mental and neurological disorders. Prog.
Neurobiol. 198, 101906. doi:10.1016/j.pneurobio.2020.101906

Baima, G., Romandini, M., Citterio, F., Romano, F., and Aimetti, M. (2022).
Periodontitis and accelerated biological aging: A geroscience approach. J. Dent. Res.
101 (2), 125–132. doi:10.1177/00220345211037977

Bairamian, D., Sha, S., Rolhion, N., Sokol, H., Dorothee, G., Lemere, C. A., et al.
(2022). Microbiota in neuroinflammation and synaptic dysfunction: a focus on
Alzheimer’s disease. Mol. Neurodegener. 17 (1), 19. doi:10.1186/s13024-022-00522-2

Bettcher, B. M., Tansey, M. G., Dorothee, G., and Heneka, M. T. (2021). Peripheral
and central immune system crosstalk in Alzheimer disease - a research prospectus. Nat.
Rev. Neurol. 17 (11), 689–701. doi:10.1038/s41582-021-00549-x

Blochowiak, K. J., Olewicz-Gawlik, A., Trzybulska, D., Nowak-Gabryel, M., Kociecki,
J., Witmanowski, H., et al. (2017). Serum ICAM-1, VCAM-1 and E-selectin levels in
patients with primary and secondary Sjogren’s syndrome. Adv. Clin. Exp. Med. 26 (5),
835–842. doi:10.17219/acem/61434

Busse, S., Hoffmann, J., Michler, E., Hartig, R., Frodl, T., and Busse, M. (2021).
Dementia-associated changes of immune cell composition within the cerebrospinal
fluid. Brain, Behav. Immunity-Health 14, 100218. doi:10.1016/j.bbih.2021.100218

Campbell, S. L., and Gear, C. W. (1995). The index of general nonlinear DAEs. DAES.
Numer. Math. 72 (2), 173–196. doi:10.1007/s002110050165

Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D.,
et al. (2017). Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep. 18 (1),
248–262. doi:10.1016/j.celrep.2016.12.019

Chen, H. F., Chuang, H. C., and Tan, T. H. (2019). Regulation of dual-specificity
phosphatase (DUSP) ubiquitination and protein stability. Int. J. Mol. Sci. 20 (11), 2668.
doi:10.3390/ijms20112668

Chuang, H. C., and Tan, T. H. (2019). MAP4K family kinases and DUSP family
phosphatases in T-cell signaling and systemic lupus erythematosus. Cells 8 (11), 1433.
doi:10.3390/cells8111433

Chukkapalli, S. S., Rivera, M. F., Velsko, I. M., Lee, J. Y., Chen, H., Zheng, D., et al.
(2014). Invasion of oral and aortic tissues by oral spirochete Treponema denticola in
ApoE(-/-) mice causally links periodontal disease and atherosclerosis. Infect. Immun. 82
(5), 1959–1967. doi:10.1128/IAI.01511-14

Dioguardi, M., Crincoli, V., Laino, L., Alovisi, M., Sovereto, D., Mastrangelo, F., et al.
(2020). The role of periodontitis and periodontal bacteria in the onset and progression
of alzheimer’s disease: a systematic review. J. Clin. Med. 9 (2), 495. doi:10.3390/
jcm9020495

Dominy, S. S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., et al.
(2019). Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease
causation and treatment with small-molecule inhibitors. Sci. Adv. 5 (1), eaau3333.
doi:10.1126/sciadv.aau3333

Dull, K., Fazekas, F., and Törőcsik, D. (2021). Factor XIII-A in diseases: role beyond
blood coagulation. Int. J. Mol. Sci. 22 (3), 1459. doi:10.3390/ijms22031459

Eriksson, U. K., Pedersen, N. L., Reynolds, C. A., Hong, M. G., Prince, J. A., Gatz, M.,
et al. (2011). Associations of gene sequence variation and serum levels of C-reactive
protein and interleukin-6 with Alzheimer’s disease and dementia. J. Alzheimers Dis. 23
(2), 361–369. doi:10.3233/JAD-2010-101671

Farhood, A., McGuire, G. M., Manning, A. M., Miyasaka, M., Smith, C. W., and
Jaeschke, H. (1995). Intercellular adhesion molecule 1 (ICAM-1) expression and its role
in neutrophil-induced ischemia-reperfusion injury in rat liver. J. Leucocyte Biol. 57 (3),
368–374. doi:10.1002/jlb.57.3.368

Festoff, B. W., Suo, Z., and Citron, B. A. (2001). Plasticity and stabilization of
neuromuscular and CNS synapses: interactions between thrombin protease signaling
pathways and tissue transglutaminase. Int. Rev. Cytol. 211, 153–177. doi:10.1016/s0074-
7696(01)11018-1

Flex, A., Giovannini, S., Biscetti, F., Liperoti, R., Spalletta, G., Straface, G., et al. (2014).
Effect of proinflammatory gene polymorphisms on the risk of Alzheimer’s disease.
Neurodegener. Dis. 13 (4), 230–236. doi:10.1159/000353395

Gaudilliere, D. K., Culos, A., Djebali, K., Tsai, A. S., Ganio, E. A., Choi, W. M., et al.
(2019). Systemic immunologic consequences of chronic periodontitis. J. Dent. Res. 98
(9), 985–993. doi:10.1177/0022034519857714

Gemmati, D., Vigliano, M., Burini, F., Mari, R., El Mohsein, H. H., Parmeggiani, F.,
et al. (2016). Coagulation factor XIIIA (F13A1): novel perspectives in treatment and

pharmacogenetics. Curr. Pharm. Des. 22 (11), 1449–1459. doi:10.2174/
1381612822666151210122954

Gerardino, L., Papaleo, P., Flex, A., Gaetani, E., Fioroni, G., Pola, P., et al. (2006).
Coagulation factor XIII Val34Leu gene polymorphism and Alzheimer’s disease. Neurol.
Res. 28 (8), 807–809. doi:10.1179/016164106X110454

Hajishengallis, G. (2014b). Aging and its impact on innate immunity and
inflammation: implications for periodontitis. J. Oral Biosci. 56 (1), 30–37. doi:10.
1016/j.job.2013.09.001

Hajishengallis, G. (2014a). The inflammophilic character of the periodontitis-
associated microbiota. Mol. Oral Microbiol. 29 (6), 248–257. doi:10.1111/omi.12065

Hao, X., Li, Z., Li,W., Katz, J., Michalek, S. M., Barnum, S. R., et al. (2022). Periodontal
infection aggravates C1q-mediated microglial activation and synapse pruning in
alzheimer’s mice. Front. Immunol. 13, 816640. doi:10.3389/fimmu.2022.816640

Hasegawa, M., Asano, Y., Endo, H., Fujimoto, M., Goto, D., Ihn, H., et al. (2014).
Serum adhesion molecule levels as prognostic markers in patients with early systemic
sclerosis: a multicentre, prospective, observational study. PLoS One 9 (2), e88150. doi:10.
1371/journal.pone.0088150

Holmes, C., Cunningham, C., Zotova, E., Culliford, D., and Perry, V. H. (2011).
Proinflammatory cytokines, sickness behavior, and Alzheimer disease.Neurology 77 (3),
212–218. doi:10.1212/WNL.0b013e318225ae07

Horstmann, S., Budig, L., Gardner, H., Koziol, J., Deuschle, M., Schilling, C., et al.
(2010). Matrix metalloproteinases in peripheral blood and cerebrospinal fluid in
patients with Alzheimer’s disease. Int. Psychogeriatr. 22 (6), 966–972. doi:10.1017/
S1041610210000827

Hossain, K. H., Okamoto, T., Usuda, H., Jahan, I., Niibayashi, T., and Wada, K.
(2020). Differential expression of pro-inflammatory and pro-coagulant genes in
endothelial cells induced by Porphyromonas gingivalis lipopolysaccharide,
Escherichia coli lipopolysaccharide, and zymosan. Shimane J. Med. Sci. 37 (4),
123–132. doi:10.51010/sjms.37.4_123

Houshmand, B., Rafiei, A., Hajilooi, M., Mani-Kashani, K., and Gholami, L. (2009).
E-selectin and L-selectin polymorphisms in patients with periodontitis. J. Periodontal
Res. 44 (1), 88–93. doi:10.1111/j.1600-0765.2008.01092.x

Hu, X., Zhang, J., Qiu, Y., and Liu, Z. (2021). Periodontal disease and the risk of
Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-
analysis. Psychogeriatrics 21 (5), 813–825. doi:10.1111/psyg.12743

Kang, S., Jeong, H., Baek, J. H., Lee, S. J., Han, S. H., Cho, H. J., et al. (2016). PiB-PET
imaging-based serum proteome profiles predict mild cognitive impairment and
Alzheimer’s disease. J. Alzheimers Dis. 53 (4), 1563–1576. doi:10.3233/JAD-160025

Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M., Salazar, A. M., and
Lamb, B. T. (2018). Inflammation as a central mechanism in Alzheimer’s disease.
Alzheimers Dement. (N Y) 4, 575–590. doi:10.1016/j.trci.2018.06.014

Le Page, A., Dupuis, G., Frost, E. H., Larbi, A., Pawelec, G., Witkowski, J. M., et al.
(2018). Role of the peripheral innate immune system in the development of Alzheimer’s
disease. Exp. Gerontol. 107, 59–66. doi:10.1016/j.exger.2017.12.019

Li, G., Xiong, K., Korff, A., Pan, C., Quinn, J. F., Galasko, D. R., et al. (2015). Increased
CSF E-selectin in clinical Alzheimer’s disease without altered CSF Aβ42 and tau.
J. Alzheimers Dis. 47 (4), 883–887. doi:10.3233/JAD-150420

Lin, C., Xu, C., Zhou, Y., Chen, A., and Jin, B. (2022a). Identification of biomarkers
related toM2macrophage infiltration in Alzheimer’s disease. Cells 11 (15), 2365. doi:10.
3390/cells11152365

Lin, J., Huang, D., Xu, H., Zhan, F., and Tan, X. (2022b). Macrophages: A
communication network linking Porphyromonas gingivalis infection and associated
systemic diseases. Front. Immunol. 13, 952040. doi:10.3389/fimmu.2022.952040

Lopez-Rodriguez, A. B., Hennessy, E., Murray, C. L., Nazmi, A., Delaney, H. J., Healy,
D., et al. (2021). Acute systemic inflammation exacerbates neuroinflammation in
Alzheimer’s disease: IL-1β drives amplified responses in primed astrocytes and
neuronal network dysfunction. Alzheimers Dement. 17 (10), 1735–1755. doi:10.1002/
alz.12341

Lu, Y., Li, K., Hu, Y., and Wang, X. (2021). Expression of immune related genes and
possible regulatory mechanisms in Alzheimer’s disease. Front. Immunol. 12, 768966.
doi:10.3389/fimmu.2021.768966

Maekawa, T., Krauss, J. L., Abe, T., Jotwani, R., Triantafilou, M., Triantafilou, K., et al.
(2014). Porphyromonas gingivalis manipulates complement and TLR signaling to
uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host
Microbe 15 (6), 768–778. doi:10.1016/j.chom.2014.05.012

McEver, R. P. (2015). Selectins: initiators of leucocyte adhesion and signalling at the
vascular wall. Cardiovasc Res. 107 (3), 331–339. doi:10.1093/cvr/cvv154

McManus, R. M., Mills, K. H., and Lynch, M. A. (2015). T cells-protective or
pathogenic in Alzheimer’s disease? J. Neuroimmune Pharmacol. 10 (4), 547–560.
doi:10.1007/s11481-015-9612-2

Mullins, R. F., Skeie, J. M., Folk, J. C., Solivan-Timpe, F. M., Oetting, T. A., Huang, J.,
et al. (2011). Evaluation of variants in the selectin genes in age-related macular
degeneration. BMC Med. Genet. 12, 58. doi:10.1186/1471-2350-12-58

Frontiers in Genetics frontiersin.org23

Jin et al. 10.3389/fgene.2023.1230245

https://doi.org/10.1007/s00018-022-04347-6
https://doi.org/10.1007/s00018-022-04347-6
https://doi.org/10.4049/jimmunol.2100737
https://doi.org/10.1016/j.pneurobio.2020.101906
https://doi.org/10.1177/00220345211037977
https://doi.org/10.1186/s13024-022-00522-2
https://doi.org/10.1038/s41582-021-00549-x
https://doi.org/10.17219/acem/61434
https://doi.org/10.1016/j.bbih.2021.100218
https://doi.org/10.1007/s002110050165
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.3390/ijms20112668
https://doi.org/10.3390/cells8111433
https://doi.org/10.1128/IAI.01511-14
https://doi.org/10.3390/jcm9020495
https://doi.org/10.3390/jcm9020495
https://doi.org/10.1126/sciadv.aau3333
https://doi.org/10.3390/ijms22031459
https://doi.org/10.3233/JAD-2010-101671
https://doi.org/10.1002/jlb.57.3.368
https://doi.org/10.1016/s0074-7696(01)11018-1
https://doi.org/10.1016/s0074-7696(01)11018-1
https://doi.org/10.1159/000353395
https://doi.org/10.1177/0022034519857714
https://doi.org/10.2174/1381612822666151210122954
https://doi.org/10.2174/1381612822666151210122954
https://doi.org/10.1179/016164106X110454
https://doi.org/10.1016/j.job.2013.09.001
https://doi.org/10.1016/j.job.2013.09.001
https://doi.org/10.1111/omi.12065
https://doi.org/10.3389/fimmu.2022.816640
https://doi.org/10.1371/journal.pone.0088150
https://doi.org/10.1371/journal.pone.0088150
https://doi.org/10.1212/WNL.0b013e318225ae07
https://doi.org/10.1017/S1041610210000827
https://doi.org/10.1017/S1041610210000827
https://doi.org/10.51010/sjms.37.4_123
https://doi.org/10.1111/j.1600-0765.2008.01092.x
https://doi.org/10.1111/psyg.12743
https://doi.org/10.3233/JAD-160025
https://doi.org/10.1016/j.trci.2018.06.014
https://doi.org/10.1016/j.exger.2017.12.019
https://doi.org/10.3233/JAD-150420
https://doi.org/10.3390/cells11152365
https://doi.org/10.3390/cells11152365
https://doi.org/10.3389/fimmu.2022.952040
https://doi.org/10.1002/alz.12341
https://doi.org/10.1002/alz.12341
https://doi.org/10.3389/fimmu.2021.768966
https://doi.org/10.1016/j.chom.2014.05.012
https://doi.org/10.1093/cvr/cvv154
https://doi.org/10.1007/s11481-015-9612-2
https://doi.org/10.1186/1471-2350-12-58
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1230245


Murakami, S., Mealey, B. L., Mariotti, A., and Chapple, I. L. C. (2018). Dental plaque-
induced gingival conditions. J. Periodontol. 89 (1), S17-S27–S27. doi:10.1002/JPER.17-
0095

Park, J. C., Noh, J., Jang, S., Kim, K. H., Choi, H., Lee, D., et al. (2022). Association of
B cell profile and receptor repertoire with the progression of Alzheimer’s disease. Cell
Rep. 40 (12), 111391. doi:10.1016/j.celrep.2022.111391

Pruissen, D. M., Slooter, A. J., Rosendaal, F. R., van der Graaf, Y., and Algra, A. (2008).
Coagulation factor XIII gene variation, oral contraceptives, and risk of ischemic stroke.
Blood 111 (3), 1282–1286. doi:10.1182/blood-2007-08-110254

Puris, E., Auriola, S., Korhonen, P., Loppi, S., Kanninen, K. M., Malm, T., et al. (2021).
Systemic inflammation induced changes in protein expression of ABC transporters and
ionotropic glutamate receptor subunit 1 in the cerebral cortex of familial Alzheimer`s
disease mouse model. J. Pharm. Sci. 110 (12), 3953–3962. doi:10.1016/j.xphs.2021.
08.013

Qian, X. H., Liu, X. L., Chen, S. D., and Tang, H. D. (2022). Identification of immune
hub genes associated with braak stages in Alzheimer’s Disease and their correlation of
immune infiltration. Front. Aging Neurosci. 14, 887168. doi:10.3389/fnagi.2022.887168

Que, Y. Y., Zhu, T., Zhang, F. X., and Peng, J. (2020). Neuroprotective effect of
DUSP14 overexpression against isoflurane-induced inflammatory response, pyroptosis
and cognitive impairment in aged rats through inhibiting the NLRP3 inflammasome.
Eur. Rev. Med. Pharmacol. Sci. 24 (12), 7101–7113. doi:10.26355/eurrev_202006_21704

Rajkumar, A. P., Bidkhori, G., Shoaie, S., Clarke, E., Morrin, H., Hye, A., et al. (2020).
Postmortem cortical transcriptomics of Lewy body dementia reveal mitochondrial
dysfunction and lack of neuroinflammation. Am. J. Geriatr. Psychiatry 28 (1), 75–86.
doi:10.1016/j.jagp.2019.06.007

Rakic, S., Hung, Y. M. A., Smith, M., So, D., Tayler, H. M., Varney, W., et al. (2018).
Systemic infection modifies the neuroinflammatory response in late stage Alzheimer’s
disease. Acta Neuropathol. Commun. 6 (1), 88. doi:10.1186/s40478-018-0592-3

Rentsendorj, A., Sheyn, J., Fuchs, D. T., Daley, D., Salumbides, B. C., Schubloom, H.
E., et al. (2018). A novel role for osteopontin in macrophage-mediated amyloid-β
clearance in Alzheimer’s models. Brain, Behav. Immun. 67, 163–180. doi:10.1016/j.bbi.
2017.08.019

Ribizzi, G., Fiordoro, S., Barocci, S., Ferrari, E., and Megna, M. (2010). Cytokine
polymorphisms and alzheimer disease: possible associations. Neurol. Sci. 31 (3),
321–325. doi:10.1007/s10072-010-0221-9

Ryder, M. I. (2020). Porphyromonas gingivalis and alzheimer disease: recent findings
and potential therapies. J. Periodontology 91, S45-S49–S49. doi:10.1002/JPER.20-0104

Salmina, A. B., Inzhutova, A. I., Malinovskaya, N. A., and Petrova, M. M. (2010).
Endothelial dysfunction and repair in alzheimer-type neurodegeneration: neuronal and
glial control. J. Alzheimer’s Dis. 22 (1), 17–36. doi:10.3233/JAD-2010-091690

Seidel, A., Seidel, C. L., Weider, M., Junker, R., Golz, L., and Schmetzer, H. (2020a).
Influence of natural killer cells and natural killer T cells on periodontal disease: A
systematic review of the current literature. Int. J. Mol. Sci. 21 (24), 9766. doi:10.3390/
ijms21249766

Seidel, A., Seidel, C. L., Weider, M., Junker, R., Gölz, L., and Schmetzer, H. (2020b).
Influence of natural killer cells and natural killer T cells on periodontal disease: A
systematic review of the current literature. Int. J. Mol. Sci. 21 (24), 9766. doi:10.3390/
ijms21249766

Sh, Y., Liu, B., Zhang, J., Zhou, Y., Hu, Z., and Zhang, X. (2021). Application of
artificial intelligence modeling technology based on fluid biopsy to diagnose alzheimer’s
disease. Front. Aging Neurosci. 13, 768229. doi:10.3389/fnagi.2021.768229

Shaker, O., Zahra, A., Sayed, A., Refaat, A., El-Khaiat, Z., Hegazy, G., et al. (2010). Role
of ICAM-1 and E-selectin gene polymorphisms in pathogenesis of PAOD in Egyptian
patients. Vasc. Health Risk Manag. 6, 9–15. doi:10.2147/vhrm.s8143

Shen, X. N., Niu, L. D., Wang, Y. J., Cao, X. P., Liu, Q., Tan, L., et al. (2019).
Inflammatory markers in Alzheimer’s disease and mild cognitive impairment: a meta-
analysis and systematic review of 170 studies. J. Neurol. Neurosurg. Psychiatry 90 (5),
590–598. doi:10.1136/jnnp-2018-319148

Singh, V., Kaur, R., Kumari, P., Pasricha, C., and Singh, R. (2023). ICAM-1 and
VCAM-1: gatekeepers in various inflammatory and cardiovascular disorders. Clin.
Chim. Acta 548, 117487. doi:10.1016/j.cca.2023.117487

Sun, X., Gao, J., Meng, X., Lu, X., Zhang, L., and Chen, R. (2021). Polarized
macrophages in periodontitis: characteristics, function, and molecular signaling.
Front. Immunol. 12, 763334. doi:10.3389/fimmu.2021.763334

Tao, Q., Ang, T. F. A., DeCarli, C., Auerbach, S. H., Devine, S., Stein, T. D., et al. (2018).
Association of chronic low-grade inflammation with risk of alzheimer disease in
ApoE4 carriers. JAMA Netw. Open 1 (6), e183597. doi:10.1001/jamanetworkopen.2018.3597

Turkcapar, N., Sak, S. D., Saatci, M., Duman, M., and Olmez, U. (2005). Vasculitis and
expression of vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and
E-selectin in salivary glands of patients with Sjogren’s syndrome. J. Rheumatol. 32 (6),
1063–1070.

van Olst, L., Coenen, L., Nieuwland, J. M., Rodriguez-Mogeda, C., de Wit, N. M.,
Kamermans, A., et al. (2022). Crossing borders in Alzheimer’s disease: A T cell’s
perspective. Adv. Drug Deliv. Rev. 188, 114398. doi:10.1016/j.addr.2022.114398

Walker, K. A., Gross, A. L., Moghekar, A. R., Soldan, A., Pettigrew, C., Hou, X., et al.
(2020). Association of peripheral inflammatory markers with connectivity in large-scale
functional brain networks of non-demented older adults. Brain Behav. Immun. 87,
388–396. doi:10.1016/j.bbi.2020.01.006

Wang, Y., Zhang, X., Song, Q., Hou, Y., Liu, J., Sun, Y., et al. (2020). Characterization
of the chromatin accessibility in an Alzheimer’s disease (AD) mouse model. Alzheimers
Res. Ther. 12 (1), 29. doi:10.1186/s13195-020-00598-2

Xie, J., Gorle, N., Vandendriessche, C., Van Imschoot, G., Van Wonterghem, E., Van
Cauwenberghe, C., et al. (2021). Low-grade peripheral inflammation affects brain
pathology in the App(NL-G-F)mouse model of Alzheimer’s disease. Acta
Neuropathol. Commun. 9 (1), 163. doi:10.1186/s40478-021-01253-z

Xu, X. W., Liu, X., Shi, C., and Sun, H. C. (2021). Roles of immune cells and
mechanisms of immune responses in periodontitis. Chin. J. Dent. Res. 24 (4), 219–230.
doi:10.3290/j.cjdr.b2440547

Yang, C. Y., Chiu, L. L., Chang, C. C., Chuang, H. C., and Tan, T. H. (2018). Induction
of DUSP14 ubiquitination by PRMT5-mediated arginine methylation. FASEB J. 32,
fj201800244RR. doi:10.1096/fj.201800244RR

Yang, C. Y., Chiu, L. L., and Tan, T. H. (2016). TRAF2-mediated Lys63-linked
ubiquitination of DUSP14/MKP6 is essential for its phosphatase activity. Cell Signal 28
(1), 145–151. doi:10.1016/j.cellsig.2015.10.017

Yang, C. Y., Li, J. P., Chiu, L. L., Lan, J. L., Chen, D. Y., Chuang, H. C., et al. (2014). Dual-
specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting
TAB1 activation. J. Immunol. 192 (4), 1547–1557. doi:10.4049/jimmunol.1300989

Zeng, H., Chan, Y., Gao, W., Leung, W. K., and Watt, R. M. (2021). Diversity of
Treponema denticola and other oral treponeme lineages in subjects with periodontitis
and gingivitis. Microbiol. Spectr. 9 (2), e0070121. doi:10.1128/Spectrum.00701-21

Zouali, M. (2017). The emerging roles of B cells as partners and targets in
periodontitis. Autoimmunity 50 (1), 61–70. doi:10.1080/08916934.2016.1261841

Frontiers in Genetics frontiersin.org24

Jin et al. 10.3389/fgene.2023.1230245

https://doi.org/10.1002/JPER.17-0095
https://doi.org/10.1002/JPER.17-0095
https://doi.org/10.1016/j.celrep.2022.111391
https://doi.org/10.1182/blood-2007-08-110254
https://doi.org/10.1016/j.xphs.2021.08.013
https://doi.org/10.1016/j.xphs.2021.08.013
https://doi.org/10.3389/fnagi.2022.887168
https://doi.org/10.26355/eurrev_202006_21704
https://doi.org/10.1016/j.jagp.2019.06.007
https://doi.org/10.1186/s40478-018-0592-3
https://doi.org/10.1016/j.bbi.2017.08.019
https://doi.org/10.1016/j.bbi.2017.08.019
https://doi.org/10.1007/s10072-010-0221-9
https://doi.org/10.1002/JPER.20-0104
https://doi.org/10.3233/JAD-2010-091690
https://doi.org/10.3390/ijms21249766
https://doi.org/10.3390/ijms21249766
https://doi.org/10.3390/ijms21249766
https://doi.org/10.3390/ijms21249766
https://doi.org/10.3389/fnagi.2021.768229
https://doi.org/10.2147/vhrm.s8143
https://doi.org/10.1136/jnnp-2018-319148
https://doi.org/10.1016/j.cca.2023.117487
https://doi.org/10.3389/fimmu.2021.763334
https://doi.org/10.1001/jamanetworkopen.2018.3597
https://doi.org/10.1016/j.addr.2022.114398
https://doi.org/10.1016/j.bbi.2020.01.006
https://doi.org/10.1186/s13195-020-00598-2
https://doi.org/10.1186/s40478-021-01253-z
https://doi.org/10.3290/j.cjdr.b2440547
https://doi.org/10.1096/fj.201800244RR
https://doi.org/10.1016/j.cellsig.2015.10.017
https://doi.org/10.4049/jimmunol.1300989
https://doi.org/10.1128/Spectrum.00701-21
https://doi.org/10.1080/08916934.2016.1261841
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1230245

	Immune-related signature of periodontitis and Alzheimer’s disease linkage
	Introduction
	Materials and methods
	Gene expression datasets
	Differential gene expression analysis
	Identification of crosstalk genes
	Crosstalk genes’ protein-protein interaction (PPI) network analysis
	Crosstalk genes’ immune cell enrichment analysis
	Analysis of immune-related genes and infiltrating immune cells
	Consensus cluster analysis of AD and PD samples based on immune-related genes
	Adaptive and innate immune cell bias analysis
	Identification of potential biomarkers using LASSO logistic regression

	Results
	Differentially expressed genes
	Crosstalk genes enrichment in immune related pathways
	Key crosstalk genes identified through PPI network analysis
	Immune cell fractions enriched by the crosstalk genes show comparative differences between AD and PD
	Immune-related genes and immune cells enriched in AD and PD
	Consensus cluster analysis of immune cells based on immune genes
	Adaptive and innate immune cell bias analysis
	Candidate biomarkers identified using LASSO logistic regression

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


