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Background: Despite the recent success of genome-wide association studies
(GWAS) in identifying 90 independent risk loci for Parkinson’s disease (PD), the
genomic underpinning of PD is still largely unknown. At the same time, accurate
and reliable predictive models utilizing genomic or demographic features are
desired in the clinic for predicting the risk of Parkinson’s disease.

Methods: To identify influential demographic and genomic factors associated with PD
and to further develop predictive models, we utilized demographic data, incorporating
200variables across33,473participants, alongwithgenomicdata involving447,089SNPs
across 8,840 samples, both derived from the Fox Insight online study. We first applied
correlation and GWAS analyses to find the top demographic and genomic factors
associated with PD, respectively. We further developed and compared a variety of
machine learning (ML) models for predicting PD. From the developed ML models, we
performed feature importance analysis to reveal the predictability of each demographic
or the genomic input feature for PD. Finally, we performed gene set enrichment analysis
on our GWAS results to identify PD-associated pathways.

Results: In our study, we identified both novel and well-known demographic and
genetic factors (along with the enriched pathways) related to PD. In addition, we
developed predictive models that performed robustly, with AUC = 0.89 for
demographic data and AUC = 0.74 for genomic data. Our GWAS analysis identified
several novel and significant variants and gene loci, including three intron variants in
LMNA (p-values smaller than 4.0e-21) and one missense variant in SEMA4A (p-value =
1.11e-26). Our feature importance analysis from the PD-predictive ML models
highlighted some significant and novel variants from our GWAS analysis (e.g., the
intron variant rs1749409 in the RIT1 gene) and helped identify potentially causative
variants that weremissed byGWAS, such as rs11264300, amissense variant in the gene
DCST1, and rs11584630, an intron variant in the gene KCNN3.

Conclusion: In summary, by combining a GWAS with advanced machine learning
models, we identified both known and novel demographic and genomic factors as
well as built well-performing ML models for predicting Parkinson’s disease.
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1 Introduction

Parkinson’s disease (PD) is a complex neurodegenerative
disorder often linked to aging (Dauer and Przedborski, 2003).
Symptoms of Parkinson’s can be broadly divided into motor and
non-motor categories (Sveinbjornsdottir, 2016). Primary motor
symptoms of PD include bradykinesia, tremor, and rigidity (Xia
and Mao, 2012). Other manifestations involve gait disturbances,
impaired handwriting, grip force (related to the strength and
control of hand grasping), and speech deficits (Moustafa et al.,
2016). In PD, non-motor symptoms are categorized into sensory
symptoms, neuropsychiatric dysfunctions, autonomic
dysfunction, and sleep disorders (Poewe, 2008). Among
these, sensory symptoms may include olfactory dysfunction,
abnormal sensations, and pain. Neuropsychiatric dysfunctions
can encompass mood disorders, frontal executive dysfunction,
apathy, and anhedonia. Autonomic dysfunction might present
symptoms like orthostatic hypotension, urogenital dysfunction,
and constipation. Lastly, sleep disturbances can involve sleep
fragmentation, insomnia, and rapid eye movement sleep
behavior disorder.

In addition to age, environmental, and genomic factors also
contribute to the development of PD (Noyce et al., 2012; Kieburtz
and Wunderle, 2013; Blauwendraat et al., 2020). Specific
environmental factors, such as exposure to pesticides and
smoking, are associated with an increased risk of PD; conversely,
caffeine intake is also linked to a decreased risk of PD.
Advancements in high-throughput technologies have enabled
genome-wide association studies (GWAS) to detect significant
associations between genomic variants and various diseases,
including PD. Following the identification of the first PD GWAS
loci in 2009, 90 distinct risk loci have been discovered thus far (Nalls
et al., 2014; Chang et al., 2017; Visscher et al., 2017; Nalls et al.,
2019). Despite these current successes, many more significant
variants are yet to be discovered to explain the genomic
heritability of PD.

The increasing number of risk loci identified by GWAS has
helped improve PD prediction and intervention (Chairta et al.,
2021; Kim et al., 2021; Salas-Leal et al., 2021; Zheng et al., 2021;
Dehestani et al., 2022). In prior studies, polygenic risk scores
(PRS) were used to predict the risk of PD. These scores captured
the cumulative effect of various PD genetic variants. Typically,
the effectiveness of this PRS method for PD prediction was
indicated by the value of an area under the receiver operating
characteristics curve (AUC) ranging from 0.61 to 0.69 (Nalls
et al., 2019; Chairta et al., 2021; Kim et al., 2021; Salas-Leal et al.,
2021; Zheng et al., 2021; Dehestani et al., 2022). The prediction
performance needs further improvement for the genomic
prediction of PD to have clinical use. In addition, the PRS
model lacks knowledge of specific variants’ involvement and
their magnitude of impact for predicting PD risks. At the same
time, many other studies have explored the utility of the existing
demographic and clinical data (e.g., motor and non-motor
symptoms) for predicting PD risks (Nielsen et al., 2017;
Zham et al., 2017; Shah et al., 2018; Senturk, 2020). The
application of advanced machine learning (ML) models with
a combined feature space including genomic, demographic, and
clinical data may further improve the accuracy of PD prediction.

In this study, the main purpose was to examine the key
factors influencing PD by utilizing a large dataset containing
demographic, clinical, and genetic data from the Fox Insight
online study (Smolensky et al., 2020). This aim contained three
key components: examining demographic and clinical variables
through correlation and feature importance analyses, studying
genomic factors using GWAS and feature importance analysis,
and developing machine learning models for PD prediction. To
find demographic and clinical variables associated with PD, we
conducted a comprehensive analysis involving correlation
assessment and feature importance analyses. To identify the
potential genomic causes, we initially applied GWAS to the
newly released genetic data by the Fox Insight study to search
for novel and significant genomic variants for PD. Subsequently,
we selected the top GWAS variants as input features to develop
ML models for PD prediction; we applied and compared the
performance of four popular ML models: artificial neural
networks (ANNs), random forest (RF), support vector
machine (SVM), and logistic regression (LR) (Svozil et al.,
1997; Liaw and Wiener, 2002; Noble, 2006; Sperandei, 2014).
Our strategy involved constructing three different kinds of ML
predictive models: a demographic model (using demographic
and clinical data only), a genetic model (using genetic data
only), and a combined model (using both genetic and
demographic/clinical data). Furthermore, we investigated and
identified the most predictive demographic variables and
genomic variants using two different feature importance
methods: expected gradients applied to ANNs and feature
importance score given by RF (Louppe et al., 2013). Lastly,
we performed GWAS-based gene set enrichment analysis
(GSEA) using our GWAS results and identified novel and
known PD pathways.

2 Materials and methods

2.1 Data and data preprocessing

In Fox Insight, participants were genotyped on the V3, V4, and
V5 platforms. The V5 platform consisted of a customized Illumina
Infinium Global Screening Array containing approximately
690,000 SNPs. Roughly 80.4% of participants were genotyped on
this platform. We used the V5 platform of Fox Insight Genetic Data.
We applied the following functions from plink for further filtration
and quality control to each chromosome: --mind 0.05 --geno 0.03
--maf 0.01 –hwe 1e-6. We then imputed the missing SNP values
(0.63% missing values) with the most frequent value for that
particular SNP across the entire dataset. Dominant coding was
then performed, and thus, the final SNP values are 0 or 1. After
combining all 22 chromosomes, we obtained a total of 447,089 SNPs
and 8,840 Samples. Phenotype data included the ‘CurrPDDiag’
variable which was downloaded using the Fox DEN tool.
Participants who answered the registration question “Do you
currently have a diagnosis of Parkinson’s disease, or
Parkinsonism, by a physician or other healthcare professional?”
were represented by the ‘CurrPDDiag’ variable.

We also processed the demographic and clinical data (one-
time questionnaires and routine longitudinal assessments data,

Frontiers in Genetics frontiersin.org02

Rahman and Liu 10.3389/fgene.2023.1230579

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1230579


referred as demographic data later for convenience) that were
also downloaded from the Fox DEN tool. The routine
longitudinal assessment dataset was generated through routine
longitudinal health and medical questionnaires, and the one-time
questionnaire dataset was about environmental exposure and
healthcare preferences (Smolensky et al., 2020). Initially, all
downloaded demographic data from the Fox DEN tool had
53k samples and 5,877 demographic variables. We kept the
demographic variables shared between PD and non-PD
individuals. We used the most recent record for each of these
variables. Furthermore, we selected the subjects who also have
genotype data available (~8k samples). Among the subjects with
demographic and genetic data, we identified and removed
demographic variables with missingness >5% in these
individuals; we also removed variables that leak the PD
information unsuitable for prediction, which left us
200 demographic variables. We further removed from the
~53k samples the individuals who have missingness >5% in
these selected 200 variables, which left us 33,473 samples and
200 variables.

2.2 Genome-wide association studies

GWAS is the standard approach for identifying the significant
variants associated with traits at the population level. GWAS was
performed using logistic regression adjusting for age (age at the
onset for cases and age of last reported for controls), sex, and
10 principal components. We performed GWAS using R software
(http://www.r-project.org/). The p-values from GWAS were used to
evaluate whether corresponding SNPs were genome-wide significant
or not. We used the Bonferroni correction method for selecting a
threshold p-value of genome-wide significance (Kaler and Purcell,
2019).

2.3 Feature selection and machine learning
model development

We divided the whole genetic dataset into an 80% training
set, a 10% validation set, and a 10% test set containing 7,072, 884,
and 884 subjects, respectively. We used the training set for
feature selections through GWAS analysis and for training
the model. The top SNPs with the lowest p-values from
GWAS analysis were selected as potentially informative input
features for ML models to predict the PD status. We reserved an
intact validation set for tuning hyperparameters and finding the
best ML model and an intact test set for the performance
evaluation of the final ML model. Fox Insight studies had a
highly unbalanced case-control ratio of around 30:1, so we
applied random oversampling for the minority class in the
training set to make a 2:1 (case-control) ratio for training the
ML models. The oversampling method was not applied to
GWAS analyses that were performed using the original data.
The random oversampling method was not used in the
validation or the test set either; thus, these sets consisted of
actual data from Fox Insight to avoid both overfitting and reflect
the actual performance. Both the validation and test set were

unseen during GWAS analyses and training of the models to
avoid potential information leakage. We used artificial neural
networks (ANNs), random forest (RF), support vector machine
(SVM), and logistic regression (LR) to predict the risk status of
PD. The ANN was implemented using Keras while RF, SVM, and
LR were implemented by using scikit-learn packages (Pedregosa
et al., 2011; Chollet, 2015).

We also developed RF and ANN models to predict PD using
demographic data. From the aforementioned processed
demographic data containing 33,473 samples and
200 demographic variables, we performed a stratified random
split to produce an 80% training set (n = 26,765), a 10% (n =
3,354) validation set, and a 10% test set (n = 3,354). Within the
training data, we employed multiple correlation techniques on a
total of 200 variables to determine the most relevant features for
our analysis. We applied the Matthews correlation coefficient to
188 binary variables, Cramer’s V to 11 categorical variables with
more than two discrete values, and the point-biserial correlation
to one continuous variable (Kornbrot, 2014; Akoglu, 2018;
Chicco et al., 2021). A threshold of 0.01 allowed us to identify
a total of 139 variables that met our inclusion criteria. We further
used the training set to tune the hyperparameters for both ANN
and RF models based on the prediction performance on the
validation set; we then used both the training and validation sets
to train the final model that was used to predict the unseen test
dataset. Furthermore, we developed a combined prediction
model using both demographic and genetic features from
subjects who have both demographic and genetic data. To
comprehensively evaluate the prediction performance of the
developed ML models in an unseen test dataset, we examined
multiple metrics including the area under the ROC curve (AUC),
precision, recall, and the F1-score (the harmonic mean of
precision and recall).

2.4 Interpretation using feature importance
and expected gradients

Mean decrease impurity (MDI) feature importance score is one
of the methods used in the RF model to measure the relative
importance of each input feature (Louppe et al., 2013). We
applied “feature_importance_” (FI) to the RF model for
identifying top features, later referred to as “RF FI.”

Shapley value is one of the most known methods that can
interpret complex ML models and show the most impactful
features. We applied the expected gradient (EG) method to the
ANN model, later referred to as ANN EG. EG, an extension of the
integrated gradient method, has a strong theoretical justification for
finding the most important and contributing input features (e.g.,
SNPs and demographic factors) for the model’s prediction by
approximating the Shapley value (Erion et al., 2021). It has a set
of axioms: implementation invariance, sensitivity, completeness,
linearity, and symmetry preserving (Erion et al., 2021). We
implemented EG using the SHAP (SHapley Additive
exPlanations) Python package. The SHAP value from EG
indicates the overall impact on predictions as well as the
directionality of that impact indicated by positive or negative
values. The mean absolute SHAP value for each feature across all
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of the data emphasizes the significant features for prediction,
regardless of their directionality.

2.5 Gene set enrichment analysis

GSEA was used to identify KEGG pathways significantly
associated with PD. We used the minimum p-value among all
SNPs near a gene to represent the significance of that gene
(Wang et al., 2007). Later, GSEA software was used to calculate
the enrichment score (ES) and false discovery rate (FDR) q-value.
The ES is the highest departure from zero that is observed during the
walk, and FDR is utilized to control the rate of false positive findings
in hypothesis testing, especially in multiple testing scenarios. We
used ‘GSEAPreranked,’ a module of the GSEA software, and
provided it a list of genes that were ordered based on −log10
(p-value). For multiple hypothesis testing corrections,
1,000 random permutations were carried out by gene set. In
order to generate a normalized enrichment score (NES), the ES
for each gene set was normalized so that it accurately reflects the size
of each gene set, and FDR was further calculated corresponding to
each NES.

3 Results

3.1 Predictive ML models for PD developed
from demographic data

We developed a set of ML models to predict the PD status from
demographic data. As was described in Section 2, we obtained a
short list of 139 demographic variables from the initial
5,700 variables in 33,473 subjects. We developed from the
training (80%; n = 26,765) and validation sets (10%; n = 3,354)
both an RF model and an ANN model; the ANN model was trained
using the SGD algorithm (batch size: 8, sigmoid activation functions,
learning rate: 0.01, and 16 neurons in one hidden layer). The
prediction performance of the final model was evaluated in the
unseen test dataset (10%; n = 3,354) using multiple metrics including
AUC, precision, recall, and F1-score (Table 1). With this relatively
large demographic dataset, both the RF and the ANN showed very
good performance in predicting the PD status from the
139 demographic variables: both models achieved a high AUC of
0.89; for precision, the RF had 0.82 while the ANN had 0.81; for
recall, the RF had 0.77 while the ANN had 0.79; and for F1-score, the
RF had 0.79 while the ANN had 0.80.

To understand the predictive performance of each of the
139 demographic variables, we acquired the feature importance
score from the RF demographic model as well as performed EG
analysis for the ANN demographic model. From the RF model, we

listed the top 14 demographic variables that lead to the highest mean
decrease in impurity and, thus, the most important features in
predicting PD ranked by the RF model (Figure 1A). Similarly,
from the EG analysis for the ANN model, we identified the top
14 demographic variables that show higher mean absolute SHAP
values and, thus, more predictive power in predicting PD in the
ANN model (Figure 1B). Interestingly, the feature importance and
predictability ranked by these two methods from analyzing two
different ML models were highly consistent for the top
14 demographic variables, with 12 being overlapped with each
other (Figures 1A, B). The three variables of “sex,” “problems in
mobility,” and “problems in activity” were ranked within the top
5 predictive variables for PD by both RF FI and ANN EG. Other top
variables included constipation, loss of smell, dribbling of saliva,
work in last 7 days, urgency to pass urine, engage in household
activity, exercise in past 7 days, self-care, difficulty swallowing food
or drink, talking or moving about in sleep, and unpleasant
sensations in legs (Figure 1A). Multiple previous studies together
identified most of these or very similar variables as significant
variables associated with PD (Nielsen et al., 2017; Prashanth and
Roy, 2018; Lo et al., 2019; Shah et al., 2020; Yu et al., 2022); this
comprehensive list of top demographic/clinical variables identified
in our study, based on their capability in predicting PD, adds further
support to the influence of these factors in PD prediction. One of the
top variables that has not been studied much is “unpleasant
sensations in legs,” which is ranked 14th among all the
139 demographic variables by both RF FI and ANN EG. Yet, the
exact question in the online survey for collecting information for this
variable is “have you experienced unpleasant sensations in your legs
at night or while resting, and a feeling that you need to move in the
last month?” and this question is generally used as the first of the
three questions in identifying restless legs syndrome (RLS) that is
associated with PD (Wong et al., 2014). This suggested that the
variable of “unpleasant sensation in legs” could be used a predictor
for PD even before people were diagnosed having RLS.

All the non-overlapping variables between the top 14 lists of the two
models were ranked very similarly by RF FI and ANN EG, except for
“age.” Specifically, ‘sleep’, ‘engagement in household activity’, and
‘difficulty in swallowing food’ were ranked 12th, 16th, and 17th,
respectively, by RF FI, while they were ranked 15th, 9th, and 12th,
respectively, by ANN EG; “age” was ranked first by RF FI and 93rd by
ANN EG. The much lower ranking of “age” by the EG method for the
ANNmodel is likely because theANNmodel does not handle amixture
of categorical and continuous variables well, with the EGmethod being
biased for the continuous variable of age.

3.2 GWAS in the discovery (training) dataset,
identifying both novel and well-known
variants and genes of significance

To explore significant genomic variants, we applied GWAS to
the preprocessed discovery (training) dataset that includes 6,868 PD
cases and 204 controls with 447,089 SNPs. Males comprised 55%
(n = 3,885) of the discovery dataset, and the rest are females (n =
3,187). A quantile–quantile plot was constructed for all variants by
comparing expected vs. observed genome-wide p-values as a quality
control for the GWAS analysis (Figure 2A). For the GWAS analysis,

TABLE 1 Performance metrics of the demographic ML models for
predicting PD.

ML model AUC Precision Recall F1-score

RF 0.89 0.82 0.77 0.79

ANN 0.89 0.81 0.79 0.80
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if considering 0.05/447,089 = 1.12e-07 as the significance level for
p-value after the Bonferroni correction (Ranstam, 2016), 14 SNPs
reached such significance (Supplementary Table S1). Among these
14 SNPs, two variants, rs76763715 (alias, i4000415), a missense
variant in GBA, and rs1630500, an intergenic variant in GBA, as well
as three gene loci, GBA, ARHGEF2, and LMNA, were previously
reported for PD association (Redenšek et al., 2017; Ferrari et al.,
2018; Oyston et al., 2018). The well-known variant of
rs76763715 showed the most significant association with PD in
our GWAS analysis. The regional association plot revealed that
within a ± 400-kb window, several significant SNPs (green) on
chromosome 1 had a moderate level of coefficient of determination
(r_squared ≥ 0.2) with rs76763715 (purple) (Figure 2B).

In addition to the previously reported variants or gene loci, our
GWAS analysis also identified novel and significant variants or gene
loci that could have a potential influence on PD. Three novel intron
variants in the PD-associated LMNA gene loci were among the
14 significant SNPs with p-values smaller than 4.0e-21
(Supplementary Table S1); this finding further supported
previous reports on the involvement of LMNA in PD. A novel
missense variant in the SEMA4A loci was identified with a very low
p-value of 1.11e-26 (Supplementary Table S1). SEMA4A encoded
one class of semaphorin, which was often involved in immune
responses and neurological diseases (Takegahara and Kumanogoh,
2010). For example, the SNP rs7702187 within SEMA5A (encoding
another class of semphorins) was associated with PD (Clarimon

FIGURE 1
Top predictive demographic or clinical variables for PD. (A) Top 14 demographic variables by RF feature importance scores and (B) top
14 demographic variables by the EG method.

FIGURE 2
GWAS in discovery. (A) The quantile–quantile (QQ) plot was observed against expected p-values from the genome-wide association analysis and (B)
a regional association plot of the rs76763715 locus.
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et al., 2006). Other novel and significant gene loci (Supplementary
Table S1) included TRIM46, ASH1L, PBXIP1, RIT1, and PMF1-
BGLAP. The RIT1 gene belongs to the Ras family related to
neurodegenerative disorders (Qu et al., 2019).

3.3 Predictive ML models for PD developed
using genetic data

Based on the GWAS results from the discovery (training) set, we
further evaluated the capability of the top SNPs with the lowest
p-values in predicting PD in an unseen test dataset. Within this
context, GWAS served as a feature selection method for building our
PD-predicting ML models. We experimented with various p-value
thresholds (i.e., different numbers of top SNPs with the lowest
p-values) and assessed model performance using an independent
validation set. Among the tested thresholds, the p-value threshold of
1e-5, leaving us the top 37 SNPs (Supplementary Table S1), provided
the best model performance (i.e., the highest AUC) in the validation
set. This threshold was also commonly used for selecting SNPs in the
development of PRS (Choi et al., 2020). Among these 37 SNPs, the
three SNPs of rs76763715, rs1630500, and rs2049805 (Table 2;
Supplementary Table S1) were published before as PD variants in
other studies (Liu et al., 2011; Vacic et al., 2014; Davis et al., 2016).
We further performed LD pruning using the ‘corr’ (correlation
coefficient) method on the 37 SNPs and acquired 15 independent
SNPs with a correlation coefficient threshold of 0.2. Table 2 lists
these 15 independent SNPs and their nearest gene loci and variant
type, minor-allele frequencies (MAFs), GWAS ranks, p-values, beta
coefficients, and standard error (SE).

We used these 15 SNPs as the input features to train several ML
models, including SVM, RF, LR, and ANN models. We tuned the

hyperparameters for all four models based on their prediction
performance in the validation set. In particular, the ANN model
was trained using the stochastic gradient descent algorithm, with a
batch size of 8, sigmoid activation functions, and a learning rate of
0.01. A three-layered ANN feed-forward network was used,
consisting of one input layer, one hidden layer, and one output
layer, while the hidden layer had four neurons. In Table 3, test set
performance metrics are listed for all the developed ML models. As
expected, when utilizing 15 randomly selected SNPs as the input
features, the developed ANN model produced poor results, with an
AUC of 0.50 and an F1-score of 0.49. When using the
15 independent SNPs identified by GWAS, the prediction
performance of all the developed ML models (SVM, LR, RF, and
ANN) greatly improved, with much higher AUCs and F1-scores.
Among these, the ANN model performed the best overall, with a
highest AUC of 0.74 and an F1-score of 0.64. We also derived a PRS

TABLE 2 Gene loci of potential influence on PD.

Variant Gene: variant type MAF GWAS rank GWAS p-value GWAS beta GWAS SE

rs76763715a GBA: missense variant 0.016 1 3.03E-90 −4.113 0.204

rs1749409 RIT1: intron variant 0.091 7 2.55E-34 −1.824 0.149

rs1800247 PMF1-BGLAP: intron variant 0.212 12 8.47E-10 −0.898 0.146

i709741 None 0.107 15 3.39E-07 −0.777 0.152

rs11264300 DCST1: missense variant 0.366 17 8.31E-07 −0.836 0.170

rs4072037 MUC1: synonymous variant 0.472 22 1.30E-06 −1.065 0.220

rs75337321 CACNA2D3: intron variant 0.061 26 1.64E-06 −0.830 0.173

rs17377936 None 0.434 27 2.34E-06 0.682 0.145

rs58519469 NTRK1: intron variant 0.042 28 2.51E-06 −0.896 0.190

rs111408331 None 0.034 31 3.45E-06 −0.944 0.203

rs79372348 None 0.032 32 4.08E-06 −1.007 0.219

rs186852039 GBA2: intron variant 0.033 33 4.09E-06 −0.921 0.200

rs11772125 AMZ1: intron variant 0.069 34 4.30E-06 −0.799 0.174

rs11584630 KCNN3: intron variant 0.352 35 4.58E-06 −0.747 0.163

rs72792300 ALK: intron variant 0.015 37 7.46E-06 −1.178 0.263

aSymbol next to variant ID indicates previously reported SNPs.

TABLE 3 Performance metrics of the genetic ML models for predicting PD.

ML model AUC Precision Recall F1-score

ANN_Random 0.50 0.49 0.50 0.49

SVM 0.67 0.58 0.70 0.60

LR 0.68 0.60 0.72 0.64

RF 0.68 0.57 0.65 0.59

ANN 0.74 0.69 0.61 0.64

ANN_PRS 0.78 0.65 0.72 0.68

LR_PRS 0.78 0.63 0.73 0.67

ANN_Combined 0.78 0.66 0.74 0.69
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from the 15 independent SNPs for each subject as the sum of their
minor-allele SNP values, weighted by the log of their specific odds
ratio from the GWAS analysis. The developed LR and ANN models
from this one input feature of the PRS showed similar performance
(the same AUC of 0.78, with an F1-score of 0.68 for ANN_PRS and
0.67 for LR_PRS), as expected. If compared to the best-performing
ANNmodel using 15 independent SNPs, the ANNmodel using this
one input feature of the PRS had better performance in PD
prediction, with an improved AUC of 0.78 and a higher F1-score
of 0.68; this is likely because the weights of these 15 SNPs used in
calculating the PRS provided additional and useful information to
help predict PD.

In addition to developing these genetic models, we further
developed a combined ANN model using both genetic and
demographic data. For this combined dataset, we had
12,070 subjects with 15 SNPs and 139 demographic variables as
input features. We trained this combined ANN model similar to the
genetic ANN model. Interestingly, with both genetic and
demographic variables, the predictive performance of the ANN
model was considerably increased to an AUC of 0.78 and an F1-
score of 0.69 (Table 3).

The EG method was used to determine the top predictive SNPs
in the ANN model, whereas the feature importance score was used
in the RF model. Upon reviewing the top half (7 SNPs) identified by
both methods, it was found that five of the top seven SNPs were
shared between the two sets, suggesting a degree of agreement
between the results generated by the two different methods
applied to the two different ML models. The missense variant of
rs76763715 located inside GBA was ranked first by RF FI and third
by ANN ES, suggesting its high influence on PD prediction. This is
consistent with the evidence that it is the most significant SNP with
the lowest p-value in our GWAS analysis, and its association with
PD has been validated in different studies. The intron variant
rs1749409 in the RIT1 gene, which was ranked seventh by

GWAS p-values (2.55e-34), was ranked second by the RF FI and
first by the ANN EG for its magnitude in influencing the PD
prediction.

In addition to providing additional PD prediction evidence for
some of the significant GWAS, SNPs, RF FI, and ANN EG also
identified variants with decent predictive capability that were missed
by GWAS (i.e., not reaching the significance level after the
Bonferroni correction). The missense variant rs11264300 located
in the DCST1 gene was ranked 17th by GWAS (top 14 are
significant) and third and fourth by RF FI and ANN EG,
respectively (Figures 3A, B). Interestingly, a previous study
identified an SNP in this DCST1 gene as one of the most
relevant PD polygenic risk score SNPs (Koch et al., 2021). These
results suggested that this missense variant and theDCST1 gene may
have an important role in the development and progression of
Parkinson’s disease. Similarly, RF FI identified rs11584630, an
intron variant in the gene of KCNN3, as a very predictive variant
(ranked fifth) for PD; interestingly, KCNN3 was previously reported
to be associated with PD pathogenesis (Simunovic et al., 2010).

3.4 Gene set enrichment analysis identified
pathways associated with PD

We used GWAS-based pathway analysis to further examine the
potential PD pathways from the ranked gene list obtained by our
GWAS analysis. GSEA was used to identify KEGG pathways
significantly associated with PD. We used the minimum p-value
among all SNPs near a gene to represent the significance of that gene
(Wang et al., 2007). Initially, 166 gene sets (i.e., pathways) were
identified by GSEA (Figure 4A) from which a total of 17 gene sets
with relatively high NES were considered significant, reaching both
the FDR (<0.25) and nominal p-value (<0.05) threshold
(Supplementary Table S2). Figure 4B showed the top 12 (ranked

FIGURE 3
Top predictive genetic variants for PD. (A) The predictability of the 15 independent variants in the RF model explained by the feature importance
scores and (B) the predictability of the 15 independent variants in the ANN model suggested by the SHAP values.
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by NES) significant pathways and their statistics, including the
number of core enrichment genes, gene ratio, and nominal
p-value. Gene ratio was calculated using the count of core
enrichment genes divided by the count of pathway genes,
whereas core enrichment genes were those that contribute most
significantly (indicated by their p-values) to the observed
enrichment of the gene set. Among the top 12 pathways, we
identified six pathways whose functions were previously reported
to be associated with PD (marked with a ‘*’ in Figure 4B): long-term
depression, gap junction, long-term potentiation, axon guidance,
calcium signaling pathway, and tight junction. One study found that
corticostriatal long-term potentiation (LTP) and long-term
depression (LTD) were altered in PD models (Calabresi et al.,
2007). Schwab et al. (2014) showed that the gap junction protein
Cx36 was upregulated in PD patients. Variations in axon guidance
pathway genes were predictive of three PD outcomes (Lin et al.,
2009). Calì et al. (2014) observed that calcium signaling was one of
the earliest events in the pathogenesis of PD. The tight junction
proteins occludin and ZO-1 were associated with the mouse model
of Parkinson’s disease (Chen et al., 2008). The aforementioned
literature supported the PD association for half of the top
12 GSEA pathways; this further strengthened the potential
involvement of our top GWAS SNPs (or gene loci) in PD. In
addition to identifying the aforementioned six pathways whose
associations with PD were previously reported, our GSEA also
identified novel pathways potentially associated with PD.
Interestingly, three out of the six novel pathways we identified
for PD, including the functions of the vascular smooth muscle
(VSM) contraction, extracellular matrix (ECM) receptor
interaction pathways, and gonadotropin-releasing hormone
(GnRH) signaling pathway, although there is no strong evidence
yet in the literature for their involvement in PD, were reported to be
linked with other neural diseases such as Alzheimer’s disease (AD).
This helped add support to the validity of our findings. For instance,
the dysfunction of VSM cells (whose activity and responsiveness
determine the dynamics of VSM contraction) was found to

contribute to AD development by promoting neuroinflammation
and Tau hyperphosphorylation (Aguilar-Pineda et al., 2021).
Similarly, significant changes in ECM components occur during
the early stages of AD (Anwar et al., 2022). Furthermore, increased
mRNA levels of GnRH and its receptor were observed in plaque-
bearing AD transgenic mice (Nuruddin et al., 2014). These pathways
may serve as common pathways involved in different types of neural
diseases, such as AD and PD.

4 Discussion

In this paper, we utilized a large collection of demographic and
clinical variables together with the corresponding genomic data
from the Fox Insight online study. We identified both novel and
well-known demographic and genomic factors via correlation and
GWAS analyses. From the top demographic and genomic factors,
we further developed and compared a variety of ML models for
predicting PD using demographic features alone, genomic features
alone, and combined features considering both demographic and
genomic factors. To understand the importance and predictability of
the demographic and genomic factors, we performed EG analysis for
the ANN demographic and genetic model as well as acquired feature
importance scores from the RF demographic and genetic models.
These input feature analyses, not yet adopted much by the PD
domain, allowed us to interpret theMLmodels and identify the most
predictive demographic and genomic factors for PD. Finally, we
applied GSEA analysis based on our GWAS results and found both
novel and previously reported PD pathways.

In the relatively large demographic dataset, both RF and ANN
models did well with the same AUC of 0.89 and similar F1-scores of
0.79 and 0.80, respectively. The large overlapping of the top
14 demographic variables ranked by RF and ANN using two
different feature analysis methods (RF feature importance and
ES) strongly suggested the robustness of the models as well as
the importance of these top demographic variables in PD

FIGURE 4
Gene set enrichment analysis. (A)Normalized enrichment score vs. significance plot. The red line represents the nominal p-value for gene sets, while
the blue line represents the FDR q-value for gene sets. The yellow rectangle indicates the FDR levels within 0.25, and the green rectangle indicates the
nominal p-value levels within 0.05; (B) a dot plot of top KEGG pathways. The size of each dot represents the number of core enrichment genes, while the
color represents the nominal p-value. The names with the * symbol represent the pathways associated with PD, while others represent the
potentially novel pathways associated with PD.
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prediction. As another line of evidence, most of these top
demographic variables were reported previously for their
association with PD. In the relatively small genetic dataset, the
ANNmodel performed the best, and it also revealed the influence of
each SNP feature on PD prediction; when including additional
demographic features into the ANN model, the AUC and F1-
scores were further increased to 0.78 and 0.69, respectively. The
top predictive demographic and genetic features, together with the
developed ML models, can potentially be used in the clinical setting
to predict the PD risk before its onset for early intervention.

In this study, we performed rigorous experimentation to avoid
potential overfitting and fair evaluation/analysis of the ML models as
follows: 1) we strictly tuned hyperparameters for all the MLmodels based
on their performance on a separate validation set and further evaluated the
performance of the final model on an unseen test set; 2) we performed
random bootstrapping for the control (non-PD) samples to get a more
balanced dataset for the training set only to avoid potential information
leakage and overfitting in the validation or test set; 3) in addition to looking
at the evaluation metric of AUC, we also examined the precision, recall,
and F1-score of all the ML models for a more comprehensive and less
biased evaluation; and 4) we compared and developed different ML
models for PD prediction, where we used two different methods (RF
feature importance and EG) to analyze and understand the feature
importance from two different models (RF and ANN). Despite these
rigorous experimental designs, it would be ideal if we could obtain
additional data and further validate these ML models on an
independent study.

Through correlation analysis, GWAS, and feature importance
analysis, we identified both novel and well-known demographic and
genetic factors related to PD. For example, in our GWAS analysis, we
identified well-known variants in the GBA gene, which encodes the
glucocerebrosidase enzyme implicated in Gaucher’s disease, a
lysosomal storage disorder. It had been established that lysosomal
dysfunction, associated with GBA gene mutations, was linked to
neurodegeneration and, particularly, to Parkinson’s disease
(Navarro-Romero et al., 2020). Our findings reinforced the
importance of the GBA gene lysosomal pathways in the
pathophysiology of PD. Other than identifying well-known
variants within GBA, our GWAS analysis also identified several
novel and significant variants and gene loci; among these, three
novel intron variants in LMNA (p-values smaller than 4.0e-21)
and one novel missense variant in SEMA4A (p-value = 1.11e-26)
with very small p-values are particularly interesting, since LMNA and
semphorins were reported to be associated with PD by other studies.
The gene SEMA4A had previously been linked to Th17 cell-mediated
neuroinflammation (Koda et al., 2020). Given that
neuroinflammation is a well-recognized component of PD
pathology, our findings suggested a potential role of SEMA4A in
the progression of PD, potentially via modulating neuroinflammatory
processes. Our feature importance analysis from the PD-predicting
ANN and RF models provided another set of evidence to show the
capability of the variants in predicting PD. These analyses highlighted
some of the significant variants identified by GWAS, such as the well-
known missense variant of rs76763715 located inside GBA and the
intron variant rs1749409 in the RIT1 gene, both of which were ranked
within the top three most-predicting variants by both RF FI and ANN
EG; these ML feature importance analyses also helped identify
rs11264300, a missense variant in the gene of DCST1, and,

rs11584630, an intron variant in the gene of KCNN3—although
these variants did not reach the GWAS significance, their
corresponding genes were reported to be associated with PD by
other studies (Simunovic et al., 2010; Koch et al., 2021). Overall,
this coupling of ML approaches with the GWAS analysis is beneficial
in validating the significance of GWAS-identified PD variants with
additional PD prediction evidence and identifying potential PD
variants that could have been missed by GWAS due to limited power.

5 Conclusion

In summary, by performing GWAS analysis coupled with ML
approaches, we identified impactful demographic and genomic
factors as well as developed ML models that may help predict
PD. The new loci identified from GWAS or ML input feature
importance analysis warranted further investigation.
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