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Introduction: N4-acetylcytidine (ac4C) is a critical acetylation modification
that has an essential function in protein translation and is associated with a
number of human diseases.

Methods: The process of identifying ac4C sites by biological experiments is too
cumbersome and costly. And the performance of several existing computational
models needs to be improved. Therefore, we propose a new deep learning tool
EMDL-ac4C to predict ac4C sites, which uses a simple one-hot encoding for a
unbalanced dataset using a downsampled ensemble deep learning network to
extract important features to identify ac4C sites. The base learner of this ensemble
model consists of a modified DenseNet and Squeeze-and-Excitation Networks. In
addition, we innovatively add a convolutional residual structure in parallel with the
dense block to achieve the effect of two-layer feature extraction.

Results: The average accuracy (Acc), mathews correlation coefficient (MCC), and
area under the curve Area under curve of EMDL-ac4C on ten independent testing
sets are 80.84%, 61.77%, and 87.94%, respectively.

Discussion: Multiple experimental comparisons indicate that EMDL-ac4C
outperforms existing predictors and it greatly improved the predictive
performance of the ac4C sites. At the same time, EMDL-ac4C could provide a
valuable reference for the next part of the study. The source code and
experimental data are available at: https://github.com/13133989982/EMDLac4C.
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1 Introduction

RNAs from both eukaryotic and prokaryotic cells may include a broad range of nucleoside
modifications (Tardu et al., 2019), and it is statistically known that there are more than 170 types
(Boccaletto et al., 2018). Song et al. (2023) have developed the RMDisease database and identified
a large number of disease-associated variants to elucidate the important regulatory role of RNA
modifications. Among them, N4-acetylcytidine (ac4C) is a highly conserved RNA modification,
and at the same time, he is the sole acetylation modification of eukaryotic RNA that has been
identified (Zhao et al., 2019a; Jin et al., 2020). Ac4C plays an important role in biology, and it has
different functions on different RNAs. On tRNA, ac4C helps to improve the accuracy of protein
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translation and maintain the heat resistance of the organism (Kumbhar
et al., 2013); the role of ac4C on rRNA likewise includes maintaining
high fidelity of protein translation (Sharma et al., 2015), while it is also a
marker of thermophilic organisms, which is significant; on mRNA,
ac4C is required to safeguard the stability ofmRNAwhile increasing the
efficiency of protein translation (Arango et al., 2018; Dominissini and
Rechavi, 2018). Meanwhile, Chen et al. (2022) demonstrated that the
only known ac4C writer, N-acetyltransferase 10 (NAT10), has an
important effect in male reproduction. In addition, ac4C has
regulatory effects on viruses (Tsai et al., 2020; Hao et al., 2022) and
has been associated with several human diseases, including:
osteoporosis (Yang et al., 2021), pancreatic cancer (Feng et al., 2022), etc.

The recognition of ac4C sites has gradually become a popular topic
in biology and computer research. In the context of biological
experiments, multiple testing methods exist for ac4C studies.
Previously, partially enzymatic hydrolysis and two-dimensional paper
chromatography were commonly used to identify ac4Cmodifications in
RNA (Thomas et al., 2019). In the past few years, researchers had found
that the combination of LC-MS andHPLC-MS analyses is more efficient
in isolating partially modified nucleic acids, including ac4C (Ito et al.,
2014; Sharma et al., 2015; Sharma et al., 2017). In addition, RPHPLC
(Mezzar et al., 2014) is widely used by the biological community as it
requires only a small number of samples and does not rely on expensive
mass spectrometry assays or the use of radioactive substrates. There are
also specific ac4C sequencing approaches, including ac4C-seq (Gamage
et al., 2021) and RedaC:T-seq (Sturgill et al., 2022), both of which
sequence ac4C through a series of experiments under certain conditions.
Nevertheless, these experimental methods always have several problems,
such as time-consuming and high expensive.

Several machine learning-based predictive models (Zhou et al.,
2016; Wei et al., 2019; Basith et al., 2019; Lv et al., 2020; Hasan et al.,
2021) for the predictive identification of RNA post-translational
modification sites have been developed by researchers in the past
several years. Among them, there are two predictors used to identify
ac4C sites, firstly, Zhao et al. (2019a) developed PACES based on
position-specific dinucleotide sequences as well as K-nucleotide
frequency coding, which was trained using two random forest
classifiers. Secondly, Alam et al. (2020b) proposed XG-ac4C
predictor based on this, which used multiple encoding methods,
including one-hot, nucleotide chemistry and density, Kmer, etc., and
used extreme gradient boosting (XGboost) to train the dataset to
identify ac4C loci. Nonetheless, neither of these two predictors’
ability in making predictions is sufficient.

With the widely use of deep learning, researchers have
introduced different deep learning models to the field of RNA
post-transcriptional modification site prediction (Yu and Dai,
2019; Liu et al., 2020; Hasan et al., 2021; Rehman et al., 2021;
Hasan et al., 2022; Tsukiyama et al., 2022; Yang et al., 2023), and a
lot of experimental results show that deep learning models
perform better than machine learning models for datasets with
a large number of samples. Muhammad et al. (Iqbal et al., 2022)
used a deep learning network-based CNN model using an
encoding approach similar to the XG-ac4C predictor DL-ac4C
predictor was proposed to identify ac4C sites, and compared with
machine learning methods, the results showed that DL-ac4C has
better prediction performance. Recently, a new deep learning
model DeepAc4C (Wang et al., 2021a) had also been developed to
increase the efficiency of ac4C locus recognition in mRNA. It also

used CNN to extract information and classify the feature maps,
and encoded a combination of physicochemical features and
nucleotide semantic information. Yet, the classification
performance of these two predictors still needs to be
improved. As a result, a more analytically precise model to
anticipate ac4C sites is urgently required.

In order to more accurately predict ac4C sites in mRNAs, an
effective prediction model EMDL-ac4C was developed in this
paper, and the contributions of this paper were various: 1)
EMDL-ac4C used only the simplest encoding method one-hot
to represent nucleotides. This encoding showed the distribution
probability of each nucleotide, making it easier to calculate the
distance between nucleotides. 2) It proposed a powerful deep
learning that used DenseNet in combination with convolutional
residuals to form two-branch residual connection DenseNet, and
the effectiveness of feature extraction was increased by this way.
3) For cases like this paper, where unbalanced datasets were
processed into multiple balanced datasets, downsampling
integration was used to achieve significantly superior
generalization performance than a single learner. 4) The
attention mechanism was carried out throughout the network
structure to give greater attention to the important information
at each stage. 5) We compared the performance of various
encoding techniques, different numbers of dense blocks,
multiple model architectures, and several predictors,
respectively, to confirm the efficacy of the EMDL-ac4C model.

Therefore, the final predictor is called “EMDL-ac4C,” in which
“EM” stands for “ensemble,” “DL” represents “deep learning,” and
“ac4C” means “N4-acetylcytidine."

2 Materials and methods

2.1 Benchmark dataset

The base dataset for this study was extracted from
2,134 genes offered by Zhao et al. (2019a) from a highly
throughput dataset previously presented. In the training set,
there were a total of 1,160 positive and 10,855 negative samples,
and in the test set, the counts of positive and negative samples
were: 469, 4,343, respectively. Alam et al. (2020b) also built the
XG-ac4C predictor from this dataset. Wang et al. (2021b)
performed a de-sampling redundancy with a threshold of
0.4 using CD-HIT (Weizhong et al., 2006) software in order
to remove redundant sequences from these datasets, resulting in
1,615 positive and 7,590 negative samples. These samples were
separated into a set for training and one for testing, with
1,148 positive samples and 5,439 negative samples in the
former. On the other hand, there were 467 positive samples
and 2,151 negative samples in the independent test set. Finally,

TABLE 1 Distribution of data set D1.

Dataset Positive Negative

Training 1,148 1,148

Testing 467 467
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they created ten balanced datasets using the unbalanced training
and test sets, respectively, to make it easier to train and test the
model. The number of positive samples in each sub-training set
and test set remains the same, and negative samples are
randomly selected from the corresponding negative dataset,
and the number is consistent with the positive sample size.
The ten samples are denoted as D1, D2, , D10. Table 1 shows
an example of the distribution of data set D1: (the distribution of
D2, D3, , D10 is the same).

As in Eq. 1, nucleotide sequences containing potential N4-
acetylcytidine sites can normally be read as:

fδ K( ) � R−δR− δ−1( )/R−2R−1KR+1R+2/R+ δ−1( )R+δ (1)
where the center K denotes “N4-acetylcytidine,” R−δ means the δth
upstream nucleotide from the center K, while R+δ stands for the δth
downstream nucleotide from the center K. In this study, δ is 207, that
is, the length of a nucleotide sequence is (2δ +1).

FIGURE 1
Base classifier for EMDL-ac4C. (A) Schematic graph of the two-branch residual connection DenseNet model. (B) Schematic diagram of the SEnet
module. (C) Schematic diagram of the Attentional Transition module.

FIGURE 2
The structure of denseblock.
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2.2 Feature coding methods

2.2.1 One-hot coding
The RNA sequence used in this study consists of four

nucleotides and a “-,” where the “-“ represents a missing value or
an undetected nucleotide in the RNA sequence. One-hot encoding,
also known as binary encoding, converts each nucleotide into a
numeric vector of 0 and 1, encoding “A” as [1, 0, 0, 0, 0], “C” as [0, 1,
0, 0, 0], “G” as [0, 0, 1, 0, 0], “T” as [0, 0, 0, 1, 0], and “-” is assigned as

[0, 0, 0, 0, 0, 1]. One-hot encoding not only simply converts sequence
information into digital information for computer processing, but
more importantly, it makes the calculation of distances between
nucleotides more reasonable. For example, if nucleotides are
represented in sequential encoding: 1:A, 2:C, 3:G, 4:T, then the
distance between A (adenine ribonucleotide) and C (cytosine
ribonucleotide) is smaller than the distance between A (adenine
ribonucleotide) and G (guanine ribonucleotide), which is not
reasonable. At the same time, one-hot coding in fact means the

FIGURE 3
Residual connection schematic of the denseblock module. (A) RXDNFuse’s multi-branch Residual denseblock. (B) Two-branch Residual
denseblock.

FIGURE 4
Downsampling ensemble classifier construction process.
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probability distribution of nucleotides, that is, one nucleotide has
probability 1 and the others are all 0.

2.3 Classification model

2.3.1 Base learning model
Figure 1 illustrates the model structure of the base learner two-

branch residual connection DenseNet for constructing EMDL-ac4C.
A): The basic structure of two-branch residual connection DenseNet
consists of SENet, denseblock, attentional-transition, residual
convolution layer and fully connected layer. B): SENet is
composed of two fully connected layers with different number of
neurons to fulfill the aim of first dimensionality reduction and then
dimensionality increase of the feature map. C): The attentional-
transition is composed of 1 × 1 convolution, global average pooling
layer and SENet, where the role of convolution and global average
pooling is to condense the output feature map of two-branch
denseblock and convolutional residual module, decrease the size
and dimension of the feature map, and simultaneously can
successfully decrease the quantity of denseblock parameters and
stop the network to excessive fitting. The purpose of SENet is to
extract important features. The final fully connected layer is used as
the classification prediction of the model.

Below are explanations of each step in greater detail.

2.3.1.1 DenseNet
Huang et al. (2017) proposed DenseNet in 2017 for the target

recognition task to alleviate the gradient disappearance issue that

often occurs in deep networks, while feature reuse also enhanced
feature propagation with fewer parameters in a network of equal
layer depth. As shown in Eq. 2, ResNet only adds features to the
input of the latter layer and connects them in a summation manner.
DenseNet is an improvement of ResNet in that it combines the
features of each layer by concatenation. As shown in Eq. 3, DenseNet
connects all the previous layers as the input of the next layer,
obtaining better performance than ResNet with fewer parameters
and computational cost.

xl � Hl xl−1( ) + xl−1 (2)
xl � Hl x0, x1, . . . , xl−1[ ]( ) (3)

The Hl(•) in Eqs 2, 3 represents the non-linear transformation
function, which is a combined operation that may include a series of
BN (Batch Normalization), ReLU(Rectified Linear Unit), POOL
(Pooling) and Conv (Convolution) operations. The non-linear
transformation function in this paper adopted the structure of
BN+ReLU+1*1 Conv +3*3 Conv, which were created through a
preactivation strategy to facilitate network training as well as
enhanced the efficiency of generalization, and 1 × 1 Conv served
to reduce the number of features, thus reduced computational
workload and improved computational efficiency. In addition,
3 × 3 Conv offered a larger receptive field.

As shown in Figure 2, the denseblock is a module containing
many layers, each layer has the same feature map size, and the layers
are closely connected to each other, while the Transition module
connects two neighboring denseblocks and reduces the feature map
size by Pooling. In this paper, we used a new approach Attentional

FIGURE 5
The comparison of Acc and MCC values for models with various amounts of denseblocks.
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Transition instead of transition, whose construct is depicted in
Figure 1C.

2.3.1.2 Residual connection
In order to effectively spread shallow information to deep layers,

the output of residual connection is represented by a linear
superposition of the inputs and their nonlinear transformations.
Deep learning propagates the gradient (derivative) of the loss
function step by step from the back to the front in the back
propagation process, and the gradient is less than 1 at each level.
Due to the cumulative multiplicative effect, the gradient may be too
small and cause the network to stop training optimization.
Therefore, the addition of residual connections to the network

can address the issue of network degradation and enhance
network functionality.

Long et al. (2021) proposed the aggregated residual dense
network (RXDNFuse) for the mix problem of IR and visible
images, which combined the residual and convolutional residuals
into parallel dense blocks to extract multi-level features, as
depicted in Figure 3A. The results also demonstrated that
RXDNFuse can effectively retain the important thermal
radiation information in the feature map, from which this
work was inspired to propose Two-branch residual connection
dense network, which consisted of a denseblock and a
convolutional residual connection to form two channels. As
illustrated in Figure 3B, compared with RXDNFuse, two-

FIGURE 6
Performance comparison of different encoding methods on ten test sets. (A–J) Results for different test sets. (K) Average results of 10 test sets.
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branch residual connection DenseNet has three differences,
firstly, it reduces one layer of residual connection, secondly, it
changes convolutional residual connection part from 3 layers of
Conv+ReLU to one layer of Conv to extract features, and for the
last, it changes the residual connection method from summation
to concatenation. In this way, we can improve the diversity of
feature extraction and achieve the effect of two-branch feature
extraction, while reducing the complexity of the model.

2.3.1.3 SENet
Introducing attention mechanism in the predictor can make

model more efficient in learning the interrelationships between
feature information (Vaswani et al., 2017), while focusing on
useful information. (Wang et al., 2020; Wang et al., 2021; Jia
et al., 2022; Jia et al., 2023). The use of the attention mechanism
in both image processing and natural language learning has
demonstrated its value in enhancing the model’s capacity for
recognition, and our study again confirms this point that the
attention mechanism can help suppress useless information, pay
attention to critical information, and improve the model
performance.

Researchers have developed various attention mechanisms,
commonly used including self-attention mechanisms, spatial attention
mechanism, channel attention mechanism, and so on. Squeeze-and-
Excitation Networks (SENet) (Hu et al., 2018) is one of the channel
attentionmechanisms.We investigated the use of attentionmechanisms
in our model in two ways, one was to choose the attention mechanism
that best matches the model and the data characteristics, and try to use
the four attention mechanisms individually or in combination. The
second was where to place the attentionmechanism in the model. There
are various options for where to insert attention into the model,

including introducing it in densecells (Bastings and Filippova, 2020),
adding it in denseblocks (Wei et al., 2019; Zhou et al., 2019; Wang et al.,
2021), inserting it between denseblocks and transitions (Jia et al., 2022;
Jia et al., 2023), bring in the attention mechanism in the transition layer
(Song et al., 2021), or attaching it before the data enters DenseNet or at
the end of the model prediction.

The combined use of SENet and DenseNet has been repeatedly
shown to boost network detection and site prediction performance (Yan
et al., 2019; Wang et al., 2021; Shi et al., 2021; Jia et al., 2023). We had
also found after numerous ablation experiments that SENet aloneworks
best, while it was advisable to place SENet before DenseNet, between
denseblock and Attentional Transition, and before the final global
average pooling, as seen in Figure 1A. Adding the attentional layer
before the initial feature map enters the DenseNet helps the model not
miss important information in the original feature map, while the
attentional layer behind denseblock aims to repress redundant features
and strengthen propagation of important features.

The construction of SENet is to first perform a global pooling
operation on the feature map with input h*w*c, which is a spatial
compression process that makes the feature map 1*1*c in size. Next
there are two fully connected layers. The first full connection has c/
16 neurons, which is a dimensionality reduction procedure, and the
second fully connected is ascending to c neurons. The significance of
dimensionality reduction and then dimensionality increase is to
discover the correlation between channels. The final step is to
multiply the original h*w*c feature map with the 1*1*c feature
map after dimensionality down and dimensionality up to obtain a
feature map with the importance levels of different channels.

It is worth noting that the SENet used in this paper removes the
global pooling operation at the beginning, the reason is that the
global pooling operation will lose some location information.

FIGURE 7
ROC curve of two-branch residual connection DenseNet on each dataset. (A) Results on training sets. (B) Results on testing sets.
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2.3.1.4 Attentional transition
For the transition layer, it mostly connects two neighboring

denseblocks and decreases the size of the feature map. Yang et al.
(Yang et al., 2018) proposed CliqueNet to alleviate the training
challenge of deep networks, which introduced a channel-based
attentional mechanism in the transition layer. Following their
approach, we also introduce the attentional mechanism in transition
layers to ensure high-quality propagation of features between dense
blocks. As Figure 1C shows, after convolution, the feature map is then
brought into SENet, which means that the feature map is first global
average pooled, followed by two fully connected layers (FC) to complete
the descending and ascending operations.

2.3.2 Ensemble learning
When the number of positive samples in the benchmark dataset is

significantly lower than the number of negative sample data, the dataset is
unbalanced. For such a non-equilibrium dataset, using a simple model is

not friendly to identify positive samples, while for us, the information of
N4-acetylcytidine loci is the most critical and the most necessary to be
identified. The ensemble learningmethod can be used to downsample the
non-balanced data, meaning that for the majority of negative samples,
downsampling is performed each time, and the same number of subsets
as positive samples are extracted, and the two constitute a balanced
dataset for training. Multiple sub-classifiers are thus constructed, and
then the training models are validated by cross-validation and the model
training effect is verified by independent test sets, respectively. Such use of
the ensemble classifier dramatically improves the accuracy of loci
prediction (Jia et al., 2016). The process of constructing the
downsampling ensemble classifier is shown in Figure 4.

Wang et al. (Wang et al., 2021) constructed the dataset in a similar
manner to Figure 4, with ten random downsampling of negative samples
to build ten balanced datasets. Therefore, we used 10 balanced training
sets to build 10 sub-classifiers, trained the model by cross-validation, and
then validated the model training effect using ten independent test sets

FIGURE 8
The loss change of the training and validation sets. (A–J) Loss changes in ten different training and validation sets.
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one by one. The prediction results obtained frommultiple sub-classifiers
were soft-voted to obtain the final ensemble results. The base sub-
classifiers are implemented with the two-branch residual connection
DenseNet shown in Figure 1A.

2.3.3 Performance evaluation
Five metrics are typically used to evaluate models in such

studies: Accuracy (Acc), Sensitivity (Sn), Specificity (Sp), Area
under curve (AUC) and Matthew’s correlation coefficient (MCC),
which are computed as follows in Eq. 4:

Sn � TP

TP + FN

Sp � TN

TN + FP

Acc � TP + TN

TP + TN + FP + FN

MCC � TP × TN − FP × FN
��������������������������������������������
TP + FN( ) × TN + FN( ) × TP + FP( ) × TN + FP( )√

(4)
TP is a correctly identified positive ac4C site, FN is a

misidentified positive ac4C site, and TN and FP are correctly and
incorrectly predicted negative ac4C sites, respectively. Researchers
often use ROC curves to indicate the performance of classifiers, and
the area under the ROC curve is measured as the AUC value, and a
bigger value indicates greater performance.

In this study, we used these five prevalent evaluation metrics to
assess the performance of EMDL-ac4C.

3 Results and discussion

3.1 Comparison of models with different
denseblocks

To improve the performance of the predictor, the parameters are
optimized in two-branch residual connection DenseNet. In this

section, different numbers of denseblocks are set and the Acc
and MCC values are used to compare the model performance for
different numbers of denseblocks. According to Figure 5, selecting a
model with three denseblocks yields the highest performance. The
trough is reached when the number is 4. After the number is 5, the
Acc and MCC values increase as the amount of blocks grows, but
considering that when the amount of denseblocks reaches 8, the
maximum feature map scale in the model run has reached
[211464,768], which is easy to cause insufficient server memory.
Therefore, based on the consideration of computational complexity,
the denseblock = 3 is selected.

3.2 Comparison of models with various
encoding methods

For the choice of feature coding methods, we considered four
traditional coding methods, namely,: One-hot, composition of
k-spaced nucleic acid pairs (CKSNAP), Kmer, and electron–ion
interaction pseudopotentials of trinucleotide (PseEIIP). Also
included: this coding scheme of CKSNAP + Kmer + PseEIIP
combination. These coding methods have been applied in many
studies (Li et al., 2020; Wang et al., 2021; Chen et al., 2021; El Allali
et al., 2021; Le et al., 2022;Wang et al., 2023) and are not described in
detail here. In addition to these traditional coding approaches, there
are some new coding approaches including: Gene2vec (Zou et al.,
2019), Geo2vec (Huang et al., 2022), Genomics features (Chen et al.,
2019), Chemical property (Chen et al., 2017), Heuristic nucleotide
physical-chemical properties reduction (Dou et al., 2020) also gave
us a lot of inspiration on sequence encoding. We compared these
coding schemes on ten balanced test datasets, as indicated in
Figure 6. In the ten experiments, we tested univariate the
encoding style suitable for the model using a unified classifier:
two-branch residual connection DenseNet.

As seen in Figure 6, we can find that for each test set, the values
of the indicators corresponding to the same coding method do not
differ much. For example, the AUC value of the model with one-hot

FIGURE 9
Performance comparison of single two-branch residual connection DenseNet and downsampling ensemble model EMDL-ac4C.
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encoding in each dataset is about 0.87. The detailed performance of
the different encoding methods of EMDL-ac4C on ten independent
test sets is shown in Supplementary Tables S1–S10. This indicates
that two-branch residual connection DenseNet has good
generalizability and does not show excessive differences
depending on the dataset. In addition, it is also obvious from
Figure 6 that the model with one-hot coding has significantly
higher Acc, MCC and AUC values than the other coding
methods. After comprehensive consideration, we concluded that
one-hot encoding is more suitable for two-branch residual
connection DenseNet model for predicting ac4C sites.

3.3 Comparison of ensemble and non-
ensemble models

To illustrate the effectiveness of the two-branch residual connection
DenseNet more intuitively, we further tested its ROC curves on ten
training and test sets, as shown in Figure 7. Also, Figure 8 showed the
loss changes on the training and validation sets. The model
demonstrated excellent performance and balanced results on ten
training sets and ten testing sets. The difference in indicators on
each dataset done not exceed 2.52%, indicating that the two branch
residual connection DenseNet can stably predict the ac4C sites.

FIGURE 10
Multiple model ROC curves based on test sets with different encoding methods. (A–H) Results of machine learning. (I) Results of two-branch
residual connection DenseNet.
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In addition, to research whether downsampling ensemble has
better prediction ability, we made a comparison between the
downsampling ensemble model and single two-branch residual
connection DenseNet. On ten independent test sets, we used the
ensemble classifier and the non-ensemble classifier to predict ac4C
sites based on one-hot coding, and the average results were shown in

Figure 9. The ensemble model EMDL-ac4C outperforms the non-
ensemble model in Sn, Acc, MCC and AUC by 2.13%, 0.42%, 0.74%
and 0.53%, respectively. In contrast, Sp is 0.14% lower, and
collectively, the performance of the ensemble model is better
than that of the non-ensemble model.

3.4 Comparisonwith othermachine learning
models

To further evaluate the performance of the two-branch residual
connection DenseNet model with that of other machine learning

TABLE 2 Average performance comparison of EMDL-ac4C and additional
machine learning models on ten independent test sets.

Model Sn Sp MCC AUC Auprc

SVM 0.7610 0.7668 0.5279 0.8267 0.8301

RF 0.7248 0.7602 0.4854 0.7988 0.6824

NB 0.8046 0.6634 0.4956 0.8027 0.7904

LR 0.6998 0.6893 0.3892 0.7749 0.7626

LGB 0.7030 0.8081 0.5141 0.8360 0.8538

KNN 0.7786 0.6294 0.5028 0.7940 0.7873

DT 0.6998 0.6893 0.3892 0.625040 0.5783

BAG 0.7717 0.740814 0.5427 0.8328 0.8557

ADAB 0.6833 0.7636 0.4486 0.8096 0.8453

EMDL-ac4C 0.8104 0.8173 0.6169 0.8734 0.8643

The best outcomes are in bold.

TABLE 3 Average performance of several advanced models on ten test sets.

Model Sn Sp MCC Acc AUC

VGG-16 0.9227 0.2921 0.2533 0.6074 0.6850

ResNet 0.6673 0.6285 0.3008 0.6479 0.7086

CSPNet 0.8267 0.7349 0.5683 0.7808 0.8576

VGG-19 0.7537 0.6417 0.4304 0.6977 0.8231

Inception V3 0.7934 0.3488 0.1770 0.5711 0.6596

EMDL-ac4C 0.8104 0.8173 0.6169 0.8080 0.8794

The best outcomes are in bold.

FIGURE 11
Comparison of Average Accuracy of EMDL-ac4C and additional machine learning models on ten independent test sets.
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models, we performed a comparison of the average results of various
codingmethods and distinct classifiers on ten test datasets. The ROC
curves comparison are shown in Figure 10, where, A-H are the
machine learning models: support vector machine (SVM), random
forest (RF), naive Bayesian (NB), logistic regression (LR), light
gradient boosting machine (LGB), k-nearest neighbor (KNN),
bagging (BAG) and adaboost classifier (ADAB). I is the result of
two-branch residual connection DenseNet. It is clear from Figure 10
that among the machine learning models, SVM, LGB, and BAG
perform well and NB performs the worst. Of course, the
combination of the two-branch residual connection DenseNet
and one-hot coding has the best performance. Table 2 shows the
average performance metrics of EMDL-ac4C and additional
machine learning models using one-hot coding on ten
independent test sets. All four metrics of EMDL-ac4C return
higher values than the other traditional machine learning models.

In balanced datasets, accuracy (Acc) is one of the important
metrics to evaluate the classifier performance. Figure 11 visualizes
that EMDL-ac4C is more effective than other machine learning
models.

3.5 Comparison with other advanced
models

To assess the prediction performance of EMDL-ac4C, we
compared EMDL-ac4C with several advanced models for
analysis, including: Cross Stage Partial DenseNet (CSPNet)
(Wang et al., 2020), VGG-16 (Guan et al., 2019), ResNet (He
et al., 2016), VGG-19 (Xiao et al., 2020), Inception V3 (Yu et al.,

2017). These models performed differently on the ten balanced test
sets, as shown in Supplementary Tables S12–S17, while the average
prediction results on the ten datasets are shown in Table 3. VGG-16
scored the highest in Sn, but the score of Sp was too low, and the
balance between Sn and Sp was lost, with too much deviation, and
the prediction accuracy was not high. In contrast, our model EMDL-
ac4C reached a balance between Sn and Sp with less than 1%
deviation, and obtained the highest Sp, MCC, Acc, and AUC
scores among several models, getting the greatest prediction results.

To further evaluate the predictive performance of EMDL-ac4C,
we collected three ac4C sites identified by Oxford Nanopore
Technology (ONT) from the large public database DirectRMDB
(Zhang. et al., 2022) as an additional test set, these three ac4C loci are
located at positions 453630, 455959, and 456452 of chromosome
NC_001144.5, respectively. After testing, all three ac4C loci were
correctly predicted, and the probabilities of predicting positive
samples were 0.7923848, 0.9826068, and 0.9666126, respectively.
Therefore, we can consider EMDL-ac4C as a high-performance
ac4C classifier.

3.6 Comparison of different classifiers

To prove the validity of EMDL-ac4C, we found six models that
can be used to predict ac4C loci for comparison, including PACES
(Zhao et al., 2019a), XG_ac4C (Alam et al., 2020b), DL_ac4C (Iqbal
et al., 2022), CNNLSTMac4CPred(Zhang et al., 2022), MultiRM
(Song et al., 2021) and DeepAc4C (Wang et al., 2021). Among these
six predictors, PACES and XG_ac4C used machine learning
approaches: random forest, XGboost. While DL_ac4C,

FIGURE 12
Comparison of the average results of ten test sets on various predictors.
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CNNLSTMac4CPred, MultiRMand DeepAc4C used the deep
learning approach. For a fair comparison, all seven predictors
were tested using the same training and testing sets, and the
predicted results were compared to determine their performance.
Figure 12 had shown the average result of the seven predictors on ten
test sets. Among them, EMDL-ac4C had the best comprehensive
performance, followed by the deep learning model MultiRM, and

then DeepAc4C, CNNLSTMac4CPred, XG_ac4C and DL_ac4C.
PACES had the worst performance. Compared to MultiRM,
EMDL-ac4C was 2.88%, 0.79%, 2.33%, 1.25% and 0.85% higher
for Sn, Sp, MCC, ACC, and AUC, respectively. Meanwhile,
compared to DeepAc4C, EMDL-ac4C was 4.39%, 3.12%, 1.61%,
and 1.45% higher in Sp, MCC, Acc, and AUC, respectively. In
addition, EMDL-ac4C was also higher than CNNLSTMac4CPred in
all metrics, and the average is 3.93% higher. For Sp, PACES and XG_
ac4C had higher return values than EMDL-ac4C. Nevertheless, in
particular, the difference between the Sn and Sp values of PACES
and XG_ac4C was too large, even reaching 91.52% for PACES, and
too low Sn indicated that few positive samples were identified, which
was not a good phenomenon. For the balanced dataset, we pay more
attention to the return value of Acc, and the larger the Acc, the better
the model performance. Our model EMDL-ac4C had higher Acc
metrics than DL_ac4C, XG_ac4C and PACES: 10.89%, 5.08% and
26.08% higher, respectively. DeepAc4C is the most advanced model
at present, so the detailed analysis of EMDL-ac4C and DeepAc4C is
compared, see Table 4.

Some of the classification performance metrics of EMDL-ac4C and
DeepAc4C on the training set, validation set, and test set were listed in
Table 4 with comparative analysis of the two predictors. EMDL-ac4C

TABLE 4 The performance of DeepAc4C and EMDL-ac4C.

Dataset Model Training Acc Validation Acc Test Acc Test MCC Test AUC

D1 DeepAc4C 0.8093 0.8043 0.7934 0.5871 0.8620

EMDL-ac4C 0.8911 0.8092 0.8104 0.6217 0.8821

D2 DeepAc4C 0.8195 0.8000 0.7943 0.5921 0.8660

EMDL-ac4C 0.8967 0.8075 0.8126 0.6267 0.8801

D3 DeepAc4C 0.8209 0.8043 0.7874 0.5777 0.8641

EMDL-ac4C 0.8985 0.8097 0.8115 0.6244 0.8832

D4 DeepAc4C 0.8490 0.8348 0.7969 0.5945 0.8658

EMDL-ac4C 0.8954 0.8096 0.8040 0.6102 0.8819

D5 DeepAc4C 0.8403 0.8043 0.7950 0.5902 0.8646

EMDL-ac4C 0.8919 0.8063 0.8019 0.6041 0.8647

D6 DeepAc4C 0.7996 0.7913 0.7938 0.5897 0.8645

EMDL-ac4C 0.8871 0.8076 0.7997 0.6000 0.8665

D7 DeepAc4C 0.8209 0.8609 0.7911 0.5836 0.8671

EMDL-ac4C 0.8915 0.8179 0.7976 0.5956 0.8749

D8 DeepAc4C 0.8475 0.8043 0.7978 0.5959 0.8657

EMDL-ac4C 0.8880 0.8056 0.8147 0.6306 0.8809

D9 DeepAc4C 0.8078 0.8130 0.7846 0.5703 0.8615

EMDL-ac4C 0.8308 0.8177 0.8169 0.6340 0.8908

D10 DeepAc4C 0.8277 0.8217 0.7850 0.5725 0.8680

EMDL-ac4C 0.8924 0.8201 0.8147 0.6295 0.8913

Average DeepAc4C 0.8242 0.8139 0.7919 0.5857 0.8649

EMDL-ac4C 0.8927 0.8111 0.8084 0.6177 0.8794

The best outcomes are in bold.

TABLE 5 The AUC values and Aupr values of PACES, XG-ac4C and Two-branch
residual connection DenseNet.

Dataset Methods AUC Aupr

Cross-validation PACES 0.885 0.559

XG-ac4C 0.910 0.653

Two-branch residual connection DenseNet 0.904 0.615

Independent-
test

PACES 0.874 0.485

XG-ac4C 0.889 0.581

Two-branch residual connection DenseNet 0.901 0.594

The best outcomes are in bold.
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had a greater accuracy (Acc) than DeepAc4C in all 10 balanced datasets
used for training. Among them, the best performance was onD6, which
was 8.75% higher. On the validation dataset, EMDL-ac4C performed
relatively poorly on the D4, D7 datasets, and it also performed slightly
worse than DeepAc4C on D10. In this regard, we believe that EMDL-
ac4C is unable to learn enough information and features from the data
due to the small number of data in the validation set, which affects the
performance of the model. For the datasets in this paper, the samples
used for training in each balanced dataset were 2066, while the amounts
of samples used for validation and testing were 230 and 934,
correspondingly.

For the ten balanced test sets, EMDL-ac4C obtained good
prediction results, with the Acc, MCC and AUC values of each test
subset exceeding the corresponding metrics of DeepAc4C. The average
Acc of the ten test sets of EMDL-ac4C was 1.61% higher than the
average Acc of DeepAc4C, and the average MCC and average AUC

values were 3.12% and 1.45% higher, respectively. This showed that the
EMDL-ac4C model is effective and also has good generalization. In
addition, it can also be seen from Table 4 that the difference of each
metric corresponding to the ten balanced data sets is small, which
proven that EMDL-ac4C is a stable and reliable model. By comparison,
see Supplementary Tables S14, S15, the MCC values of VGG16 and
VGG 19 models on different equilibrium datasets vary widely. VGG
16 had aMCC value of 0.99% onD7, and theMCC value onD1 reaches
52.75%, with a variance of 51.76%. The maximum difference in MCC
values for VGG19 was also as high as 42.63%, which indicated that the
VGG model is not stable on the data sets of this paper.

To evaluate the performance of our model on the unbalanced
dataset, we use the dataset downloaded from the PACES website
(http://www.rnanut.net/paces/) for testing. In this case, the training
set contains 1,160 positive and 10,855 negative samples, respectively,
while the test set contains 469 positive and 4,343 negative samples.

FIGURE 13
2D t-SNE visualization of the training and testing sets. (A) 2D t-SNE visualization of the training set with one-hot encoding. (B) 2D t-SNE visualization
of features learned from the training set by EMDL-ac4C. (C) 2D t-SNE visualization of the testing set with one-hot encoding. (D) 2D t-SNE visualization of
features learned from the testing set by EMDL-ac4C.
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The results of the 5-fold cross-validation and independent tests of
our base model Two-branch residual connection DenseNet and two
other predictors PACES (Zhao et al., 2019b) and XG-ac4C (Alam
et al., 2020a) are shown in Table 5.

On cross-validation, the AUC value of Two-branch residual
connection DenseNet is slightly lower than XG-ac4C, but exceeds
PACES, and the same is true for the Aupr value, whichmay be due to
the fact that Two-branch residual connection DenseNet is only the
base model, without unbalanced preprocessing of the dataset and
without using the ensemble method. In the independent test, Two-
branch residual connection DenseNet is better than the other two
models, and the difference between the independent test and cross-
validation results is small, not more than 0.021, and there is no
overfitting, which just shows that Two-branch residual connection
DenseNet has a strong generalization ability.

3.7 Visualization of the classification ability
of EMDL-ac4C

To test the classification performance of EMDL-ac4C, we selected
D1 in ten balanced datasets for validation. After encoding the sequence
data with one-hot,We reduced the encoding vector to two-dimensional
using t-distribution random neighbor embedding (t-SNE) (van der
Maaten and Hinton, 2008) method, as shown in Figures 13A, C, where
(A) and (C) were the classification effects of the training and testing sets
after one-hot encoding using t-SNE downscaling, respectively. In order
to compare with (A) (C) in Figure 13, we first extracted the important
features from the training and testing data after one-hot encoding using
EMDL-ac4C, and then downscaled them by t-SNE, and finally
displayed the classification effects as shown in Figures 13B, D. The
red circles in Figure 13 stand for the positive class samples, whereas the
blue circles for the negative class samples. From Figure 13, we can
clearly see that there are more overlapping clusters generated after one-
hot coding, which indicates that the quality of one-hot coding is
imperfect. In contrast, after EMDL-ac4C extracts the features, fewer
overlapping clusters are generated, especially the two classes of clusters
generated in the testing set have reached a highly disjoint classification
effect, which proves the efficiency of EMDL-ac4C in terms of extracting
features, that is, EMDL-ac4C has powerful classification ability.

4 Conclusion

In this work, we built a downsampling ensemble learning model
called EMDL-ac4C, which aimed to predict ac4C sites from sequence
fragments of RNA. To effectively identify the ac4C locus, we had done a
lot of work at both sequence encoding and feature extraction levels.
Firstly, we had compared five commonly used feature encoding
schemes and found that the combination of simple one-hot
encoding and deep learning models can identify ac4C loci more
efficiently. Second, we proposed the ensemble learning model
EMDL-ac4C to extract features and predict sites, whose underlying
learner was two-branch residual connection DenseNet. Compared with
other advanced models and predictors for identifying ac4C, EMDL-
ac4C obtained superior performance in independent tests, which
proved EMDL-ac4C’s powerful feature learning capability and
predictive power. We will develop the model and increase its

prediction power in subsequent studies. For instance, we will be able
to anticipate multi-class sites simultaneously, such as 6ma, 4mc, etc.
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