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Branched-chain amino acid aminotransferases, widely present in natural
organisms, catalyze bidirectional amino transfer between branched-chain
amino acids and branched-chain α-ketoacids in cells. Branched-chain amino
acid aminotransferases play an important role in the metabolism of branched-
chain amino acids. In this paper, the interspecific evolution and biological
characteristics of branched-chain amino acid aminotransferases are
introduced, the related research of branched-chain amino acid
aminotransferases in animals, plants, microorganisms and humans is
summarized and the molecular mechanism of branched-chain amino acid
aminotransferase is analyzed. It has been found that branched-chain amino
acid metabolism disorders are closely related to various diseases in humans
and animals and plants, such as diabetes, cardiovascular diseases, brain
diseases, neurological diseases and cancer. In particular, branched-chain
amino acid aminotransferases play an important role in the development of
various tumors. Branched-chain amino acid aminotransferases have been used
as potential targets for various cancers. This article reviews the research on
branched-chain amino acid aminotransferases, aiming to provide a reference
for clinical research on targeted therapy for various diseases and different cancers.
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1 Introduction

Branched-chain amino acid aminotransferases (BCATs) play a vital role in the
metabolism of branched-chain amino acids (BCAAs) and are an important regulator.
BCAT is the only enzyme common to BCAA biosynthesis and degradation and BCAT
activity affects BCAA homeostasis. BCAAs include valine (Val), leucine (Leu), and isoleucine
(Ile) (Shou et al., 2019). Humans cannot synthesize branched-chain amino acids, and they
need to be ingested from the outside through diet. BCAAs play an important role, with
leucine known for its vital role in protein anabolism by activating the mammalian target of
rapamycin (mTOR) signaling pathway (Dimou et al., 2022). BCAAs play an important role
in skeletal muscle as an energy source. During exercise, BCAAs, especially leucine,
transaminated in skeletal muscle, producing acetyl-CoA to the Krebs cycle. This
amino group can be transamimoniated to alanine, which is produced in the liver
through the glucose-alanine cycle, producing excess liver glycogen (de Campos-Ferraz
et al., 2014). In addition to the effects on energy expenditure in exercise as well as muscle
damage, proper BCAA supplementation may have relatively beneficial effects on many
pathologies, such as liver and kidney disease (Dimou et al., 2022) and muscle wasting
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disorders (Cano et al., 2006). It can also act as an important
nutritional signal and metabolic regulator and has a role in glucose
homeostasis, the nervous system, and the immune response
(Holeček, 2018). BCAAs metabolism differs from other essential
amino acid metabolism. BCAAs are first transported in extrahepatic
tissues and need to be shuttled between organs or tissues for
complete catabolism (Ananieva and Wilkinson, 2018). The first
step in human BCAA catabolism is the reversible transamination
process, BCAAs transfer amino groups to α-ketoglutarate (α-KG) to
produce 2-ketoisocaproate (KIC), 2-keto-3-methylvalerate (KMV),
2-ketoisovalerate (KIV), and glutamic acid (Glu). Since BCAT
catalyzes the reaction is reversible, the active center of BCAT is
the recognition of acidic amino acids (Glu) as well as hydrophobic
amino acids (BCAAs), a dual substrate recognition mechanism
(Goto et al., 2003). BCAT activity is high in skeletal muscle
(Shimomura et al., 2006). Therefore, it is thought that this step is
mainly performed in skeletal muscle. The second step is catalyzed by
Branched chain α-ketoacid dehydrogenase complex, it is located in
the inner mitochondrial membrane and irreversibly oxidizes α-
ketoacids to produce isovaleryl-CoA, 3-methylbutyryl- CoA,
isobutyryl-CoA, CO2 and NADH. BCKD kinase (BCKDK)
phosphorylates BCKD leading to its inactivation, protein
phosphatase 2Cm (PP2Cm) dephosphorylates BCKD leading to
its activation, and the activity of BCKDC is strictly regulated to
maintain BCAA homeostasis in vivo (Islam et al., 2010). The third
step of BCAA catabolism is the production of acetyl-CoA and
succinyl-CoA into the Krebs cycle, which produces ATP, as
shown in Figure 1. In contrast to other tissues, the BCAA
degradation process occurs mainly in muscles and the liver.
BCAA catabolism involves two initial enzymatic reactions
common to all BCAAs, and the intake of a single BCAA affects
the catabolism of all three BCAAs (Hutson et al., 2005).

BCAT participates in metabolic reactions, is closely related to
some animal and plant diseases, and participates in plant defense

responses and fruit ripening. BCAT is also closely related to human
conditions, such as diabetes, neurological diseases, etc. Decreased
glycolysis in diabetic patients leads to decreased aminoreceptors (α-
ketoglutarate), and decreased transamination of branched-chain
amino acids leads to accumulation of branched-chain amino
acids (Holeček, 2020). Studies have found a positive correlation
between severity and commonplace BCAT levels in Alzheimer’s
patients (Hudd et al., 2019), and demonstrates a high expression in
many types of tumors, having an obvious correlation with the value-
added invasion and prognosis of tumor cells. Earlier studies have
focused on characterizing the structure of BCAT, analyzing the
relationships between enzymes and substrates and the biological
properties of enzymes, and cloning expression purification, which
will facilitate the industrial production of enantiomeric chiral amino
acids by aminotransferases. With the rapid development of scientific
and technological methods, more attention is paid to research at the
molecular level, the expression signaling pathway of the BCAT gene,
and the relationship between BCAT and disease. The latter is
analyzed more comprehensively and specifically by combining
the genomic transcriptome and metabolomics.

2 Evolution and biological
characteristics of branched-chain
amino acid aminotransferases

BCAA aminotransferases are classified as folded type IV
aminotransferases, a pyridoxal 5′-phosphate (PLP)-dependent
enzyme (Schiroli and Peracchi, 2015). They play a vital role in
living organisms. With the rapid development of genome
sequencing technology, the protein gene sequences are becoming
clearer. The BCAT gene sequences of different species can be
obtained, and the differences among species can be understood at
the molecular level. The NCBI website has recorded the genetic

FIGURE 1
Branched-chain amino acid metabolism.
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sequences of branched-chain amino acid aminotransferases from
more than 300,000 species, and a variety of BCAT protein sequences
have been described.

For most eukaryotes, including humans, there are two subtypes
of branched-chain amino acid aminotransferases: BCAT1 and
BCAT2 (Papathanassiu et al., 2017). It has long been thought
that these two enzymes have similar physiological functions in
cells and drive the same transamination response. But studies
have gradually revealed differences in their physiological
functions and regulatory mechanisms (Toyokawa et al., 2021).
BCAT1 encodes a cytoplasmic protein expressed primarily in the
brain that provides nitrogen for cerebral glutamate synthesis (Wang
et al., 2015) and is secondarily expressed in embryonic tissue, the
ovaries, the placenta, and neurons of the peripheral nervous system,
regulating mammalian target of rapamycin complex 1 (mTORC1)

signaling and glycolytic metabolism in CD4+ T cells (Ananieva et al.,
2014). BCAT2 encodes a mitochondrial protein commonly
expressed in almost all organs (Knerr et al., 2019).

BCATs have been identified in plants such as Arabidopsis, rice,
wheat, rape, tomato, etc., which are mostly cash crops. As a
representative model plant, Arabidopsis thaliana has been extensively
studied in many aspects, and six BCAT subtypes have been identified in
Arabidopsis (Diebold et al., 2002). Six BCAT genes (SIBCAT) were
identified in tomatoes (Maloney et al., 2010). SlBCAT1, SlBCAT2,
SlBCAT3, and SlBCAT4 are expressed in a variety of plant tissues.
While SlBCAT5 and SlBCAT6 are undetectable, six isoforms are active
in both forward (BCAA synthesis) and reverse (branched-chain ketoacid
synthesis) reactions. Detailed BCAT information is shown in Table 1.
Different subtypes of BCAT perform different functions in different
subunits of cells, and the enzyme kinetic characteristics are different (Km

TABLE 1 Kenetic parameters of BCATs.

Km value (mM) Kcat/Km value
[1/mMs-1]

Substrate Organism Transaminase isoforms and reaction
conditions

References

0.56 70 L-leucine Solanum
lycopersicum

SlBCAT1, pH not specified, 25°C Maloney et al. (2010)

0.2 40 SlBCAT2, pH not specified, 25°C

2.7 45 SlBCAT3, pH not specified, 25°C

0.57 31 SlBCAT4, pH not specified, 25°C

1.8 66 SlBCAT5, pH not specified, 25°C

0.21 75 SlBCAT6, pH not specified, 25°C

0.42 − Escherichia coli pH 8.0, 25°C Bezsudnova et al.
(2017)

0.62 − Homo sapiens pH 8.4, 25°C, 2-oxoglutarate as amino group acceptor Schadewaldt (2000)

0.67 61 L-isoleucine Solanum
lycopersicum

SlBCAT1, pH not specified, 25°C Maloney et al. (2010)

0.31 25 SlBCAT2, pH not specified, 25°C

4.9 36 SlBCAT3, pH not specified, 25°C

0.43 47 SlBCAT4, pH not specified, 25°C

3.2 51 SlBCAT5, pH not specified, 25°C

0.36 59 SlBCAT6, pH not specified, 25°C

0.52 − Escherichia coli pH 8.0, 37°C Lee-Peng et al. (1979)

10.3 − Homo sapiens pH 8.0, 37°C, isoenzyme I, 2-oxoglutarate as amino group
acceptor

Kido (1988)

3 − pH 8.0, 37°C, isoenzyme III, 2-oxoglutarate as amino group
acceptor

Kido (1988)

1 50 L-valine Solanum
lycopersicum

SlBCAT1, pH not specified, 25°C Maloney et al. (2010)

1.4 3 SlBCAT2, pH not specified, 25 °C

2 56 SlBCAT3, pH not specified, 25°C

1.4 15 SlBCAT4, pH not specified, 25°C

2.6 47 SlBCAT5, pH not specified, 25°C

1.2 20 SlBCAT6, pH not specified, 25°C

2.7 − Escherichia coli pH 8.0, 25°C Inoue et al. (1988)

2.96 − Homo sapiens pH 8.4, 25°C, 2-oxoglutarate as amino group acceptor Schadewaldt (2000)
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values are shown in Table 2), the smaller the Km value, the greater the
enzyme affinity for substrates, which verifies that mitochondrial
SlBCAT1 and SlBCAT2 play a role in BCAA catabolism, while
chloroplasts SlBCAT3 and SlBCAT4 play a role in BCAA synthesis

(Maloney et al., 2010). Comparing the kinetic parameters of
enzymes in different species or different subtypes of the same
species can help better understand the function of enzymes and the
differences in function.

TABLE 2 Characteristics of BCATs.

Name Transaminase
subtype

Location in the
cell

Characteristics References

Homo sapiens BCAT1 cytoplasm Expressed mainly in the brain Wang et al. (2015)

BCAT2 mitochondria Expressed in almost all organs Knerr et al. (2019)

Oryza sativa OsDIAT cytoplasm Regulate drought resistance Shim et al. (2023)

Solanum
lycopersicum

SlBCAT1 mitochondria High branched-chain ketoacid synthesis activity, multi-plant
tissue expression

Maloney et al. (2010)

SlBCAT2 mitochondria High branched-chain ketoacid synthesis activity, multi-plant
tissue expression

Maloney et al. (2010)

SlBCAT3 chloroplast Role in BCAA synthesis, multi-plant tissue expression Maloney et al. (2010)

SlBCAT4 chloroplast Role in BCAA synthesis, multi-plant tissue expression Maloney et al. (2010)

SlBCAT5 cytoplasm Undetectable Maloney et al. (2010)

SlBCAT6 vacuole Undetectable Maloney et al. (2010)

Arabidopsis thaliana AtBCAT1 mitochondria It is mainly active in catabolism Diebold et al. (2002)

AtBCAT2 chloroplast Acts in BCAA synthesis and is expressed only in flowers Diebold et al. (2002)

AtBCAT3 chloroplast Role in BCAA synthesis Diebold et al. (2002)

AtBCAT4 cytoplasm Lack of targeting sequences Diebold et al. (2002)

AtBCAT5 chloroplast Role in BCAA synthesis Diebold et al. (2002)

AtBCAT6 cytoplasm Lack of targeting sequence, expressed in flowered carpus Diebold et al. (2002)

Triticum aestivum Ta BCAT1 mitochondria Role in BCAA synthesis Corredor-Moreno et al.
(2021)

Magnaporthe oryzae BAT1 mitochondria Role in BCAA synthesis Que et al. (2020)

BAT2 cytoplasm Deletion of this gene Que et al. (2020)

BAT3 —— Postulated Que et al. (2020)

Mortierella alpina BatA mitochondria Role in BCAA synthesis Sonnabend et al. (2022)

—— —— —— Sonnabend et al. (2022)

BatC —— Homologous to the BAT3 gene Sonnabend et al. (2022)

Saccharomyces
cerevisiae

Bat1 mitochondria Not only in the production of BCAAs but also in the generation of
fusel alcohols

Toyokawa et al. (2021)

Bat2 cytoplasm Not only in the production of BCAAs but also in the generation of
fusel alcohols

Toyokawa et al. (2021)

Pseudomonas sp. PsBCAT cytoplasm Activity of aromatic L-amino acids, L-histidine, L-lysine and
L-threonine

Zheng et al. (2019)

Aspergillus nidulans BatA mitochondria Not necessary for the synthesis of BCAA. Shimizu et al. (2010)

BatB cytoplasm Not necessary for the synthesis of branched-chain amino acids,
mainly catabolic enzymes

Shimizu et al. (2010)

BatC mitochondria Not necessary for the synthesis of BCAA. Shimizu et al. (2010)

BatD cytoplasm Not necessary for the synthesis of BCAA. Shimizu et al. (2010)

BatE cytoplasm Not necessary for the synthesis of BCAA. Shimizu et al. (2010)

BatF cytoplasm Not necessary for the synthesis of BCAA. Shimizu et al. (2010)
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The BCATs in Saccharomyces cerevisiae is encoded by two
genes, BCAT1 and BCAT2 (Eden et al., 1996). BCAT1 is mainly in
mitochondria, while BCAT2 is in the cytoplasm (Kispal et al.,
1996). Six genes encoding BCAA aminotransferase were identified
in Aspergillus nidularis, a filamentous fungus. Six BAT isoenzymes
as well as coding genes were identified by using BLAST analysis
(Shimizu et al., 2010); details are shown in Table 1. The S. cerevisiae
BAT protein sequence shows different degrees of similarity
compared with the six BAT enzymes of A. nidularis (Steyer
et al., 2021). Two BCAA aminotransferases (BCATa and
BCATb) play a role in Ile and Val biosynthesis and play a
major role in Leu biosynthesis. The gene encoding BCAT in
Mycobacterium tuberculosis is a member of the subfamily IIIa

of transaminases. The M. tuberculosis IlvE monomer consists of
two domains that interact to form the active site, and the conserved
N-terminal Phe30 residue can confer additional substrate
selectivity (Tremblay and Blanchard, 2009). D- and
L-cycloserine can inactivate branched-chain aminotransferases
of M. tuberculosis and inhibit multiple PLP-dependent enzymes
(Amorim Franco et al., 2017). BCAT catalyzes the formation of
methionine from α-keto-γ-methiolbutyrate (Venos et al., 2004),
and all mycobacterial BCAT sequences were found to be identical
to M. tuberculosis sequences except for those in M. bovum (Venos
et al., 2004). BCAT affects the growth and survival of
Mycobacterium tuberculosis, so it may be a candidate gene for
the development of inhibitors (Amorim Franco et al., 2016).

FIGURE 2
Multiple alignment of Homo sapiens, Escherichia coli, Mycobacterium tuberculosis, Saccharomyces cerevisiae, Schizosaccharomyces pombe,
Hordeum vulgare, Darnio rerio, Streptococcus pneumoniae BCAT amino acid sequence. A black box indicates the conserved-catalytic lysine residues of
BCATs. hBCAT, ecBCAT, mtBCAT, scBCAT, sp1BCAT, hvBCAT, drBCAT and sp2BCAT indicate BCATs derived from Homo sapiens, Escherichia coli,
Mycobacterium tuberculosis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Hordeum vulgare, Darnio rerio, Streptococcus
pneumoniae, respectively.
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Staphylococcus can also catalyze the transamination of methionine
to a certain extent (Madsen et al., 2002).

In order to understand the differences of BCAT in different
species, the BCAT of different species was analyzed by primary
structure, and the conservatism of BCAT sequences of animals,
plants, and microorganisms was analyzed. A multi-sequence
alignment analysis of Homo sapiens, Escherichia coli,

Mycobacterium tuberculosis, Saccharomyces cerevisiae,
Schizosaccharomyces pombe, Hordeum vulgare, Darnio rerio,
Streptococcus pneumoniae BCAT was conducted, and the results
are shown in Figure 2. Understanding the differences in the primary
structure of BCAT has a significant impact on enzyme function.
BCAT is a PLP-dependent enzyme that binds to conserved catalytic
lysine residues (as shown in Figure 2, the black box indicates the

FIGURE 3
Mega11 maps the BCAT gene phylogenetic tree. The sequences for all species are from NCBI.Homo sapiens (NP_001171562.1), Escherichia coli str.
K-12substr.MG1655(YP_026247.1), A. thaliana (NP_001320930.1), Caenorhabditis elegans (NP_510144.1), M. tuberculosis H37Rv (NP_216726.1), S.
cerevisiae S288C(NP_012078.3), Schizosaccharomyces pombe (NP_595180.2), Hordeum vulgare subsp. vulgare (XP_5.044979232), Triticum aestivum
(XP_044377163.1), Danio rerio (NP_956358.1), Cucumis melo (XP_008444507.1), Mannheimia sp. USDA-ARS-USMARC-1261 (AHG72724.1),
Streptococcus pneumoniae (QUY39052.1), Staphylococcus aureus subsp. aureus ST228(CCJ14319.1), Pseudomonas aeruginosa BL05 (ERY42690.1),
Xenopus laevis (XP_018106594.1), Ovis aries (NP_001009444.1), Bos taurus (NP_001077113.1), Solanum tuberosum (NP_001275385.1). The numbers
represent the bootstrap values (in percentage) for each branch point.
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conserved catalytic lysine residues of BCATs). In Saccharomyces
cerevisiae BCATs, amino acid substitution of lysine at position
219 in BCAT1 and position 202 in BCAT2 has been reported to
lose its enzymatic catalytic activity (Kingsbury et al., 2015). More
importantly, the amino acid substitution of lysine residues catalyzed
by BCAT2 (K202H and K202M) not only led to the loss of catalytic
activity, but also yeast cells expressed these dysfunctional
Bat2 proteins under multiple stress conditions (e.g., pH,
caffeine.), showing different growth phenotypes compared to
wild-type cells (Espinosa-Cantú et al., 2018). Therefore,
understanding the primary structure of the enzyme will give a
clearer understanding of the function of the enzyme.

Finding homologous sequences and analyzing their functions is
one way to understand the general use of proteins. Subtle differences
in gene sequences can have a significant impact on the function of
protein. Comparing the gene sequences of transaminases from
different species has a certain enlightening effect on the study of
transaminases. The evolutionary laws of different species can be
found in the evolution of transaminase genes. The BCAT protein
sequences are downloaded from National Center for Biotechnology
International. These files are downloaded in FASTA format.
Transaminase sequences of different species obtained by NCBI
were introduced through molecular evolutionary genetic analysis
(MEGA) software. The Clustal algorithm is used for sequence
alignment and the Neighbor joining method to build
evolutionary trees (Saitou and Nei, 1987; Sievers and Higgins,
2021). Evolutionary trees infer their kinship based on the
similarity of gene sequences, with closer branches meaning closer
relatives, higher sequence similarities, and closer cumulative branch
lengths indicating closer kinship (as shown in Figure 3).

3 BCAT gene expression and function in
plants

BCAT1 in plants was recently studied in wheat (Triticum
aestivum), where it was found that BCAT can regulate
susceptibility to wheat rust (Corredor-Moreno et al., 2021).
BCAA aminotransferase (known as TaBCAT1) was found in
pathogen-infected bread wheat as a positive regulator of wheat
rust sensitivity. Destruction of TaBCAT1 inhibited the infection
of yellow rust and stem rust and increased levels of BCAA in
TaBCAT1-destroyed mutants that regulated BCAA metabolism in
wheat. TaBCAT1 mutants also showed elevated levels of salicylic
acid and enhanced expression of related defense genes. There is a
correlation between BCAA levels in wheat and yellow rust,
highlighting the role of BCAT in plant defense responses.
Disrupting TaBCAT1 inhibits wheat infection by the wheat
yellow and stem rust fungi, considering the crucial role of
TaBCAT1 in pathogen invasion, may be a target for
manipulation to increase resistance to pathogen infection. The
BCAT gene isolated in H. vulgare is regulated by drought stress.
The transcription level of Hvbcat-1 increases under drought stress,
and degradation of BCAAs can serve as a detoxification mechanism
to keep free branched-chain amino acids at low or non-toxic levels
(Malatrasi et al., 2006). BCAT can also improve the drought
tolerance of rice (Oryza sativa), identifying cytosolic BCAT1 as a
candidate gene for plant drought tolerance enhancement and

participating in the accumulation of drought-stress-mediated
BCAAs in rice (Shim et al., 2023). Overexpression of OsDAT
under drought conditions in paddy fields increases cereal yields.
Melon BCAT1 gene was expressed in Escherichia coli, showing
branched-chain amino acid transaminase activity. The expression
of BCAT1 is low in vegetative tissues, but during fruit ripening,
expression in pulp and peel tissues increases. Ripe fruits of aromatic
varieties generally show high expression of BCAT1 compared to
unripe fruits (Gonda et al., 2010). In tomatoes, the effects of
monoisoform BCAT on fruits were studied. They found ketoacids
rather than amino acids to be possible precursors of branched-chain
flavor volatiles. The change in expression level of BCAT isoforms did
not affect the synthesis of branched-chain volatiles, indicating that
BCAT was not a suitable target for metabolic engineering of
important flavor compounds (Kochevenko et al., 2012). It was
found that the increase of BCAT gene expression induced by low
temperature stress could promote the synthesis of Leu in tomato
fruit (Zhang W. F. et al., 2019). BCAT is also potentially involved in
drought-resistant pathways in Arabidopsis, where BCAT2 is a
pathogenic gene with naturally variable BCAA content
(Angelovici et al., 2013). BCATs are essential for the free growth
of betarhizobia and their ability to form effective symbionts with
host plant of the Mimosa genus (Chen et al., 2012). Plants have
different levels of gene expression in different environments. The
development of genome transcriptome sequencing has helped to
understand plant defense responses in different environments and
plant susceptibility to disease. A deeper understanding of BCAT will
provide better protection for cash crops from pathogens and harsh
environmental stresses.

4 BCAT gene expression and function in
animals

Recent studies of BCAT1 in animals were conducted in mouse
embryonic stem cells (Chen et al., 2020). Regulation of self-renewal
and pluripotency of mouse embryonic stem cells is done by Ras
signaling. High-throughput sequencing of undifferentiated mouse
pluripotent stem cells as well as differentiated cells revealed that
BCAT1 is highly expressed in mouse embryonic stem cells and is
significantly downregulated in differentiated cells. The BCAT1 gene
in mouse embryonic stem cells was knocked out with CRISPR-cas9,
which led to spontaneous differentiation of mouse embryonic stem
cells. The specific mechanism of self-differentiation of mouse
embryonic stem cells needs to be further studied. Genome-wide
bisulfite sequencing (WGBS) analysis showed that BCAT1-
knockout cells had reduced levels of DNA methylation on each
chromosome throughout the genome, altering gene expression in
multiple pathways. Further research into the function of BCAT1 in
mouse embryonic stem cell (ESC) and the analysis of its underlying
mechanisms is needed. BCAA aminotransferases (BCAT1/ECA39)
are also involved in apoptosis. Overexpression of BCAT1/ECA39 in
murine cells had no significant effect on the proliferation of cells
grown at high serum concentrations, but cell viability decreased
under conditions of serum deprivation (Eden and Benvenisty, 1999).
Mice with deletion of mitochondrial branched-chain
aminotransferase (BCATm) (expressed in muscle and brain glial
cells) showed a significant increase in BCAAs. Loss of BCAA
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transamination leads to changes in dietary choices and
hypothalamic neuropeptide gene expression (Purpera et al.,
2012). The expression of the BCAT2 gene is regulated during
mouse adipocyte differentiation and is affected by the level of
nutrients (Kitsy et al., 2014). Alzheimer’s disease (AD) is a
chronic neurodegenerative disease and the expression of
BCAT1 was significantly reduced in mice with this disease (Li
et al., 2018).

The nonsense mutation in the mouse BCAT2 gene can lead to
BCAA catabolic defects and high levels of BCAAs accumulation in
plasma and urine, the direct proarrhythmic effect of elevated BCAAs
levels, and the mTOR pathway can eliminate the proarrhythmic
effect caused by elevated BCAAs (Portero et al., 2022). BCAA
catabolic defects lead to the accumulation of BCKAs in
myocardia. BCKAs may promote heart failure by inhibiting the
respiratory chain and increasing the superoxide production of
mitochondria. On the contrary, enhancing the activity of branch-
chain α-ketoate dehydrogenase can significantly reduce cardiac
dysfunction after pressure overload (Sun et al., 2016). Mice with
BCAT2 exon 4-6 targeting deletion showed lower body weight and
exercise intolerance. BCAT1 inhibitors alleviate childhood asthma
in mice by affecting airway remodeling and autophagy. BCAT1 is
upregulated in chronic airway disease; however, its role in childhood
asthma is unclear. BCAT1 is upregulated in mice with neonatal
asthma, and BCAT1 inhibitors may inhibit airway inflammation
and remodeling by reducing autophagy, which may provide a new
therapeutic direction for childhood asthma (Li et al., 2022).

Celetodes parasitizing plants and animals have also been studied
on BCAT1 (Mansfeld et al., 2015). Impaired BCAT1 gene expression
in nematodes leads to increased lifespan and increased BCAA levels.
Overexpression of BCAT1 impairs longevity and fecundity, and the
transcription factor HLH-15 controls and effectively co-regulates
physiological ageing with BCAT1. Consistent with the findings in
rodents, supplementation with BCAAs extended the lifespan of
nematodes. BCAAs act as peripherally derived metabolic factors
that induce central nervous system endocrine responses that
ultimately lead to a prolonged healthy range. Polymorphisms in
the BCAT1 gene also have a protective effect against acute coronary
syndrome (Ramírez-Bello et al., 2020). BCAT1 redox function
maintains cell mitosis, which is essential for chromosome
separation, and provides an explanation for BCAT1’s role in
promoting cancer cell proliferation (Francois et al., 2022).

5 BCAT gene expression and function in
microorganisms

BCAT in microorganisms has been widely studied, but BCAT
purification has been less reported, and BCATs can be purified by
column chromatography in Helicobacter pylori (Saito et al., 2007).
Bacterial and archaeal BCAT is distinguished from eukaryotes by
broad substrate specificity (Bezsudnova et al., 2017).
Hyperthermophilic archaea exhibit high specificity for BCAAs
and their ketone analogues (Bezsudnova et al., 2016). BCAT has
been used in the biosynthesis of unnatural amino acids.
Aminotransferases are important biocatalysts for the synthesis
of chiral amines, have the ability to introduce amino groups
into ketones or ketoacids, and have high enantioselectivity

(Zheng et al., 2019). Most of them are introduced as branched-
chain amino acids inserted into E. coli for clonal expression and
purification (Stekhanova et al., 2017). E. coli BCAT can be used to
synthesize some asymmetric unnatural amino acids (Yu et al., 2014),
such as L-n-Leucine, L-n-Valine, and L-Neopentylglycine. The
expression of BCAT in E. coli is associated with the production
of pantothenic acid in industry (Zhang B. et al., 2019). It is expressed
in E. coli by cloning BCAT from Pseudomonas (PsBCAT). PsBCAT
shows a relatively wide substrate spectrum and exhibits significant
activity against a large number of aliphatic L-amino acids. In
addition, PsBCAT demonstrates activity with aromatic L-amino
acids, such as L-histidine and L-threonine. The BCAT sequences
of Bacillus subtilis, Corynebacterium glutamate, and Pseudomonas
showed varying degrees of similarity with E. coli, respectively. BCAT
protein is mainly produced in the form of a soluble protein, and the
expression of PsBCAT is preferred over other BCATs and is more
selective for substrates. So it is more likely to be widely used in
industry.

The BCAT, encoded by the ilvE gene, is involved in acid
tolerance of Streptococcus mutans, which is considered a
pathogen of human dental caries and affects dental health as well
as oral microbial survival. Under acid-stressed conditions, ilvE genes
are upregulated in Streptococcus mutans, and growth lags in
Streptococcus mutans ilvE mutant strains when nutrition restricts
branched-chain amino acids (Santiago et al., 2012). In staphylococci,
ilvE mutants were shown to lose enzymatic activity against BCAAs,
demonstrating their role in amino acid catabolism (Madsen et al.,
2002). Mutant strains of Staphylococcus carnosus lacking BCAT
activity are unable to produce suitable branched-chain α ketoacid
precursors for branched-chain fatty acid biosynthesis and need to be
grown in medium containing 2-methylpropionic acid (Beck, 2005).
Mycobacterium BCATs are key enzymes for the synthesis of
methionine, and blocking methionine biosynthesis in
mycobacteria can inhibit the growth of mycobacteria (Pham
et al., 2022). In contrast to higher fungi, the biosynthetic genes of
the oil-producing fungus Mortierella alpina BCAAs are virtually
immune to transcriptional regulation, indicating a sustained
production of BCAAs (Sonnabend et al., 2022). Isolation of
Lactobacillus fermentum YZU-06 with high utilization rate of
branched-chain amino acids in Jinhua ham is a promising starter
culture that can improve the flavor of fermented meat products (Liu
et al., 2022a). Moreover, the addition of Leu and the mixed starter of
L. fermentum YZU-06 and S. saprophyticus CGMCC 3475 could
produce methyl branched-chain aldehyde and improve the overall
quality of fermented sausages (Liu et al., 2022b). S. cerevisiae BCATs
are not only involved in the production of BCAAs but are also
associated with the production of fusels as a precursor to volatile
flavor components of next-generation biofuels or as fermentation
products. The overexpression of these BCATs also increases the
industrial production of fusel alcohols (Eden et al., 1996).
Mitochondrial Bat1 in S. cerevisiae regulates Val biosynthesis, but
Bat2 has little effect on Val biosynthesis. Whether the biosynthesis of
Leuand Ile is mainly regulated by Bat1 or Bat2, or by both enzymes,
has not been clearly explained. S. cerevisiae may also contain more
than these two aminotransferases, which may be regulated by other
undiscovered aminotransferases (Takpho et al., 2018).

Pathogens rely on host amino acids to grow and survive, BCATs
regulate the metabolism of BCAAs, and BCAAs are essential for the
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growth of various microorganisms. Targeting BCATs may disrupt
pathogen utilization of BCAAs, impairing their ability to reproduce.
The development of BCAT inhibitors as potential antimicrobials can
selectively block BCAT activity, such as Aminooxy compounds
being detected as potential BCAT inhibitors, hindering pathogen
utilization of BCAAs for growth and survival (Venos et al., 2004),
but further research is needed to elucidate the specific mechanisms
by which BCATs promote pathogen growth.

6 BCAAs aminotransferases and human
diseases

BCATs are closely related to diabetes. Plasma BCAAs are
significantly elevated in patients with type 1 diabetes mellitus
(Karusheva et al., 2021), the decrease in glycolysis reduces the
content of amino receptors (α-ketoglutarate, pyruvate, and
oxaloacetate), the branched-chain amino acid transamination
reaction is reduced, and the level of branched-chain amino acids
in human plasma will be significantly increased, and the flux of
BCAAs through BCKAD is impaired due to excess NADH and an
increase in the ratio of acyl-CoA to CoA-SH (Holeček, 2020). In
addition, BCAT1 methylation was found to be associated with
obesity (Kaufman et al., 2018), elevated plasma BCAAs for
obesity states (She et al., 2007), BCAT1 as a candidate gene
associated with obesity (Chen et al., 2013), and obesity associated
with type 2 diabetes (Nadler et al., 2000). BCAT1 single nucleotide
polymorphisms were identified as associated with type 2 diabetes
from a genome-wide association scans (Rampersaud et al., 2007),
and in the skeletal muscle of patients with type 2 diabetes, the
expression of the gene encoding the first step enzyme involved in
BCAAmetabolism (BCAT2) is reduced, and the patient’s branched-
chain amino acid metabolism is inhibited. Glucose load further
attenuates BCAA catabolism in patients with type 2 diabetes, and
circulating plasma BCAA levels change. However, the transcriptome
regulatory mechanisms of genes involved in BCAA catabolism are
unknown (Sjögren et al., 2021).

BCATs are mainly expressed in the brain and neurons, and
BCATs are involved in N shuttles between astrocytes and neurons in
the brain, BCATs are closely related to brain diseases as well as
neurological diseases (Knerr et al., 2019). Maple syrup urine disease
(MSUD) is an inherited metabolic disorder, BCKD complex subunit
mutations lead to the accumulation of BCKAs, the exact molecular
mechanism by which BCKAs cause neuronal damage in MSUD is
not fully understood, studies indicate that the accumulation of
BCKAs disrupts mitochondrial function, induces oxidative stress,
and impairs neurotransmitter synthesis and release (Funchal et al.,
2006). Mitochondrial BCAT2 mutations in N-ethyl-N-nitrosourea-
treated mices produce pathological features similar to MSUD,
providing an animal model for studying the metabolism of
BCAAs (Wu et al., 2004), unlike MSUD, elevated plasma BCAAs
in patients with BCAT2 deficiency do not lead to acute
encephalopathy (Knerr et al., 2019). Secondly, according to a
study of Alzheimer’s patients, high levels of serum BCAA,
glutamate, and BCAT were positively correlated with AD
severity. Glutamate production is increased by elevated BCAT
activity, which may deteriorate brain function and be associated
with impaired cognitive function and faster cognitive decline

(Hudd et al., 2019). BCATs participate in regulating the levels
of neurotransmitters such as glutamate and γ-aminobutyric acid.
BCAT inhibition may lead to an imbalance in neurotransmitter
levels, leading to neurological diseases and neuronal dysfunction.
The molecular mechanisms underlying BCAT dysfunction leading
to these diseases include impaired neurotransmitter synthesis,
mitochondrial dysfunction, and oxidative stress (Funchal et al.,
2006). In the brains of patients with vascular dementia (VaD)
and dementia with Lewy bodies (DLB), hBCATm protein
expression was significantly increased, similar to that reported in
AD brains (Ashby et al., 2017). Associated with Pap syndrome, a
metabolic neuromuscular disease, overexpression of the BCAT gene
can rescue the growth of cells lacking the phosphatidyltransferase
TAZ1 gene (Antunes et al., 2019), The main contribution of BCATs
may be the compensatory increase in TCA circulating flux, but the
specific mechanism of the overexpression of the BCAT gene to
rescue the growth of cells lacking the phosphatidyltransferase
TAZ1 gene is unclear.

Overexpression of BCAT1 in leukaemia stem cells reduces
intracellular α-ketoglutarate (αKG), and DNA demethylase
inactivation leads to DNA hypermethylation (Raffel et al., 2017).
BCAT1 regulates gene epigenetics by restricting intracellular αKG to
stabilize the HIF1α protein required for the maintenance of
leukemia stem cells (Raffel et al., 2017). In chronic myeloid
leukaemia (CML), BCAT1 promotes clonal growth by forming
BCAAs from amino groups of BCKAs. Conversely, reducing the
expression of BCAT1 promotes cell differentiation and prevents the
spread of CML in vivo (Hattori et al., 2017). BCAT has also been
studied in cardiovascular diseases. BCAA aminotransferase 1-23C/G
polymorphisms have been found to have a protective effect against
acute coronary syndrome, but the specific mechanism has not been
studied (Ramírez-Bello et al., 2020). Activation of BCAT1 and
inhibition of oxoeicosanoid receptor can reduce acute myocardial
infarction (Lai et al., 2021). Activation of BCAT1 can also reduce
acute myocardial infarction; overexpression of BCAT in the heart
can improve myocardial ischemic injury; and targeted treatment of
BCAT is a promising strategy for acute myocardial infarction for
clinical treatment (Lai et al., 2021). Increased BCAT activity in
combination with the branched-chain α-ketoacid dehydrogenase
(BCKD) kinase inhibitor BT2, which reduces cardiac BCAA levels,
increased forward transamination rates and increased the
therapeutic benefit of BCAAs (Voronova et al., 2022).

Most research on BCAT is related to cancer (details are shown in
Table 3). BCAT1 shows different activities in cancer, correlated with
tumor aggressiveness (Tönjes et al., 2013). BCAT1 is upregulated in
isocitrate dehydrogenase (IDH) wildtype but not mutant
glioblastoma multiforme (GBM) (Tönjes et al., 2013). The
BCAT1 inhibitors gabapentin and α-ketoglutaric acid (αKG) kill
wild-type IDH GBM cells. The principle is that the inhibition of
BCAT1 increases the NAD+/NADH ratio with BCAT1 deletion,
impairing oxidative phosphorylation, mTORC1 activity, and
nucleotide biosynthesis, leading to mitochondrial dysfunction and
loss of ATP, nucleotides, and proteins. (Zhang B. et al., 2022). The
hypermethylation of the BCAT1 promoter inhibits the BCAT1 gene,
and the decrease in the expression of BCAT1 reduces the supply of
glutamate, increases the dependence on glutaminase, and reduces
tumor proliferation and invasion (Yi et al., 2021). High expression of
BCAT1 is a marker for predicting poor prognosis in IDH1 wild-type
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glioma patients, providing an important target site for glioblastoma
patients (Yi et al., 2021; Huang W. et al., 2022). Noncoding RNAs
have been widely studied in recent years, glioblastoma is also
regulated by competitive endogenous RNA, circVPS18 accelerates
the progression of glioblastoma through miR-1229-3p/BCAT1,
providing a potential therapeutic target for glioblastoma (Huang
Q. et al., 2022).

Expression and methylation of the BCAT1 gene are associated
with human nonalcoholic fatty liver disease. BCAT1 may identify
patients at risk for a poor prognosis (Wegermann et al., 2018).
Tumors in patients with liver cancer (HCC) show abnormally high
expression of the BCAT gene but low expression of BCKD and
downstream catabolic enzymes (Ericksen et al., 2019).
BCAT1 promotes HCC cell development and metastasis by
activating the AKT signaling pathway and epithelial-
mesenchymal transformation (EMT) (Ding et al., 2023). High
concentrations of gabapentin can inhibit cell proliferation
without affecting BCAT1 (Grankvist et al., 2018). BCATc
inhibitor 2 is an inhibitor of cytosolic BCAT, which can be
synthesized by binding 2-CF3-phenyls to coumarin derivatives
(Lu et al., 2022). The cytosolic branched-chain amino acid
aminotransferase inhibitor BCATc Inhibitor 2, which protects
oleic acid-induced lipid accumulation and apoptosis, is a
promising candidate for the treatment of Non-alcoholic fatty
liver disease (Lu et al., 2022). Elevated BCAA levels promote
excessive activation of mTOR signaling to promote tumor
growth. Decreased levels of BCAAs in hepatoma cell culture
medium reduce the proliferation rate of hepatoma cells (Ericksen
et al., 2019). High expression of BCAT1 and BCKD genes in breast
cancer activates mTOR signaling, and BCAA catabolism is

enhanced. BCAT1 knockdown may help reduce mTOR signaling
and reduce the growth rate of breast cancer cell lines (Zhang and
Han, 2017). These studies have found a major role in tumor
proliferation. In addition, in the presence of cachexia disease in
cancer patients, supplementation with BCAAs improves quality of
life due to their anabolic effects and subsequently increases the
effectiveness of chemotherapy interventions (Laviano et al., 2005).
The tumor diameter in the high-expression group was higher than
that in the low-expression group, and the 5-year survival rate was
lower in the high-expression group. The high expression of
BCAT1 was positively correlated with tumor diameter, lymphatic
metastasis, and a poor prognosis. BCAT1 is a potential biological
target for breast cancer (Laviano et al., 2005). Another study was to
silence the BCAT2 gene in primary cells of the breast cancer cell line
MCF-7 and breast tumor to reduce cell proliferation, but the detailed
mechanism needs further investigation (Antanavičiūtė et al., 2017).
Spectrophotometry and hyperpolarized 13C magnetic resonance
spectroscopy (MRS) determined BCAT enzyme activity in vitro
for prostate cancer of various origins (humans, mice). Low levels of
BCAT activity were present in all prostate cancer models. And
BCAT levels were elevated in healthy human prostate tissue relative
to malignant tissue (Billingsley et al., 2014). N6-methyladenosine
(m6A) RNA methylation plays an important role in tumorigenesis
and metastasis, BCAT1 was screened for m6A RNA methylation-
related gene in pancreatic cancer, which may be a new therapeutic
target, but detailed mechanistic studies have yet to be discovered
(Geng et al., 2020). BCAT1 is abnormally expressed in colorectal
cancer (CRC) with significantly higher levels of cyclic tumor DNA
(ctDNA) methylation, which can be used for CRC diagnosis with
high sensitivity and specificity (Xu et al., 2021). Moreover, it was

TABLE 3 BCAT expression and related studies in different types of cancer.

Cancer type BCAT expression Description of relevant studies References

Glioblastoma High BCAT1 expression in IDHwt but was
essentially absent in IDHmut

BCAT1 deletion combined with αKG is a new synthetic lethal method
for the treatment of IDHwt GBM. The decrease in the expression of
BCAT1 reduces the supply of glutamate, increases the dependence on
glutaminase, and reduces tumor proliferation and invasion

Tönjes et al. (2013), Yi
et al. (2021)

Liver cancer High BCAT1 expression in HCC. BCAT1 promotes HCC cell development and metastasis by activating
the AKT signaling pathway and epithelial-mesenchymal
transformation (EMT)

Ding et al. (2023)

Breast cancer High BCAT1 expression in Breast cancer BCAT1 knockdown may help reduce mTOR signaling and reduce the
growth rate of breast cancer cell lines

Zhang and Han (2017)

Prostate Cancer Low levels of BCAT activity BCAT levels were elevated in healthy human prostate tissue relative to
malignant tissue

Billingsley et al. (2014)

Colorectal Cancer High BCAT1 expression in Colorectal
Cancer

Long non-coding RNA (lncRNA) TMPO-AS1 can upregulate the
expression of BCAT1 through miR-98-5p, promoting the progression
of colorectal cancer cells

Xu et al. (2021), Ye et al.
(2022)

Pancreatic ductal
adenocarcinoma (PDAC)

High BCAT2 expression in PDAC. BCAT2 knockdown significantly inhibited the proliferation of PDAC
cells, reduced cellular fatty acid levels and associated with lipid
synthesis

Lee et al. (2019)

Pancreatic cancer High BCAT2 expression in Pancreatic
cancer

Acetylation promotes BCAT2 degradation to suppress BCAA
catabolism and pancreatic cancer growth

Lei et al. (2020)

Gastric cancer Low BCAT2 expression in Gastric cancer Dysregulation of BCAT2 correlates with the overall survival time of
gastric cancer patients

Zhang et al. (2022b)

Non-small cell lung cancer High BCAT1 expression in Non-small cell
lung cancer

BCAT1 promotes cell proliferation and invasion by regulating the
Wnt signaling pathway

Lin et al. (2020)

Frontiers in Genetics frontiersin.org10

Chen et al. 10.3389/fgene.2023.1233669

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1233669


found that long non-coding RNA (lncRNA) TMPO-AS1 can
upregulate the expression of BCAT1 through miR-98-5p, thereby
promoting the progression of colorectal cancer cells (Ye et al., 2022).
BCAT2 protein levels were significantly elevated in human
pancreatic ductal adenocarcinoma (PDAC) cells, and BCAT2
knock down significantly inhibited the proliferation of PDAC
cells. BCAT2 knockdown significantly inhibited the proliferation
of PDAC cells, but untransformed human pancreatic ductal HPDE
cells did not, and reduced cellular fatty acid levels were associated
with lipid synthesis (Lee et al., 2019). Acetylating lysine 44 (K44), an
evolutionarily relatively conserved residue located at the N-terminus
of BCAT2, of BCAT2 promotes BCAT2 degradation and inhibits
BCAA catabolism and pancreatic cancer growth (Lei et al., 2020).
Therefore, BCAT2 may also provide a new therapeutic target for
pancreatic cancer, presumably use of the modified BGAT may help
the treatment of cancer. In addition, dysregulation of
BCAT2 correlates with the overall survival time of gastric cancer
patients, and this study contributes to the potential treatment of
gastric cancer (Zhang Y. et al., 2022). BCAT1 was found to be a
potential therapeutic target for clinical treatment of lung diseases.
BCAT1 is overexpressed in human non-small cell lung cancer, and
BCAT1 promotes cell proliferation and invasion by regulating the
Wnt signaling pathway (Lin et al., 2020). In addition, abnormalities
in smooth muscle cells of the pulmonary artery are associated with
autophagy, and BCAT1 binds to IRE1 in the endoplasmic reticulum
to activate the expression of its downstream pathway XBP-1-RIDD
axis, thereby activating autophagy. The RNA-binding protein zinc
finger protein 423 promotes autophagy by binding to BCAT1mRNA
3′-untranslated regions (Xin et al., 2020).

BCAT2 can also be used to predict cancer cell responsiveness to
ferroptosis-inducing therapies and be used as a sensitive biomarker
to evaluate drug response in preclinical cancer models (Wang et al.,
2021). BCAT2 plays a crucial role in ferroptosis. Ferroptosis
inducers (erastin, sorafenib, and sulfazazine) activate the AMPK/
SREBP1 signaling pathway through iron-dependent ferritinophagy,
inhibiting BCAT2 transcription (Wang et al., 2021). The
overexpression of BCAT2 in the human pancreatic cancer cell
line Aspc-1 and hepatocellular carcinoma cells HepG2 increased
intracellular glutamate and glutamate release, increased system Xc−

activity, and inhibited ferroptosis. System Xc− is located in the cell
membrane andmediates cysteine and glutamate transport (Liu et al.,
2021). Inhibition of the expression of the BCAT2 gene by RNA
interference, thus blocking system Xc− activity, resulted in
ferroptosis in cells. Thus, knockdown of the expression of the
BCAT2 gene can partially induce ferroptosis. Therefore, highly
specific BCAT2 inhibitors can provide an effective treatment for
a subset of cancer patients. Conversely, BCAT1 activity is
significantly reduced in ferroptosis-induced mesenchymal stem
cells, which downregulate ferroptosis by inhibiting transcription
of glutathione peroxidase-4 (GPX4) in mesenchymal stem cells (Hu
et al., 2023). In different ferroptosis-induced cells, the activity of
branched-chain amino acid aminotransferases of different subtypes
is altered, and further research is needed.

BCAT converts BCAA to BCKA, which can be further
metabolized by the branched-chain ketoacid dehydrogenase
(BCKDH) complex, producing acetyl-CoA and entering the
tricarboxylic acid (TCA) cycle, providing an additional source of
energy for cancer cells (Mayers and Vander Heiden, 2017). In

addition, BCAT plays a role in supporting cancer cell growth and
proliferation by promoting the biosynthesis of key molecules
required for tumor development, such as activating or inhibiting
the mTOR signaling pathway to affect cancer cell multiplication
(Wolfson et al., 2016; Zhang and Han, 2017). BCKAs produced by
BCAT can serve as precursors for the synthesis of fatty acids,
cholesterol and other important metabolites. The BCAT-catalyzed
transamination reaction leads to the formation of glutamate, which
can be used for the biosynthesis of other non-essential amino acids
such as glutamine, or the production of a-ketoglutaric acid by other
aminotransferases (Altman et al., 2016), followed by glutamic acid as
a precursor to the synthesis of glutathione, a major antioxidant
molecule. By promoting glutathione synthesis, BCAT helps cancer
cells maintain a favorable intracellular redox environment that
supports their survival and proliferation (Godwin et al., 1992).

7 Conclusion

In recent years, in-depth research on BCATs have been carried
out, from humans to animals and plants and microorganisms, from
BCATs chemical structure to function, from BCAT genes to related
pathway studies, and have a clearer understanding of BCATs.
Research on microbial BCAT is mainly related to the industrial
production of its products. Since BCAAs are essential amino acids
for humans and cannot be synthesized by humans, the industrial
production of BCAAs is crucial. BCATs are not only involved in the
production of BCAAs, but also related to the preparation of fusel
alcohols and methyl branched-chain flavor compounds, so BCATs
can be used to produce fuels and are widely used in the food
industry. The study of BCAT will likely improve productivity as
well as reduce costs, such as increased enzyme activity or substrate
specificity. Plant BCATs are mostly studied on economic crops
(barley, wheat, rice, etc.), and mainly emphasizes the role of BCATs
in plant defense response, resistance to pathogen invasion and
drought or low temperature stress, in-depth study of BCATs will
benefit the cultivation of economic crops and food and fruit yield,
and better benefit mankind. BCAT studies in animals are associated
with diseases, most of which are caused by disorders of branched-
chain amino acid metabolism, such as metabolic disorders, cancer,
and neurodegenerative diseases. BCAAs metabolism is regulated by
a variety of factors. Hormonal regulation (e.g., insulin, glucagon, and
growth factors) can affect transcriptional regulation of BCAA
pathway enzymes. In addition, multiple signal modulations such
as mTOR signaling, insulin signaling, and AMPK signaling. Enzyme
regulation, BCKDC kinase (BCKDK) with protein phosphatase
2Cm (PP2Cm) alters branched-chain α-ketoacid dehydrogenase
complex (BCKDC) activity to regulate BCAA catabolism. Non-
coding RNAs (miRNA, circRNA, lncRNA) are involved in the
post-transcriptional regulation of BCAT. Current research on
BCAT has certain limitations, such as measuring enzyme activity
in vitro, it is impossible to completely mimic the in vivo
environment, and most of the research on diseases only shows its
correlation, without in-depth study of molecular mechanisms. In-
depth understanding of the relationship between BCAT and its gene
expression, and the use of genetic engineering to change its activity
may provide more accurate and effective treatment. BCAT is not
limited to catalysis, but more importantly, it regulates metabolism in
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the body. Metabolic disorders will inevitably cause a variety of
diseases, and further research on its regulatory mechanism may
provide a new direction for disease treatment. Cancer has become
the main cause of death in humans, in vitro research on cancer cells
is limited, after all, the metabolic pathways of the human body in
vivo are complex and interrelated, BCAT is an important prognostic
tumor marker, the development of drugs for BCAT, will provide
new treatment strategies.
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