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The characterization of epigenetic changes during cancer development and
progression led to notable insights regarding the roles of cancer-specific
epigenetic reprogramming. Recent studies showed that transcription factors
(TFs) are capable to regulate epigenetic reprogramming at specific loci in
different cancer types through their DNA-binding activities. However, the
causal association of dynamic histone modification change mediated by TFs is
still not well elucidated. Here we evaluated the impacts of 636 transcription factor
binding activities on histone modification in 24 cancer types. We performed
Instrumental Variables analysis by using genetic lesions of TFs as our
instrumental proxies, which previously discovered to be associated with
histone mark activities. As a result, we showed a total of 6 EpiTFs as strong
directors of epigenetic reprogramming of histone modification in cancers, which
alters the molecular and clinical phenotypes of cancer. Together our findings
highlight a causal mechanism driven by the TFs and genome-wide histone
modification, which is relevant to multiple status of oncogenesis.
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Introduction

Epigenetic reprogramming refers to the alteration of dynamic epigenetic marks (like
histone modifications, DNA methylation, chromatin remodeling and some non-coding
RNA molecules) on post-translational levels at various promoter or enhancer elements.
Above all, modifications of histone tails are essential to define distinct gene expression states
and other chromatin-based processes both actively (H3K4me3, H3K4me1 and H3K27ac,
etc.) and silently (e.g., H3K9me3 and H3K27me3). Mounting evidence suggests that
epigenetic modification plays a role in the diverse clinical behavior of cancers ranging
from slow-growing to aggressive tumors, and thus contributes to the progression of cancers
(Wang et al., 2019; Baksh et al., 2020; Chi et al., 2020; Li et al., 2021). Although various types
of cancer exhibit common phenotypic characteristics like uncontrolled growth and apoptosis
resistance, the epigenetic changes leading to these features can differ significantly among
different cancers, resulting in a considerable landscape of heterogeneity. By characterizing
epigenetic modification during cancer development and progression, researchers gained
notable insights into cancer-specific epigenetic reprogramming.

Epigenetic modification is restricted locally and globally with varying substrate
specificities created hierarchical modification patterns from individual promoters to the
entire chromosomes. Such epigenetic modification patterns are induced by a set of regulatory
enzymes, many of which are known oncogenes (Kurdistani, 2007). In fact, epigenetic
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modification enzymes are specific - but not loci-specific - to certain
chemical groups. Hence the epigenetic reprogramming in cancer
shows some general tendencies (McClellan et al., 2023). For
example, tumor genome tends to be demethylated, and
hypomethylation occurs only in specific genes. Nevertheless,
more studies demonstrate loci-specific epigenetic modifications in
cancer. The landscape of tumor epigenetic modification can result
from complex determinations such as germline variation, somatic
evolution, immune check-point and treatment.

Notably, recent studies report that transcription factors (TFs)
are involved in the regulation of epigenetic reprogramming by
introducing epigenetic modifications at specific loci in different
cancer types, which provides evidence for the formation of specific
epigenetic reprogramming signatures (Kant et al., 2022). AR-co-
factors (e.g., FOXA1 and HOXB13) bring about H3K4me3/
H3K27me3 bivalent marks at neural lineage–associated genes in
Myc-driven advanced prostate cancer (Berger et al., 2019).
IGFBP4 results in an AKT-EZH2 reciprocal loop to drive
H3K27me3-mediated epigenetic reprogramming in
hepatocellular carcinoma (Lee et al., 2018). Still, the current
knowledge of TFs as general regulators of epigenetic
reprogramming is limited in certain genes and cancer types. It
remains unclear how many TFs are involved in epigenetic
reprogramming and how these TFs impact cancer epigenomes.
To inform future functional study in cancer epigenetics, we
systematically evaluated the impacts of 636 transcription factor
binding activities on histone modification in 90 cell lines of
24 cancer types. We used mutations of TFs as instrumental
proxies and regressed histone modification to the binding
activity of TF. To this end, we identified 10 TFs-Histone
markers pairs which strongly regulated the epigenome in
cancers. Cooperative interaction among regulatory factors is
often required to achieve precise regulation. We further focused
on the co-binding localization at specific regulatory elements within
the genome to achieve accurate regulation of target genes to
investigate the impacts on the molecular and clinical phenotypes
of cancer. Our findings suggested a causal mechanism for epigenetic
reprogramming in cancer driven by the TFs, which helps better
understand the process of tumorigenesis and treatment.

Materials and methods

Data collection

We collected ChIP-seq data processed from the Encyclopedia of
DNA Elements Project (ENCODE, http://encodeproject.org)
(Moore et al., 2020) for the human genome (hg38) including
seven histone markers (H3K4me3, H3K36me3, H3K4me1,
H3K27ac, H3K79me2, H3K9ac, H4K20me1) and 759 TFs. The
MACS2 algorithm was used to identify the influence of genome
complexity to evaluate the significance of enriched ChIP regions
with narrow peaks mode (TFs) and broad peaks mode (histone
modifications). We defined the binding activities of TFs and histone
modifiers as normalized signal enrichment of genomic region peaks.
For each cell line, more than three histone markers were candidate.
For each epigenome, at least two replicates of the input experiment
were candidate. After filtration, 4,206 paired BED4+6 files from

636 TFs to 7 histone markers involved 24 cancer types were included
in the next analysis.

We got the somatic variants and expression information from
the Cancer Cell Line Encyclopedia (CCLE, https://sites.
broadinstitute.org/ccle/, v19q2) (Nusinow et al., 2020). We
defined the positive mutation status as that non-silent somatic
mutation in the protein coding region of a gene, or any mutation
identified in a non-coding gene, including nonsense, missense,
frameshif indels, splice site mutations, stop codon readthroughs,
change of start codon, in-frame indels.

We downloaded The CERES scores of 320 cancer cell lines from
The Cancer Dependency Map Project at Broad Institute (DepMap,
https://depmap.org, v19Q2) (Barretina et al., 2019). The CERES
score is an algorithm used to calculate the degree of gene
dependency based on results from CRISPR-Cas9 essentiality
screens. The score took into consideration the impact of gene
copy number variations on the results. (Meyers et al., 2017).
Data on the sensitivity of 305 drugs, measured by IC50, across
988 cancer cell lines, was obtained from the Genomics of Drug
Sensitivity in Cancer database (GDSC; https://www.
cancerrxgene.org).

Generalized linear regression analyses
suggest candidate TFs of epigenetic
reprogramming

To estimate the linear effects of each TF on the epigenetic
reprogramming, we performed Ordinary Least Squares (OLS)
regression in order to infer the correlation between TFs binding
activities and Histone marks binding activities in pan-cancer
level. The regression coefficients of β represented the effect sizes
of the binding activities of TFs. The regression coefficients of α
represented the effect sizes of other covariates.

Hiski ~ βijTFij*Ci + αi
Ei

Ti
( ) + εijk

Here, εijk~ N (0, σ2) was a Gaussian error; Hiski referred to the
binding activities of the kth Histone marks of ith cell lines; TFij

referred to the binding activities of jth TFs of ith cell lines. Ei, Ci and
Ti was the expression of TFs, classification of Histone marks (we set
“activated” and “silent”) and the cancer types respectively. The
regression coefficient αi was a 1*2 vector responded to two
covariates of Ei and Ti. We corrected the multiple p values of the
regression coefficients through “Benjamini–Hochberg”method, and
we got the FDR for each TF. The significant TFs (FDR <0.1, lower
than 10% of the false-positive rate associated with a p-value of
0.05 for each hypothesis testing) were candidate for the next
analysis.

Instrumental variable regression analysis

Instrumental variable analysis was used to figure out the
driver TFs by performing the R package ivpack(v1.2), of
which, their binding activities at the genetic loci resulted in
the epigenetic reprogramming. Briefly, the dependent variable
was the binding activities of histone marks (His), and the
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independent variable was the binding activities of TFs that was
significantly associated with His, and the genetic instruments
were the binary mutation status (wild type or mutated) of the TFs
and the covariates above (the expression of TFs and the cancer
types respectively).

Hiski ~ β0 + β1TFij + Ei + Ti

∣∣∣∣Mutij + Ei + Ti + εijk

Here, εijk~ N (0, σ2) was a Gaussian error;Hiski referred to the
kth Histone marks of ith cell lines; TFij referred to the binding
activities of jth TFs of ith cell lines; Mutij referred to the mutated
status of jth TFs of ith cell lines. Ei, and Ti was the expression of TFs
and the cancer types respectively. The IV models were estimated by
Two-Stage least squares (2SLS). We corrected the multiple p values
of β1 through “Benjamini–Hochberg” method and got the FDR for
each TF to evaluate the significance of the independent variables.
To figure out the significance of the instrumental variables, we
recalculated the p values for the weak instruments test using the
Kleibergen-Paap rank Wald F-statistic and estimated the false
discovery rate. (FDRweak) The significant TFs were considered
as “driver TFs”. (FDR <0.1 and FDRweak <0.1).

Identify the drug-related activities of EpiTFs
in cancer cell lines

To evaluate the effects of the activities of EpiTFs on the drug
sensitivity to therapy, we used a linear model to regress the
mean mRNA expression of co-regulated genes for each TFs-
HMs pair and the IC50 of drugs. According to the targets of
drugs, we divided the drugs into different classes. Thus, we
could calculate the OR values associated with different
pathways.

IC50ik ~ β0 + β1mRNAij + Ci + εijk

Here, εijk~ N (0, σ2) was a Gaussian error; IC50ik referred to the
kth drugs of ith cell lines; mRNAij referred to the mean mRNA
expression of co-regulated genes of jth TFs in ith cell lines.

Gene sets enrichment analysis

To assess the overrepresentation of the target gene for each
EpiTFs in established cancer gene sets, we used the R package
GeneOverlap(v1.36.0) to conduct Fisher’s exact test. For the
pathway enrichment analysis, we adopted the R package
clusterProfiler(v4.8.1) to perform hypergeometric test in the
target gene for each EpiTFs. The reference was hallmark gene
sets (https://www.gseamsigdb.org/gsea/msigdb/collections.jsp).

Survival analysis

A total of 3,295 EpiTFs related TCGA patients, including
Prostate Cancer (PRAD, N = 494), Colon Cancer (COAD, N =
287), Breast Cancer (BRCA, N = 789), Lung Adenocarcinoma
(LUAD, N = 509), Pancreatic Cancer (PAAD, N = 170), Liver
Cancer (LIHC, N = 358), Kidney Clear Cell Carcinoma (KIRC, N =

366), Cervical Cancer (CESC, N = 286), Bile Duct Cancer (CHOL,
N = 36), were included to analysis clinical outcome.

We employed the Kaplan-Meier approach to estimate the overall
survival (OS), and evaluated the divergence between groups by
conducting the log-rank test. p < 0.05 was considered significant.

PPI network analysis

The search tool for retrieval of interacting genes (STRING,
https://string-db.org) database (Szklarczyk et al., 2021) is served
to predict the protein-protein interaction network (PPI network).
To identify potential interactions between target genes according to
different EpiTFs, R package STRINGdb(ver.2.10.1, database
version = 11.5, species version = 9,606) was employed. Active
interactions (score threshold = 700) were applied to construct the
PPI networks. R packages igraph(ver.1.4.2) and ggraph(ver.2.1.0)
were used to constructive and visualize the PPI network. In the
networks, the nodes referred to the proteins and the edges represent
the interactions. To display the highly connected regions of the
network, we set the following criteria: minimum degree = 5, edge
weights = combined score, the minimum average edge weight within
the cluster = 0.05.

Results

TFs involved in epigenetic modification

To evaluate the dynamics of epigenetic modification in tumor
genomes systematically and identify the reliable driver TFs, we
collected ChIP-seq data for TFs and histone marks (HMs) from
the ENCODE database. After a raw filtration (see Methods;
Figure 1), the dataset included 636 transcription factors and
7 epigenetic marks (H3K4me3, H3K36me3, H3K4me1,
H3K27ac, H3K79me2, H3K9ac, H4K20me1) from 54 cell lines
among 17 different tumors. Then we performed an Ordinary least
squares (OLS) regression model to screen for TFs and their
corresponding epigenetic marks with consistent binding
activities at their overlapped loci. To our surprise, we only
obtained 6.9% (N = 44) candidate TFs (FDR <0.1), which can
be considered to be associated with HMs, suggesting a finite
correlation between TFs and epigenetic changes.

In order to better understand the causal relationship between
TFs and epigenetic changes, we further generated an instrumental
variable (IV) regression for the 44 candidate driver TFs based on a
mechanism of epigenetic reprogramming: the mutational status of a
candidate TF directly alter its binding activity in cancers and then
influence the epigenetic changes (Figure 1). We used the mutational
status of the TFs as the instrumental variable to exogenously
separate the changes in explanatory variable that are independent
of the error term and ignore the part of explanatory variable that
causes bias in the OLS estimator. This change could be considered as
the causal effect in TF binding strength on corresponding tumor
genomic HMs. As a result, we identified 10 significant TFs-HMs
pairs that satisfied the condition of the mutational statuses of TFs
being an exogenous variable (FDR <0.1 and FDRweak <0.1), among
which 6 TFs (AR, EP300, FOXA1, GATA3, POLR2A, TP53) and
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3 HMs (H3K4me1, H3K4me3, H3K27ac) were included
(Table 1). Of note, H3K4me3 was considered as a marker of
promoter regions, and H3K4me1 and H3K27ac were markers of
enhancer regions. Thus, all of our driver TFs mainly impacted the
promoter and enhancer elements: mutations in TFs such as AR,
EP300, and TP53 tended to affect the enhancer regions of
downstream target genes, while other transcription factors
affected the binding intensity of both promoter and enhancer
regions (Table 1).

EpiTFs influence specific cancer pathways

As the epigenetic determinants of driver TFs (also we named it
EpiTFs) influence many biological processes in tumors, we next
explored how the EpiTFs impact carcinogenesis and the consequent
biological–clinical characteristics of cancer.

Firstly, we obtained the downstream target genes through
figuring out the overlapped regions for each TFs-HMs pair. The
most recent advances in gene-editing technology has allowed for

TABLE 1 The results of IV analysis for 10 EpiTFs-HMs pairs.

TFs HMs p-value OR Waldtest Weak instruments Wu_Hausman

AR H3K4me1 0.002 0.653 0.000 0.000 0.000

EP300 H3K4me1 0.000 1.057 0.000 0.000 0.142

EP300 H3K27ac 0.008 0.810 0.000 0.000 0.025

FOXA1 H3K4me3 0.000 1.879 0.000 0.000 0.000

FOXA1 H3K4me1 0.000 1.314 0.000 0.000 0.000

GATA3 H3K4me3 0.000 22.609 0.000 0.000 0.000

GATA3 H3K4me1 0.000 1.991 0.000 0.000 0.003

GATA3 H3K27ac 0.003 2.593 0.000 0.000 0.000

POLR2A H3K4me3 0.000 0.832 0.000 0.000 0.000

TP53 H3K4me1 0.000 3.340 0.000 0.000 0.000

FIGURE 1
The schematicworkflowof our study. In this study, we collected ChIP-seq data for TFs andHMs. Then, we inferred the causal biologicalmechanisms
for the candidate determinants of the histone modification via EpiTFs mutation. In addition, we perform gene sets enrichment, PPI analysis, Drug
resistance and Survival analysis for the co-regulated loci of EpiTFs and HMs to investigate the biological function and clinical outcome of EpiTFs.
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precise examination of the role of specific genes in driving the
growth of cancer cells. According to the CERES scores for genes
from Depmap portal, we categorized 10,343 genes of cancer
dependency according to the median CERES score across 233 cell
lines. We then compared the fold enrichment of our target genes
among 10 TFs-HMs pairs. We found out that almost all the target
genes of these pairs were significantly enriched as the oncogenes,
whose CERES score is less than zero (CERES = −2 ~ −0.4,
Figure 2A). Among them, the target genes of H3K4me3 resulting
from FOXA1, GATA3 and PLOR2A as well as H3K27ac resulting
from EP300 and GATA3 were significantly enriched in the gene sets
(CERES = −2~−0.4, p < 0.001), signifying a broad dependency for
tumor proliferation. Compared to H3K4me3 and H3K27ac,
H3K4me1 target genes were weaker to cancer dependency
in vitro (Figure 2A).

Secondly, to better know the biological characteristics of these
TFs-HMs pairs, we performed pathway enrichment analysis on their
target genes using the Hallmark reference databases. The results
showed that the target genes of AR:H3K4me1 were mainly enriched
in the estrogen-ER activity, and the target genes of TP53:

H3K4me1 were enriched in pathways related to hypoxia,
apoptosis, UV, and the p53 pathway (Figure 2B), which is
consistent with our understanding of these two transcription
factors (Mills, 2014; Levine, 2020). It is worth noting that
FOXA1 target genes were mainly enriched in pathways related to
apoptosis, mitosis, mTOR, TNF-α (Figure 2B), indicating its
possible involvement in tumor malignant proliferation and
supporting our fold enrichment of CERES scores above (Figure 2A).

EpiTFs define specific subtype of cancer

To further validate whether the causal relationship among these
10 pairs define specific subtype of cancer, we plotted the binding
activities at the overlapped loci of EpiTFs and HMs in different
tumors, and calculated the Pearson correlation coefficient between
them. We observed that for FOXA1, it was more closely associated
with the enhancer marker H3K4me1 than the promoter marker
H3K4me3. The FOXA1:H3K4me1 correlation coefficient was 0.86,
0.79, while the FOXA1:H3K4me3 coefficient was only 0.082, 0.29 in

FIGURE 2
The gene sets enrichment analysis. (A) The grouped bar plot showed the fold enrichment results of the target genes come from 10 EpiTFs-HMs pairs
in different groups of cancer dependency gene sets (the length of each intervals was 0.4 and CERES <1 meant cancer dependency). (B) The bubble chart
showed the 50 hallmark gene sets enrichment results of the target genes come from 10 EpiTFs-HMs pairs (the color indicated FDR, the size of the dots
indicated gene ratio).
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COAD and LIHC respectively (Figures 3A,B), indicating that
FOXA1 is enhancer-dependent transcription factor in COAD and
LIHC. In addition to FOXA1, we also found that three other
transcription factors - TP53, AR, and EP300 - still had significant
correlations in COAD (correlation coefficient R2 > 0.3), including
TP53:H3K4me1 (R2 = 0.5), AR:H3K4me1 (R2 = 0.79), EP300:
H3K4m1 (R2 = 0.38), and EP300:H3K27ac (R2 = 0.55) (Figures
3C–F). It suggested that these TFs were closely related to tumors in
COAD. Interestingly, the corresponding epigenetic markers of these
TFs were all enhancer markers such as H3K4me1 and H3K27ac

(Figures 3B–F). Therefore, we believed that the epigenetic changes
mediated by these TFs mainly concentrated on the enhancer regions
of the genome. However, GATA3 (R2≤0.3, Supplementary Figures
S1B–D) and PLOR2A (R2≤0.3, Supplementary Figure S1A) led less
correlation to epigenetic changes.

Additionally, some TFs-HMs pairs were occurred in specific
tumor. For example, only EP300 and H3K27ac were closely related
to BRCA (R2 = 0.47, p < 2.2e-10, Figure 3F); FOXA1 and EP300 were
both related to H3K4me1 in LIHC (R2 = 0.79, p < 2.2e-16; R2 = 0.7,
p < 2.2e-16, respectively, Figures 3B,E). These prominent pairs in

FIGURE 3
The Pearson correlation analysis. (A, B) H3K4me1 rather than H3K4me3 showed consistent effects (Pearson correlation) in FOXA1. (C–F) TP53, AR,
and EP300 had significant correlations in COAD.
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specific tumors may reflect the epigenetic subtypes as well as
epigenetic features for the tumor biology.

EpiTF activities are associated with
treatment responses

To better describe the biological function of these regulatory regions
on genes, we generated a protein-protein interaction (PPI) network
analysis on the EpiTFs and epigenetic marks. In PPI networks, “hub
nodes” usually refer to nodes with extremely high degree. Researchers
often focus on these “hub nodes”to gain deeper insights into the
topology of PPI networks and related biological processes (Wang
et al., 2023). We labeled the hub proteins that were associated with
at least 5 other genes. As a result, the key proteins in the Wnt pathway,
such as CTNNB1 (β-Catenin) and MEF2A/D (MEF2), which were
influenced by FOXA1:H3K4me3, were located in the core position of
the interaction network (Figure 4A). Similarly, among the target genes
affected by AR:H3K4me1, we also spotted the presence of key proteins
in the Wnt-β-Catenin pathway such as AXIN1, as well as targets of the
PI3K/NF-κB pathway (Figure 4B), which respond to cell proliferation.
HDAC4, notably, exists in the network, which may be an important
auxiliary factor for FOXA1 to participate in epigenetic modifications.

The expression of genes co-regulated by EpiTFs and HMs
reflected the biological function levels of EpiTFs. To assess the

therapeutic implications of the EpiTFs activities, we used a linear
model to calculate the association between the mean expression of
the co-regulated genes and the IC50 in 304 clinical small-molecule
agents. As a result, four EpiTFs (TP53, AR, EP300 and FOXA1),
which were strongly corelated with HMs derived a strong resistance
to the similar agents (OR > 1 and p < 0.001), which targeted to the
cell proliferation such as cell cycle, mitosis, and PI3K/MTOR
signaling (Figure 4C). Notably, chromatin histone acetylation was
also related to higher activities of these four EpiTFs in H3K4me1,
H3K27ac (Figure 4C), suggesting that HDAC inhibitors may
intervene in the development of corresponding tumors. This
requires further verification in subsequent research. Moreover,
the activities induced by H3K4me3 showed weaker drug effects
than those induced by H3K4me1 and H3K27ac (Figure 4C),
demonstrated that EpiTFs-driven epigenetic reprogramming
tended to occur in enhancer elements rather than promoter
elements when suffered from drug resistance.

EpiTFs are associated with clinical outcomes

To further clarify the impact of these EpiTFs on prognosis of clinical
outcome, a total of 3295 TCGA patients were enrolled to investigate the
effects of different mutation statuses and target gene expression on
overall survival. The results indicated that among the four activated

FIGURE 4
The key molecular and drug sensitivities analysis. (A, B) The protein-protein interaction (PPI) analysis showed the labeled hub protein (degree >5) in
FOXA1 (A) and AR (B) regulatory network. (C) The bubble plot showed the correlation between the sensitivities of 302 drugs targeted to different pathways
and the mean expression of the target genes come from 10 EpiTFs-HMs pairs.

Frontiers in Genetics frontiersin.org07

Jiang and Li 10.3389/fgene.2023.1234515

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1234515


EpiTFs, ARmutation and TP53mutation led to a poor prognosis in the
EpiTFs positive cancers (p = 5.5e-4 and p = 0.024, Figure 5A). The 5-
year OS were 50.2% (95% CI 28–89.9) and 67.05% (95% CI
64.33–69.85) respectively. While FOXA1 and EP300 had no
significant effect on patient survival in all the involved tumors (p =
0.21 and p = 0.59, Figure 5A). In comparison to different types of
tumors, FOXA1mutation in BRCA (27/788mutated) resulted in worse
prognosis (p = 0.044, the 5-year OS was 53.5%, 95% CI 35–58.7,
Figure 5B); COADpatients (3/287mutated) with FOXA1mutation had
better prognosis but without statistically significance (p = 0.4,
Figure 5B). Conversely, EP300 mutation did not affect the prognosis
of overall survival at both pan-cancer level and cancer specific level
(Figure 5A, Supplementary Figure S2C). Next, we grouped patients by
the median mRNA expression of these EpiTFs target genes. We found
that patients with lower co-regulated target genes expression of AR as

well as TP53 had a worse prognosis (P = 5e-4 and P = 1e-04, Figure 5C).
And both of themwere associated with H3K4me1modification (The 5-
year OS rates of H3K4me1:AR and H3K4me1:TP53 were 79.12% (95%
CI 73.66–85) and 65.09% (95% CI 60.44–70.1), respectively). To our
surprise, the higher expression of target genes regulated by EP300:
H3K27ac (the 5-year OS was 65.57%, 95% CI 62.44–68.84) rather than
EP300:H3K4me1 led to a poorer prognosis (p = 0.001, Figure 5C).

Discussion

In this study, we aimed to evaluate the dynamics of epigenetic
modification systematically and identify the reliable driver TFs in
human cancers. In traditional multiple linear regression models, if
there is a correlation between some independent variables and the

FIGURE 5
Comparison of survival analysis between TCGA patients with different mutation statuses and transcriptional activities in four activated EpiTFs. (A)
Kaplan‒Meier curves for patients with different mutation statuses in four activated EpiTFs in pan-cancer level. (B) Kaplan‒Meier curves for patients with
different mutation statuses of FOXA1 in specific cancers. (C). Kaplan‒Meier curves for patients with different transcriptional activities in 6 Epi-HMs pairs at
pan-cancer level.
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error term, it will lead to biased OLS estimates, of which the obtained
regression coefficients loss a causal interpretation (Lu et al., 2023).
To eliminate endogeneity problems and obtain accurate estimates of
causal effects, we used the IV regression to infer the significant
causal relationship between TFs and HMs. We identified a total of
6 EpiTFs (FOXA1, AR, EP300, TP53, GATA3, LOR2A), which
resulted in the corresponding histone modification (e.g., H3K4me3,
H3K4me1 and H3K27ac) (Table. 1). Among them, FOXA1 was
wildly regarded as pioneer transcription factor (pTF) in prostate
cancers. Recent studies demonstrated that pTFs referred to a type of
TFs that can bind to packed chromatin tightly and promote the
opening and accessibility of gene promoter regions and even
enhancer regions (Iwafuchi-Doi et al., 2016; Parolia et al., 2019).
Similarly, the EpiTFs mainly caused H3K4me1 andH3K4me3 in our
study (Table. 1), suggesting that both of EpiTFs and pTFs fulfill their
functions through Cis- and trans-regulated. Moreover, pTF
FOXA1 usually collaborated with other partners (like AR) to
mediate processes such as histone modification and chromatin
remodeling, enabling cells to respond rapidly to external stimuli
and achieve complex regulatory networks (Barbieri et al., 2012).
Thus, we supposed that the EpiTFs was an extensive concept
including pTFs and their partners. However, since bulk TFs
lacked their ChIP-seq data (86.25%, 276/320), it was unable to
identify all the EpiTFs in human cancers. Increased sample size can
improve the statistical power to identify more EpiTFs in the future
study.

After further confirmed with the binding activities between TFs
and HMs, 4 of 6 EpiTFs (FOXA1, AR, TP53, EP300) were thought to
be more positive to induce corresponding histone modification in one
or multiple tumors (Figure 3). Among them, EP300 was an
acetyltransferase that directly catalyzed H3K27 acetylation
modification and promoted chromatin relaxation and
transcriptional initiation (Cui et al., 2023), which was in line with
the modes of EpiTFs. Through comparing the CERES fold enrichment
of our target genes among 10 TFs-HMs pairs, we found that the target
genes of these EpiTFs were significantly enriched as cancer dependent
genes. The target genes of FOXA1 and H3K4me1 were significantly
enriched in both the negative interval (CERES = -1.6~-0.4, p < 0.001)
(Figure 3A). Indeed, it is still unknown how FOXA1 alterations affect
the prognosis in human cancers, and how FOXA1 is able to serve as
both tumor-suppressor (Jin et al., 2013; Jin et al., 2014; Song et al.,
2019) and oncogenic genes (Robinson et al., 2011; Pomerantz et al.,
2015). Consistent with this, FOXA1 mutations and transcriptional
activities had no significant effect on overall survival in pan-cancer
level (Figures 5A,C), and FOXA1 mutations only led to a worse
prognosis in BRCA (p = 0.044, Figure 5B). FOXA1 mutations
dysregulated estrogen-ER activity (Figure 2B) and were associated
with worse outcome for metastatic ER + breast cancer (Hurtado et al.,
2011; Arruabarrena-Aristorena et al., 2020). However, large breast
cancer gene expression datasets revealed that histone acetyltransferases
EP300 was correlated with the cancer stem cells and poor prognosis in
triple negative breast cancer and basal-like Breast cancers (Ring et al.,
2020). Compared to FOXA1, EP300 has higher association with
H3K27ac in BRCA (R = 0.38, p < 0.001, Figure 3F), which could
well support those viewpoints. Thus, TFs-HMs pairs characterized
some biological features of tumors, and EpiTFs could define different
subtype of tumors through their downstream histone modification.

In the PPI networks analysis, the results indicated that some key
proteins (β-Catenin, MEF2, AXIN1) in the Wnt pathway were “hub
nodes” in the interaction network of FOXA1:H3K4me1 and AR:
H3K4me1 (Figures 4B,C). β-Catenin acted as an adhesion protein
and accumulated in the nucleus when the Wnt signal was
upregulated. As a coactivator of the TCF/LEF family of
transcription factors, it can activate Wnt response genes, such as
the genes encoding cell cycle proteins like cyclin-D and c-myc that
promote cell proliferation, leading to tumor fast progression in
cancers such as colon, ovarian, prostate, hepatoblastoma, and
hepatocellular carcinoma (O’Brien et al., 2023). We assumed that
both FOXA1 and AR resulted in the elevated H3K4me1 level,
activating the Wnt/β-Catenin pathway to accelerate the process
of downstream cell cycle and mitotic (Figures 2B, 4B). Moreover,
HDAC4 was also the “hub node” occurred in the FOXA1 network
(Figure 2B). It was reported that FOXA1 could be modulated by
HDAC3 through the Wnt/β-catenin signaling in ovarian carcinoma
(Lou et al., 2022). HDAC3 and HDAC4 are both histone
deacetylases (HDACs), which participate in histone modification
within the cell nucleus, altering the structure and function of
chromatin by removing acetyl groups (Mustafa and Krämer,
2023). Despite these two HDACs belong to different classes
(HDAC3 was HDACI, HDAC4 was HDACIIa), both of them
were Zn2+ dependent HDACs and targeted by the pan-HDAC or
HDACI/II inhibitors.

Regarding to TP53 and AR, themutation of these two EpiTFs led
to poor prognosis in involved patients (Figure 5A). Meanwhile, the
diminished target gene expression of these two EpiTFs also resulted
in a worse overall survival (Figure 5C). These results suggesting that
the mutation of TP53 and AR caused the reduced binding of DNA.
Indeed, the majority mutations in these 2 TFs resulted in defective
gene function, including loss-of-function and gain-of-function gene
alterations (Rebello et al., 2021; Soussi, 2022). However, in EP300,
high transcriptional activities rather than genomic lesions were
contributing to tumor progression at pan-cancer level (Figures
5A,C; Supplementary Figure S2C). In cancer cells, structural
variations (SVs) in genome can disrupt three-dimensional
chromosomal organization, so that the increased deposition of
H3K27 (“enhancer hijacking”) promoted oncogene expression
(Sungalee et al., 2021; Wang et al., 2021). Although mutated
EP300 failed to convert the overall survival at pan-cancer level,
high transcriptional activities in EP300:H3K27ac (rather than
EP300:H3K4me1) target genes resulted in a worse prognosis
(Figures 5A,C). It suggested that H3K27ac tend to aggravate the
cancer biology of EP300 mutations though other mechanisms like
enhancer-hijacking.

In summary, the study provides valuable insights into the role
of EpiTFs in epigenetic modification and their association with
cancer. We identified 6 driver EpiTFs via a causality inference
including four strong EpiTFs (FOXA1, AR, TP53, EP300). They
tended to induce histone modification in enhancer regions
(H3K4me1 and H3K27ac). The downstream target genes of
them were cancer dependent and enriched in some pathways
related to cell proliferation as a whole. Of note, HDAC4 andWnt/
β-Catenin were played critical roles on FOXA1 and AR. These
findings may have implications for the development of targeted
therapies for cancer treatment.
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