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Introduction: Scientific articles serve as vital sources of biomedical information,
but with the yearly growth in publication volume, processing such vast amounts of
information has become increasingly challenging. This difficulty is particularly
pronounced when it requires the expertise of highly qualified professionals. Our
research focused on the domain-specific articles classification to determine
whether they contain information about drug-induced liver injury (DILI). DILI is
a clinically significant condition and one of the reasons for drug registration
failures. The rapid and accurate identification of drugs that may cause such
conditions can prevent side effects in millions of patients.

Methods: Developing a text classification method can help regulators, such as the
FDA,much faster at amassive scale identify facts of potential DILI of concrete drugs. In
our study, we compared several text classification methodologies, including
transformers, LSTMs, information theory, and statistics-based methods. We devised
a simple and interpretable text classificationmethod that is as fast as Naïve Bayes while
delivering superior performance for topic-oriented text categorisation. Moreover, we
revisited techniques and methodologies to handle the imbalance of the data.

Results: Transformers achieve the best results in cases if the distribution of classes
and semantics of test data matches the training set. But in cases of imbalanced
data, simple statistical-information theory-based models can surpass complex
transformers, bringing more interpretable results that are so important for the
biomedical domain. As our results show, neural networks can achieve better
results if they are pre-trained on domain-specific data, and the loss function was
designed to reflect the class distribution.

Discussion: Overall, transformers are powerful architecture, however, in certain
cases, such as topic classification, its usage can be redundant and simple statistical
approaches can achieve compatible results while being much faster and explainable.
However, we see potential in combining results from both worlds. Development of
new neural network architectures, loss functions and training procedures that bring
stability to unbalanced data is a promising topic of development.
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1 Introduction

Drug-induced liver (DILI) injury is an adverse reaction caused
by the effect of drugs or another xenobiotic. DILI is a clinically
significant condition and one of the reasons for drug registration
failures, moreover, it can lead to post-marketing termination and
restriction to use. The probability of an individual drug causing liver
injury ranges from 1 in 10,000 to 100,000, with some drugs reported
as having an incidence of 100 in 100,000 (chlorpromazine, isoniazid)
(Devarbhavi, 2012). According to DILIrank - a dataset that consists
of 1,036 FDA-approved drugs that are divided into four classes
based on their potential for causing drug-induced liver injury
(DILI), nearly 18.5% of drugs were classified as most DILI-
concern medicines (Chen et al., 2016).

Scientific literature is currently the main source of information
related to DILI. However, the number of scientific papers published
yearly is growing, making it hard to analyze, not only for individuals
but also for large organizations, such as the Food and Drug
Administration (FDA). One of the first studies regarding
scientific literature production was conducted by De Solla Price,
who used publication data collected over the 100 years
(1862–1961) to calculate a doubling time. The results showed
13.5 years for doubling the scientific corpus with a 5.1% annual
growth rate (de Solla Price, 1965). The development of
technologies stimulated accelerated scientific literature production,
which made scientific information more accessible but also
introduced new challenges. Accessibility of biomedical literature
through databases such as Medline and research activity in
biomedicine is useful for practically implementing natural language
processing (NLP) techniques. In total, Medline has more than 30M
citations and more than 800,000 articles added to this database every
year (Figure 1) (MED, 2021).

Working with specific biomedical topics, we must consider the
sparsity of real-world data related toDILI. To develop, test and compare
text classification approaches that can produce high-quality results in
sparse corpora, we took part in the “Extended Literature AI for Drug
Induced Liver Injury” CAMDA (Critical Assessment of Massive Data

Analysis, http://camda.info/) challenge. This challenge provides
biomedical publications curated by FDA experts on DILI.

In recent years, there have been significant advancements in NLP,
enabling the development of models that can achieve human-level
performance on generic tasks such as Q&A on SQUAD 2.0 (Rajpurkar
et al., 2016) or student tests. For instance, GPT4 has surpassed the
performance of 50% humans in these tasks (OpenAI, 2023). However,
most of these models are quite large, resulting in high computational
costs when applied to large-scale document processing. At the same
time, it is known that real-world use of large and complexmodels can be
quite intricate. Another concern, which relates to the use of complex
models is their interpretability. Authors in (Zhan et al., 2021) have used
Bag of Words (BOW), Word2Vec (W2V), Doc2Vec (D2V), and TF-
IDF approaches to predict ICD codes from related cardiovascular
diseases from the outpatient notes with logistic regression. The
results showed that TF-IDF dominates other approaches with
respect to the AUROC and AURPC values, suggesting that simple
and interpretable approaches could and do, in fact, outperform more
sophisticated solutions. In a similar research (Zhan et al., 2022)
dedicated specifically to DILI, authors leverage the same text
processing techniques like BOW, W2V, and TF-IDF, while instead
of D2V, Sentence2Vec is used. In addition, the paper includes the use of
Random Forests for particular classification in addition to logistic
regression. On top of that, authors have implemented ensemble
methods to boost the performance of the classification. As it turns
out, TF-IDF coupled with logistic regression outperforms other
approaches, including the ensembles, with respect to AUROC,
Accuracy, AUPRC, and F1 Score metrics. A similar yet unique work
on the DILI classification topic is represented by Rathee (2022), where
authors are solving the AI-based classifier development problem not
only from a theoretical but also from a practical perspective. The paper
makes use of Neural Networks-based approaches, as well as classical
algorithms, like logistic regression or Support Vector Machines. While
the authors used no particular vectorization technique, they mention
that for pattern mining, they have used keywords sets, along with their
frequencies. As one can presume, this approach produces somewhat
similar outputs to TF-IDF.

FIGURE 1
Annual growth of scientific articles in Medline database.
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In our paper, we decided to focus on identifying single words
that can determine the class of a document. This means that the
requirements for complex contextual understanding are relatively
lower compared to tasks like Q&A or text generation. Our research
aims to conduct a comparative analysis of various text classification
approaches, encompassing transformers, LSTMs (long short-term
memory neural networks), information theory, and statistical
methods. We will examine their respective advantages and
disadvantages, evaluating their performance and speed.
Additionally, we have explored methods that enhance the
performance of transformers on sparse data, which can be
especially valuable for handling contextually complex examples.
In summary, our study not only offers practical solutions for
tasks like DILI article classification but also provides valuable
insights into modern deep learning models and their links to
statistical and information theory methods. We’ve explored how
various models perform on commonly unbalanced data and
introduced techniques for enhancing model performance and
handling imbalance. Our research aims to contribute to the
development of interpretable, context-aware models suited for
real-world, unbalanced datasets.

2 Data and methods

2.1 Datasets

CAMDA committee and FDA provided an initial training
dataset with approximately 14000 DILI-related papers referenced
in LiverTox (Hoofnagle et al., 2013), equally divided into positive
and negative examples. Participants of the challenge were also given
test and validation datasets that were unbalanced to different
degrees, i.e., including more and more true negatives to reflect
the difficulty of the real-world task. More precisely, there were
3 test datasets within different subchallenges to which we could
submit an unlimited amount of model predictions and, in this way,
control the precision of the model (we will describe this effect in the

next sections). The first test dataset consists of 4,764 article abstracts,
the second one - 21,724 and the third one - 82,753. To test how the
model can generalize and be stable to different degrees of negative
examples, the validation datasets were added. Participants could
make only up to 11 submissions, and in total, we had 4 validation
datasets. The first validation dataset consists of 6,494 articles
abstracts, the second one - 32,814, and the third one - 100,265.
Moreover, to test the over-fitting of models, the fourth Validation
dataset consists of 14,000 experts’ summaries of the research instead
of extracted articles abstracts. In Figure 2, you can see the
distribution of the most frequent words in each validation dataset.

2.2 PMI/TF-IDF method

As our first approach to document classification, we used a
combination of two statistical methods: pointwise mutual
information (Bouma, 2009) and term frequency-inverse
document frequency (Havrlant and Kreinovich, 2017), we called
this approach PMI-TF-IDF classifier (PTIC). For each example in
the dataset, we concatenated Title and Abstract into one block of
text, and then we calculated the point-wise mutual information
score (PMI) for this block of text:

pmi class,word( ) � log
P class,word( )

P class( ) · P word( )( ) (1)

npmi class,word( ) � − pmi class,word( )
log P class,word( )( ) (2)

Where P(class) - is the class probability in the dataset (fraction of
examples of this class in the dataset), P(word) - word frequency in
the dataset, P(class, word) - word frequency in the examples of the
given class. npmi is the normalized pmi, we interpret it as the
importance of a word for the class. Then we calculate term-
frequency/inverse-document frequency:

tf � 1/n, idf � log
N

Nword
( ), tf − idf � nword · tf · idf (3)

FIGURE 2
Distribution of the most frequent words in each validation dataset.

Frontiers in Genetics frontiersin.org03

Stepanov et al. 10.3389/fgene.2023.1238140

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1238140


Where n - is the number of words in the given text, N - is the
number of documents (i.e., examples). Nword - is the number of
documents that contain this word, nword - the number of times a
given word is present in the given document.

We decided to calculate the final decision score by multiplying
PMI and TF-IDF values for each word and class. TF-IDF measures
the importance of a word in a document, giving higher values for
rare words in a document corpus but frequent in concrete text
passages. PMI assesses a word’s importance to a specific class,
peaking when the word is uncommon but frequent within the class.

To make a decision about the class, we calculated the sum of pmi
·tf-idf for all words in the text. First, we calculated a score for the
PMI of a word with the first class and then with the second class. The
decision about the class of a document was based on the highest sum.

F C( ) � ∑n
i�1

tf − idfword · npmi C,wordi( ) (4)

Cpred � argmax F C( ) (5)

For the division of the text into words, we used tokenization
tools from the NLTK Python library: we filtered stop words, chose
words that consisted of alphabetical characters only, and converted
everything to lowercase.

Because PMI is not directly designed for the classification tasks,
for the current CAMDA challenge, we decided to add additional
weights trained using gradient descent. It can be viewed as a logistic
regression type of model, and we call it logit PTIC. In Eq. 6, you can
see a variant for binary classification, but it can be easily adapted for
multiclass classification.

F � Sigmoid ∑n
i�1

∑c
j�0

tf − idf C, i( ) · npmi C, i( ) ·Wci⎛⎝ ⎞⎠ (6)

Cpred � argmax F C( ) (7)
where C - is one of the classes; Cpred - predicted class; n - number of
words; c - number of classes;Wci - trained weight using gradient descent.

2.3 Naïve Bayes classifier

Naïve Bayes classifier is based on the Bayes theorem that
describes how we can estimate the posterior probability of event
A given event B based on some conditions.

P A|B( ) � P B|A( )P A( )
P B( ) (8)

In our case, event A can be interpreted as text class and event B
as some words in the document. It is called Naïve because we make
assumptions that the probability of getting some word in the text or
feature, in general, is independent of another word. In this case, the
equation for calculating the probability of some classes looks the
following.

P c|x1, . . . , xn( )∝P y( )∏n
i�1

P xi|c( ) (9)

To select the predicted class, we simply select the classwith the higher
probability after logarithmization, the final formula looks like this:

C � argmax
c

log P c( )( ) +∑n
i�1

log P xi|c( )( )⎛⎝ ⎞⎠ (10)

In this section, we would like to compare PTIC with Naïve
Bayes. While PMI and Naïve Bayes look similar at first glance,
they have certain distinctive features. Because in extreme cases,
due to logarithmization, PMI and Naive Bayes can approach
−∞ when p(x, y) = 0. This issue affects scaling, result
reproducibility, model optimization, and real-world usage.
The reasons listed before suggest the need for some other
forms of PMI, one such PMI sub-type is the Positive PMI, as
defined below.

ppmi x, y( ) � max log
P x, y( )

P x( )P y( ), 0( ) (11)

In this work, we saw higher utility in using Normalized PMI
compared to Positive. The main advantage of the Normalized
version lies in its boundness to the [−1, 1] range. These bounds
provide a natural explanation of values that can be obtained, where
−1 (or 1) implies that events never occur together (or occur
consistently), and 0 indicates independence. Clearly, an
additional benefit of normalization is that we can soften the
‘outliers’, and the obtained values are more well-behaved.
Compared to Bayes, such bounds provide a more straightforward
interpretability of results.

One can easily represent PMI and its Normalized version in
Bayesian terms as follows.

pmi A;B( ) � log
P A|B( )
P A( ) , (12)

pmi B;A( ) � log
P B|A( )
P B( ) (13)

Next, to show the difference between the PMI-based and
Bayesian approaches for classification, we can represent both
equations in terms of the Shannon information h(x) = − log (p(x)).

pmi A;B( ) � h A( ) + h B( ) − h A, B( ) (14)
npmi A;B( ) � h A( ) + h B( ) − h A, B( )

h A, B( ) (15)

Now, we can substitute this into Eqs 4, 10 to get the following
representations with the omission of indexes for better readability.

Cnpmi � argmax ∑ tf − idf · h A( ) + h B( ) − h A, B( )
h A, B( )( ) (16)

CBayes � argmax −h A( ) −∑ h A( ) + h B, A( )( ) (17)

Here, for Bayes equation we represent log (P (xi|c)) as
log(P(xi, c)/P(c). As one can observe, from the Shannon
information’s point of view, these two approaches do not have
much in common. Indeed, the final class value in the suggested
method is computed more carefully than with classical Naïve Bayes.
It is worth mentioning that the PTIC classifier is affected by tf − idf,
which implies that, for certain cases, the behaviour of this approach
can be limited. Since the npmi term is restricted in the magnitude of
the values, the tf − idf term can have a greater effect than it is
desirable under certain circumstances.
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2.4 Transformers

Transformers are a type of neural network architecture that
gained significant popularity in natural language processing (NLP)
tasks. The Transformer model was introduced in a 2017 paper titled
“Attention is All You Need” (Vaswani et al., 2017). Since then, it has
become the de facto standard for many NLP tasks, including
machine translation, text summarisation, question answering, and
language generation. The core idea behind Transformers is the self-
attention mechanism, which allows the model to weigh the
importance of different words in a sentence when processing
each word. This is implemented by generating Keys, Queries, and
Values matrices for each document.

Attention Q,K,V( ) � softmax
QKT��
dk

√( )V (18)

where:

• Q represents the query matrix.
• K represents the key matrix.
• V represents the value matrix.
• dk is the dimension of the key matrix.

The attention mechanism computes the compatibility between
the query matrixQ and the key matrixK by taking their dot product
and scaling it by the square root of the key dimension dk. The result
is then passed through a softmax function to obtain attention
weights. Finally, these attention weights are multiplied element-
wise with the value matrix V to obtain the final attention output. All
of this is done in parallel by generating different matrices that
convert the input matrix to keys, queries, and values. This
mechanism enables Transformers to capture long-range
dependencies and relationships between words more effectively
than traditional recurrent neural networks (RNNs) or
convolutional neural networks (CNNs).

In our work, we used 3 different architectures of transformers.
Encoder-based transformers use a bidirectional attention
mechanism, which means some token receives information from
left and right tokens. Such architecture is used mainly for
comprehension tasks, such as text classification, NER, Q&A, etc.
We decided to test two types of pre-trained encoder models:
SciBERT (Beltagy et al., 2019) and Longformer (Beltagy et al.,
2020). The main difference is the number of tokens that can be
used as input to the model. 512 tokens - is the standard limit for
BERT models (Devlin et al., 2019), but our dataset has many

examples of more than 512 tokens. Also, an essential difference
between these transformers is that Longformer utilizes sliding
window attention when only a limited number of token
embeddings are selected for attention.

On the contrary, decoder-based models use uni-directional
attention and are auto-regressive for various text generation
tasks, predicting the next tokens. We used BioGPT as
representative of this class of models, which was trained on
biomedical articles and demonstrated state-of-the-art
performance on various biomedical Q&A (Luo et al., 2022).

Encoder-decoder models were the first architecture proposed as
transformers and are used for text-to-text tasks such as translation.
These models contain separate encoder and decoder blocks. We
used the Flan-T5 (Chung et al., 2022) - fine-tuned version of the T5
(Raffel et al., 2019) model on more than one thousand different tasks
as representative of such a class of models. In comparison to
(Vaswani et al., 2017) it has Layer Norm bias removed, placing
the layer normalization outside the residual path; moreover, it used a
different positional embedding schema - instead of sinusoidal
position signal or learned position embeddings, relative position
embeddings (Shaw et al., 2018) was applied. T5 was trained on the
Colossal Clean Crawled Corpus, which is a large (760 GB) cleaned
corpus of English texts.

The characteristics of all used transformers for comparison on
given tasks are described in Table 1.

2.5 LSTM

Before transformers, LSTM (Hochreiter and Schmidhuber,
1997) was the standard for language modelling. Initially, it was
designed to learn long-term dependencies in time-series data and
to solve the vanishing gradient problem that is so frequent in
classical RNNs. LSTM uses memory cells, which allow the network
to store and access information over extended periods of time.
Each memory cell has three main components: an input gate, a
forget gate, and an output gate. The input gate determines how
much of the new input information should be stored in the
memory cell. The forget gate controls what information should
be discarded from the memory cell. The output gate determines
how much of the memory cell’s content should be output at each
time step. By utilizing these gates, LSTM networks can selectively
store and access past information, which helps preserve long-term
dependencies.

The first time LSTM was used for language modelling was in the
work of Sundermeyer et al. (Sundermeyer et al., 2012), where it

TABLE 1 Characteristics of used transformers.

Characteristic SciBERT Longformer BioGPT T5-base

Architecture Encoder Encoder Decoder Encoder-decoder

Position encoding Trainable Trainable Trainable Relative

Attention mechanism Bidirectional dense Sliding-window Unidirectional-dense Dense with relative encoding

Amount of parameters 109M 148M 346M 770M

Pretraining corpus Scientific Generic Biomedical Generic
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showed much better performance than classical RNNs. If we
compare LSTM with transformers, one of the main advantages of
the last is the ability to parallelize computations that can significantly
increase training and inference speed. To get the hidden
representation of the next token in the sequence, LSTM requires
the representation of the previous token, on the contrary, in
transformers, the representations of tokens are computed in a
parallel manner. However, the sequential nature of LSTM leads
to the limited ability of further tokens to influence the current token
due to the distillation of information moved from token to token,
which can lead to a drop in accuracy, especially for context-
dependent tasks with long-distance dependencies. But if we talk
about the advantages of LSTM compared to transformers, we can
infer that LSTM is not limited to the sequence size, which is an issue
related to architectures that use learned positional embeddings with
fixed sizes. However, such an issue was solved using relative
positional encoding with limited effect on performance.

3 Experimental setups

To realize our experiments, firstly, we divided the initial training
dataset into training and testing subsets, the last one accounting for
10% of the initial data. Our experiments were conducted on an
Ubuntu 22.04.2 LTS machine with an Intel(R) Xeon(R) CPU @
2.20 GHz. We used Nvidia T4 GPU to train deep learning models.

While experimenting with PTIC, we choose 5 as a minimal
amount of times a word occurs in the training subset. Additionally,
we filtered the corpus from stop words to limit the effect of noise
from this category of words. In the case of the Naive Bayes Classifier,
we selected the same strategy andminimal count of a word in a class.
What about the logistic regression model of PTIC we trained it for
1,000 epochs with a batch size equal to 100. As the optimization
algorithm was selected, Adam (Kingma and Ba, 2014), we chose the
learning rate to be equal to 1 × 10−5

In the case of transformers, we used the HuggingFace
transformers (Wolf et al., 2019) to access the model’s weight as
well as their APIs for training models. As a backend, PyTorch
(Paszke et al., 2019) was chosen. For all tested models except
Longformer, we selected the maximum length of tokens input
equal to 512 tokens, while for Longformer, the value was chosen
to be equal to 1,024 tokens. In all cases, we used the AdamW
algorithm for optimization (Loshchilov and Hutter, 2017). The
learning rate for encoder-based models was equel to 2 × 10−5, for
BioGPT and T5, it was 1 × 10−5. Weight decay was equal to 0.001, and
the epsilon - term added to the denominator was equal 1 × 10−8. For
SciBert, the batch size was equal to 12, while for Longformer, due to
the larger context, the size was equal to 6. In the case of T5, we used

flan-T5-base, batch size was equal to 5 and learning rate was 1 × 10−4,
Seq2SeqTrainer from HuggingFace transformers were used as
training pipeline. What about the decoder-based model we used
BioGPT large version, which was trained using HuggingFace
Trainer for 3 epochs with batch size 2 and learning rate 1 × 10−4.
In terms of LSTM, we used a pre-trained tokenizer of the SciBert
uncased version. The token embedding size was chosen to be equal to
768, while the hidden embedding size was equal to 256.We trained to
the version of LSTM one of them was initialized with SciBert token
embeddings that were trained for 3 epochs with a learning rate equal
to 1 × 10−4 and batch size equal to 16. The uniformly initialized
version of a model was trained for 10 epochs with 1 × 10−3 and the
same batch size as the previously described version.

4 Results

In this section, we will describe the performance of our PMI/TF-
IDF, Naïve Bayes classifiers and transformers such as SciBERT,
Longformer, BioGPT and T5 on Validation datasets. In Table 2, you
can find accuracy, F1 score, precision and recall for Validation Set 1.
We can see that Longformer demonstrates the best performance due
to its ability to process long sequences. The logistic regression
version of PMI/TF-IDF performs on 2% of the F1 score better
than the standard one.

On Validation Set 2 (Table 3), we observe an opposite
situation, where Longformer significantly dropped in
performance, even though our statistical information-based
approach demonstrates better performance. We will analyze this
effect in the next section. On this dataset, SciBERT, the model that
was trained on domain-specific data, demonstrates the best
performance.

In comparison to Validation Set 2, the third dataset contains
even more negative examples, being more unbalanced. As we can see
from the results presented in Table 4, the trend is the same as in the
case of Validation Set 2. FlanT5-base has the worst performance,
being completely unstable on an unbalanced dataset. Naïve Bayes
also demonstrated a significant drop in performance, which can be
explained by the different probabilities of negative classes in training
and validation. Surprisingly, our simple approach outperformed
complicated models such as transformers. However, in the next
chapter, we will discuss possible tips on how to adapt neural
networks to unbalanced situations.

We also observe an interesting situation with Validation Set 4
(Table 5), which is nearly balanced but has another type of
document than presented in the training dataset. These results
can demonstrate the ability of the model to generalize. Our
introduced model demonstrated the best performance on this

TABLE 2 Performance of the tested models on Validation Set 1.

Metrics PTIC logit PTIC Naïve Bayes Longformer FlanT5-base BioGPT LSTM SciBert

Accuracy 0.8677 0.9039 0.8501 0.9454 0.9146 0.9029 0.845 0.9031

F1-score 0.8804 0.9039 0.8684 0.9485 0.9223 0.9097 0.8454 0.9018

Recall 0.7928 0.9236 0.9511 0.965 0.9736 0.9401 0.8151 0.8560

Precision 0.8302 0.8949 0.7989 0.9324 0.876 0.8811 0.8781 0.9528
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set of models, achieving a 0.9398 F1 score, which is even bigger
than on the Validation Set 1. It can be explained because the last
set depends more on concrete words that determine the “DILI”
class.

Additionally, we have tested our developed method - PTIC, on a
more context-dependent binary classification dataset IMDB50k
(Maas et al., 2011) with different dictionary sizes. Overall, the
performance on IMDB50k is less than on the DILI dataset,
however, the nature of dependency between dictionary size and
performance is relatively the same, as can be seen in Supplementary
Figure S1. Also, we have tested a related parameter, but from another
angle, in Supplementary Figure S2, you can see dependencies
between a minimal count of words to be included and accuracy,
precision, recall and F1 score.

Because the training datasets can be biased, we decided to check
the stability of PTIC during the different fractions of incorrect
examples in the training set. Results show that the method is
pretty robust and begins to lose its accuracy only after 28% of
incorrect examples are introduced (Supplementary Figure S3).

5 Discussion

To understand the drop in performance of the models in terms
of F1 score, we need to understand how the score is calculated. The
F1 score is the harmonic mean of precision and recall.

F1 � 2 · precision · recall
precision + recall

(19)

Recall is the rate of retrieved true positives to all true positives
and false negatives. Precision is the rate of true positives to all
entries predicted as positive. In our case, when we increase the
number of negative examples and the probability of false
negatives is the same, we just get absolutely more false
negative examples, which leads to a drop in precision. One
way to decrease the chance of getting false positives is to
move the threshold of considering prediction as positive. It
will lead to an increase in false negatives, however, in the case
of an unbalanced dataset with more negative examples, we will
get a higher F1 score. But, as one can assume, different models
have different distances on the scores scale for true positives and
false positives, basically, it will influence how close we can achieve
performance similar to balanced datasets. The receiver operating
characteristic curve is one way to estimate the relation between
the rate of false positives and true positives.

From the results in the previous section, we can see that neural
networks are unstable on unbalanced datasets, and they tend to
consider that the probability of positive and negative classes is the
same. We decided to try focal loss, first used in computer vision for
object detection in sparse space. Focal loss focuses training on a
sparse set of hard examples and prevents many easy negatives from
overwhelming the classification during training.

TABLE 3 Performance of the tested models on Validation Set 2.

Metrics PTIC logit PTIC Naïve Bayes Longformer FlanT5-base BioGPT LSTM SciBert

Accuracy 0.956 0.9604 0.9031 0.9458 0.8782 0.9516 0.9151 0.9678

F1-score 0.7877 0.8174 0.6688 0.7477 0.6219 0.7997 0.661 0.8455

Recall 0.9372 0.8621 0.9517 0.7809 0.9739 0.9398 0.8046 0.8565

Precision 0.7828 0.7771 0.5156 0.7171 0.4568 0.6959 0.5609 0.8347

TABLE 4 Performance of the tested models on Validation Set 3.

Metrics PTIC logit PTIC Naïve Bayes Longformer FlanT5-base BioGPT LSTM SciBert

Accuracy 0.9763 0.9809 0.9262 0.9717 0.8824 0.9613 0.9552 0.9448

F1-score 0.6932 0.7352 0.4649 0.6267 0.3582 0.6208 0.5153 0.511

Recall 0.7924 0.7853 0.9514 0.7036 0.9736 0.9402 0.5067 0.8564

Precision 0.616 0.6912 0.3076 0.565 0.2194 0.4634 0.7065 0.3642

TABLE 5 Performance of the tested models on Validation Set 4.

Metrics PTIC logit PTIC Naïve Bayes Longformer FlanT5-base BioGPT LSTM SciBert

Accuracy 0.871 0.9397 0.8451 0.9097 0.9022 0.9093 0.9552 0.9232

F1-score 0.8835 0.9398 0.8641 0.9091 0.9096 0.9164 0.5153 0.925

Recall 0.9783 0.9407 0.9847 0.9026 0.9836 0.9941 0.5067 0.9459

Precision 0.8055 0.9388 0.7698 0.9157 0.8459 0.85 0.7065 0.905
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FL pt( ) � −αt 1 − pt( )γ log pt( ) (20)

• pt: the probability of the true class
• αt: balancing factor for class t
• γ: focusing parameter

In our experiments, the γ factor was equal to 2 when αt for the
positive class was 0.3.

Figure 3 can explain many of the models’ performances. It
visualizes the dependency between the true positive rate and the
false positive rate at different models’ decision thresholds. This
curve was obtained after analysis of model predictions on the
initial dataset, which was split into train and test sets. We can see
that training with focal loss can increase AUC (area under the
ROC curve) for almost all tested models except Longformer. For
such models, we need fewer false positive results to achieve a
better true positive rate, which means that we will have higher
precision on unbalanced datasets. Our experiments on
Validation datasets show that the performance of models
trained with focal loss significantly expanded for SciBert,
especially for Validation set 3, by nearly 14.

It is important to characterize another type of architecture of
transformers we used - T5, more precisely flan-T5-base, and
BioGPT large. Because the task for this architecture was set as
text generation, it is overcomplicated for such cases as topic
classification and makes it harder to tune on unbalanced datasets.
However, recently, such models have been actively used in an
instructional manner and can be used as zero-shot classification,
which makes it a good choice for situations where we have limited
training data.

Because we trained LSTM from scratch, it misses generic
language information, which transformers get during pre-
training. We decided to train LSTM with the tokenization
schema of SciBert, taking its pre-trained token embeddings that
already encode generic and domain-specific knowledge. The
performance is increasing for each validation dataset, as shown
in Supplementary Figure S4, and more surprisingly, for Validation
set 4, we got the best results not only in the frame of our models but
in the challenge itself. The figure demonstrates an increase in the
F1 score for each validation dataset.

Finally, we would like to discuss our developed method PTIC. The
fundamental nature of this method makes it basically limited to topic
classification tasks, however, when applied to such problems, the model
demonstrates competitive performance with modern transformers.
Based on the results demonstrated in Supplementary Figure S1, we
can say that for sentiment analysis tasks that are more context-
dependent, we need a much larger dictionary size to obtain
competitive results. In terms of our topic classification task, we can
approve that a limited amount of words determines a positive class. It
was visually shown in Supplementary Figure S2 that with an increase in
minimal word count, we get a small increase in Recall and a significant
drop in Precision. It tells us that words determined by positive class are
frequent in the dataset and more influential on the model decision, and
during a decrease in dictionary size, we lose importantwords that can be
related to negative class.

6 Conclusion

The field of topic classification often does not require complex
models. In this study, we conducted a comparative analysis of

FIGURE 3
Reciver operating characteristics of tested models during testing on initial dataset.
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various classification techniques, starting from Naïve Bayes and
neural networks and concluding with introducing the PMI-TF-IDF
classifier (PTIC). Our results demonstrate that PTIC exhibits robust
performance, high speed, and balanced precision and recall, making it
particularly suitable for handling unbalanced scenarios. This method
can serve as an initial approach for text classification, allowing for
identifying influential words and assessing context dependency in
classification problems. Furthermore, we enhanced our method by
incorporating additional training weights for individual words, which,
while reducing interpretability, significantly improved accuracy. Our
findings indicate that the ability to process long sequences of arbitrary
length is crucial when classifying text based on specific information
scattered throughout the text. It means that transformer models, such
as Longformer, get advantages in such cases due to their ability to
handle long sequences. Additionally, pretraining on domain-specific
or generic corpora enhances performance, and utilising focal loss
effectively addresses imbalanced datasets. During our research, we
were not able to create a general model that can handle each dataset,
however, our results can be helpful in future attempts to create long-
context aware models that can be stable to extreme unbalance of data.
The code of PTIC is available in the following repository—https://
github.com/sysbio-vo/ptic.
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