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Growing evidence suggests the effect of educational attainment (EA) on
Alzheimer’s disease (AD), but less is known about the shared genetic
architecture between them. Here, leveraging genome-wide association studies
(GWAS) for AD (N = 21,982/41,944), EA (N = 1,131,881), cognitive performance (N =
257,828), and intelligence (N = 78,308), we investigated their causal association
with the linkage disequilibrium score (LDSC) and Mendelian randomization and
their shared loci with the conjunctional false discovery rate (conjFDR),
transcriptome-wide association studies (TWAS), and colocalization. We
observed significant genetic correlations of EA (rg = −0.22, p = 5.07E-05),
cognitive performance (rg = −0.27, p = 2.44E-05), and intelligence (rg = −0.30,
p = 3.00E-04) with AD, and a causal relationship between EA and AD (OR = 0.74,
95% CI: 0.58–0.94, p = 0.013). We identified 13 shared loci at conjFDR<0.01, of
which five were novel, and prioritized three causal genes. These findings inform
early prevention strategies for AD.
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Introduction

Alzheimer’s disease (AD) remains the most common neurodegenerative disease among
the elderly, which affects more than 44 million people worldwide (Scheltens et al., 2016; Van
Cauwenberghe et al., 2016). Known drugs or treatments may hardly completely reverse the
progression of AD, so understanding the modifiable risk factors of AD remains the first
choice for prevention.

Educational attainment (EA) and cognitive performance are known modifiable factors
for dementia (Larsson et al., 2017; Alzheimer’s Association, 2020). Years of continuous
formal education and cognitive training make brains form a cognitive reserve (Stern, 2012).
Brains of individuals with higher education would continue to perform cognitive tasks even
if the excessive accumulation of amyloid-beta (Aβ) and tau protein exists (Stern et al., 1994;

OPEN ACCESS

EDITED BY

Indra Adrianto,
Henry Ford Health System, United States

REVIEWED BY

Kei Hang Katie Chan,
City University of Hong Kong, Hong Kong
SAR, China
Yadu Gautam,
Cincinnati Children’s Hospital Medical
Center, United States

*CORRESPONDENCE

Yang Hu,
huyang@hit.edu.cn

Tianyi Zang,
tianyi.zang@hit.edu.cn

†These authors share first authorship

RECEIVED 21 June 2023
ACCEPTED 01 September 2023
PUBLISHED 12 October 2023

CITATION

Wang F, Wang H, Yuan Y, Han B, Qiu S,
Hu Y and Zang T (2023), Integration of
multiple-omics data to reveal the shared
genetic architecture of educational
attainment, intelligence, cognitive
performance, and Alzheimer’s disease.
Front. Genet. 14:1243879.
doi: 10.3389/fgene.2023.1243879

COPYRIGHT

© 2023 Wang, Wang, Yuan, Han, Qiu, Hu
and Zang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 12 October 2023
DOI 10.3389/fgene.2023.1243879

https://www.frontiersin.org/articles/10.3389/fgene.2023.1243879/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1243879/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1243879/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1243879/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1243879/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1243879/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1243879&domain=pdf&date_stamp=2023-10-12
mailto:huyang@hit.edu.cn
mailto:huyang@hit.edu.cn
mailto:tianyi.zang@hit.edu.cn
mailto:tianyi.zang@hit.edu.cn
https://doi.org/10.3389/fgene.2023.1243879
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1243879


Dekhtyar et al., 2019). Amieva et al. (2014) followed up 171 less-
educated people and 271 highly educated people for 20 years and
found that cognitive performance of highly educated people
decreased 15–16 years before reaching the threshold of AD, while
the less-educated people developed AD in only 7 years. In other
words, EA greatly delays the progression of AD by maintaining
cognitive performance.

Significantly, EA has been found to have associations with both
intelligence and cognitive performance. Intelligence can
continuously improve through learning, and individuals with
higher intelligence or childhood intelligence tend to have longer
years of schooling, as evidenced by previous studies (Anderson et al.,
2020; Lovden et al., 2020). Moreover, epidemiological research has
indicated that lower IQ in children can be a predictor of poor
cognitive function and an increased risk of developing AD later in
life (Snowdon et al., 1996; Vinueza-Veloz et al., 2020). Although
there is currently no direct evidence establishing a link between early
intelligence and the degree or type of neuropathological features of
dementia in older adults, it is possible that the phenotypic
association between the two is influenced by shared genetic
variants (Yeo et al., 2011). Consequently, the correlation between
these cognition-related phenotypes (EA, cognitive performance,
intelligence, and childhood intelligence) may introduce some
complexity when discerning their causal relationship with AD.
Furthermore, the shared genetic architecture and causal genes
underlying the cognition-related phenotypes and AD remain
unidentified.

Although observational studies are difficult to adjust for these
complex covariates, Mendelian randomization (MR) studies based

on genome-wide association studies (GWAS) may have the power to
provide an independent effect of each exposure on AD. In this study,
we aimed to investigate the shared genetic architecture between AD
and four cognition-related phenotypes, including genetic
correlations, local genetic correlations, independent causal
relationship, polygenic overlap, and shared causal genes
(Figure 1). We explored the underlying potential biological
mechanisms and provided an important contribution to prevent
the occurrence of AD.

Methods

Participant samples

We obtained GWAS summary statistics for AD from a meta-
analysis of 46 ADGWAS datasets (21,982 cases and 41,944 controls)
by the International Genomics of Alzheimer’s Project (IGAP)
(Lambert et al., 2013; Kunkle et al., 2019). A total of
9,456,058 common variants and 2,024,574 rare variants passed
the quality control (Kunkle et al., 2019). We obtained GWAS
summary statistics for EA and cognitive performance from a
meta-analysis of 71 cohort-level results by the Social Science
Genetic Association Consortium (SSGAC), containing
1,131,881 and 257,828 individuals, respectively (Lee et al., 2018).
GWAS summary statistics for intelligence were obtained from the
Center for Neurogenomics and Cognitive Research (CNCR)
CTGlab (Sniekers et al., 2017). Sniekers et al. (2017) performed a
meta-analysis of several intelligence GWAS, including UK Biobank

FIGURE 1
Overall study design. We first retrieved five GWAS data sources. For cognition-related phenotypes that showed significant genetic correlation with
AD, we conducted further genome-wide cross-trait analysis to investigate genetic overlap between them by integrating multiple-omics data.
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web-based measure (N = 17,862), UK Biobank touchscreen measure
(N = 36,257), Childhood Intelligence Consortium (CHIC) (N =
12,441), and five additional cohorts (N = 11,748). We obtained
childhood intelligence GWAS from CHIC (Benyamin et al., 2014).
CHIC assessed the intelligence of 17,989 children of European origin
aged 6–18 years and performed the single-nucleotide polymorphism
(SNP) classification of GWAS, including six discovery (N = 12,441)
and three replication (N = 5,548) cohorts (Benyamin et al., 2014).
Details of the participants were shown in the original studies
(Lambert et al., 2013; Sniekers et al., 2017; Lee et al., 2018;
Kunkle et al., 2019).

We removed the rare variants (MAF <0.01) and performed the
exchange of the reference genome (hg18/hg19) required in part of
the study. We only focused on autosomal chromosomes and
excluded the HLA region in this study. All participants were of
European descent, and informed consent was obtained from all the
participants in each study (Sniekers et al., 2017; Lee et al., 2018;
Kunkle et al., 2019). The study protocols were approved by the
corresponding institutional review boards.

Genome-wide genetic correlation analysis

We performed a cross-trait linkage disequilibrium score (LDSC)
regression to evaluate the genetic correlations of AD with the four
cognition-related phenotypes (Bulik-Sullivan B. et al., 2015; Qiu
et al., 2023). We used precomputed LD scores derived from
HapMap3 reference panels, which contained more than one
million European participants from UK Biobank (Bulik-Sullivan
B. et al., 2015; Bulik-Sullivan B. K. et al., 2015). LDSC regression first
calculated the average LD between SNPs across the genome and then
regression of the GWAS summary statistics based on baseline LD
scores (Bulik-Sullivan B. et al., 2015). The slope of the regression line
represented an estimate of heritability for a trait or disease. Notably,
LDSC also corrected for confounding factors such as sample overlap
and population stratification, which might affect heritability
estimates. More details about the LDSC algorithm have been
reported in previous studies (Bulik-Sullivan B. et al., 2015). The
statistically significant association after multiple testing is defined to
be p < 0.05/4 = 0.0125.

Local genetic correlation analysis

We divided the gene components into pre-specified LD-
independent segments (1,703 segments) and calculated the local
genetic correlation of each segment separately. Herein, we
performed two powerful computing tools: Heritability Estimation
from Summary Statistics (HESS) and pairwise analysis of GWAS
(GWAS-PW) (Pickrell et al., 2016; Shi et al., 2017). HESS was used
for estimating and visualizing the local SNP-heritability and genetic
correlations and calculating genetic covariance to measure the
similarity between a pair of traits driven by genetic variants (Shi
et al., 2017). GWAS-PW was used for evaluating the local
correlations and associated SNPs of each segment, under a
Bayesian colocalization framework (Pickrell et al., 2016; Shi et al.,
2017). The statistically significant association for HESS is defined to
be p < 0.05/1703 = 2.94E-05 after correcting for multiple testing. The

statistically significant association for GWAS-PW is defined to be
posterior probability 3 (PPA_3) > 0.9.

Univariable MR

MR study is an effective method for the analysis of causal
inference in epidemiology (Hemani et al., 2018). MR analysis
uses independent genome-wide significant SNPs (P < 5E-08, r2 <
0.3) as instrumental variables (IVs) to estimate the causal
estimates of exposure on the outcome (Hemani et al., 2018;
Qiu et al., 2021; Hu et al., 2022; Qiu et al., 2022). The
genotypes of SNP instruments are established at birth and
may not be altered by confounding factors. Here, we selected
262, 116, and 146 independent genome-wide significant SNPs
from GWAS summary statistics for EA, cognitive performance,
and intelligence, respectively, as instruments to perform two-
sample MR (Hemani et al., 2018). We implemented MR-Egger
and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) as
sensitivity analyses (Bowden et al., 2016; Hemani et al., 2018;
Verbanck et al., 2018). The TwoSampleMR (version 0.5.6) and
MR-PRESSO (version 1.0) R packages were used for MR analyses.
p < 0.05/3 = 0.0167 was considered significant enrichment after
multiple testing.

mtCOJO method and GSMR analysis

The association across EA, cognitive performance, childhood
intelligence, and intelligence may interfere with the effect of one of
these cognition-related phenotypes on AD. Here, we performed
multi-trait-based conditional and joint (mtCOJO) analysis to adjust
for pleiotropic SNPs among the cognition-related phenotypes and
then implemented generalized summary-data-based Mendelian
randomization (GSMR) analysis using conditional GWAS data
(Zhu et al., 2018).

The mtCOJO method is performed as described in Zhu et al.
(2018). If we adjust for the three covariates (cognitive performance,
childhood intelligence, and intelligence) when estimating the
influence of an SNP on EA, it is to use the causal estimates of
cognitive performance, childhood intelligence, and intelligence on
EA calculated by GSMR analysis as the condition in a GWAS
conditional analysis (Zhu et al., 2018). In other words, in
exploring the causal relationship between EA and AD, we
removed the effects of three covariates from exposure. As a
result, we obtained conditional GWAS data for each phenotype
after adjusting for pleiotropy.

Leveraging conditional GWAS data, we investigated the
causality between cognition-related phenotypes and AD using
GSMR analysis (Hemani et al., 2018). Based on the MR
framework, GSMR performs summary-based Mendelian
randomization (SMR) analysis on each SNP instrument
separately, considers the sampling variance of each SNP and LD
between SNPs, and integrates the causal estimation of all SNP
instruments through the generalized least squares method (Zhu
et al., 2016; Zhu et al., 2018). Thus, GSMR excluded the estimation
biases that might arise from pleiotropy (Zhu et al., 2018). We then
carried out an instrument selector called heterogeneity in dependent
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instruments (HEIDI)-outlier to distinguish causality from
pleiotropy (Zhu et al., 2018). Finally, we used 1000 Genomes
Phase III as LD reference panels to clump the SNPs and selected
independent genome-wide significant SNPs of conditional GWAS
(LD: r < 0.1, p < 5E-08).

Conditional Q–Q plots

We performed genomic controls to adjust for the expansion
and deflation of the empirical null distribution in GWAS due to
population stratification and overcorrection of test statistics for
polygenic traits (Yang et al., 2011; Andreassen et al., 2013). To
assess the pleiotropic enrichment and shared risk loci of
cognition-related phenotypes associated with AD, we
generated conditional quantile–quantile (Q–Q) plots and
computed the conditional false discovery rate (condFDR)
statistics. Conditional Q–Q plots were generated using the
log10(p) value of all SNP loci for the main trait (e.g., AD) and
the log10(p) values of SNP loci across several different thresholds
for the conditional trait (e.g., EA) (Andreassen et al., 2013;
Andreassen et al., 2014; Desikan et al., 2015). The thresholds
of condFDR included p < 1, p < 0.1, p < 0.01, p < 0.001, and p <
0.0001. Details of these statistical methods have been described in
previous publications (Andreassen et al., 2013; Andreassen et al.,
2014; Desikan et al., 2015).

Conditional false discovery rate

The unconditional FDR (uFDR) refers to the probability that
an SNP locus is associated with a trait as a false positive and is
expressed as the ratio of the observed p-value to the observed
quantile under the null hypothesis (Andreassen et al., 2013;
Andreassen et al., 2014; Desikan et al., 2015). The condFDR is an
extension of uFDR defined as the probability that an SNP locus is
not associated with a main trait i (e.g., AD) if the p-value in both
traits is less than a preset significance threshold and vice versa
(Andreassen et al., 2013; Andreassen et al., 2014; Desikan et al.,
2015). The conjFDR minimizes the effect of a single trait driving
the shared association signal (Andreassen et al., 2013;
Andreassen et al., 2014; Desikan et al., 2015). When the
conjFDR value of this SNP is less than 0.01, it is generally
considered to be significantly associated with both traits. The
conjFDR method is implemented using the R package
“GWAScFDR.”

eQTL analysis and functional enrichment

To further assess whether the shared risk loci of AD and
cognition-related phenotypes could regulate gene expression, we
performed the expression quantitative trait loci (eQTL) analysis in
whole blood and 13 brain tissues (brain amygdala, anterior cingulate
cortex, caudate basal ganglia, cerebellar hemisphere, cerebellum,
cortex, hippocampus, hypothalamus, frontal cortex, nucleus
accumbens basal ganglia, putamen basal ganglia, spinal cord
cervical, and substantia nigra) from the Genotype-Tissue
Expression (GTEx) (GTEx Consortium et al., 2017). 1E-06 was
used as the threshold for FDR <0.05. To explore the functional
locations and pathways of shared risk loci, we performed
enrichment analysis in Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) using the
clusterProfiler package (Yu et al., 2012). p < 0.05 was considered
significant enrichment after multiple testing.

TWAS and colocalization analysis

GWAS identifies susceptibility loci for complex traits, but
whether these loci influence the phenotypes through gene
expression remains unknown. TWAS were used as an association
test to identify the expression of putative risk genes in complex traits
(Gusev et al., 2016). Here, we selected dorsolateral prefrontal cortex
(DLPFC) RNA-seq datasets from the CommonMind Consortium
(CMC) as the expression reference weights and imputed expression
into GWAS summary statistics using Fusion software (Fromer et al.,
2016; Gusev et al., 2016; Senthil et al., 2017). For genes showing
significant association in the TWAS test (p < 0.05/No. of genes), we
further performed colocalization analysis to scan for shared causal
genes (Giambartolomei et al., 2014; Wallace, 2020). Colocalization
used the Bayesian statistical test to calculate the posterior probability
of five hypotheses (H0–H5), and the posterior probability PPH4 >
0.75 was interpreted as colocalization generally. The common
significance of TWAS and colocalization analysis ensured the
accuracy of the association test (Gusev et al., 2016).

Fine-mapping of causal gene sets

In order to confirm the credibility of the causal genes identified
by TWAS/colocalization analysis, we carried out the fine-mapping
of causal gene sets (FOCUS) (Mancuso et al., 2019). FOCUS
assigned the probability of associated signals to the risk genes

TABLE 1 Genetic correlations between AD and cognition-related phenotypes.

Phenotype rg rg_se p

Educational attainment −0.218 0.054 5.07E-05

Cognitive performance −0.269 0.064 2.44E-05

Childhood intelligence −0.017 0.033 0.603

Intelligence −0.304 0.085 3.00E-04

rg: genetic correlation, rg_se: standard error of genetic correlation, rg_z: Z-score of genetic correlation.

p: the statistically significant association is defined to be p < 0.05/4 = 0.125.
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identified by TWAS, which could be used for gene prioritization
in functional analysis (Mancuso et al., 2019). The overlapping
signals of TWAS, colocalization, and fine-mapping might be
credible causal genes. We prioritized the mapping in brain
tissues and showed the predicted expression correlation of
each gene within the risk region.

Results

Shared genomic architectures

We performed a cross-trait LDSC regression and observed
negative genetic correlations of AD with EA (rg = −0.22, p =
5.07E-05), cognitive performance (rg = −0.27, p = 2.44E-05), and
intelligence (rg = −0.30, p = 3.00E-04) (Table 1). Nevertheless, we
found non-significant genetic correlations of childhood intelligence
and AD (rg = −0.02, p = 0.60) (Table 1).

In order to observe the similarity between two traits driven by
genetic variants in specific regions of the genome, we calculated the
local genetic covariance of AD with EA, cognitive performance, and
intelligence in 1,703 regions with independent LD. As a result, both
EA (PAD&EA = 1.62E-09) and intelligence (PAD&intelligence = 4.33E-06)
were associated with AD in the chromosome 19: 44.7M–46.1M
region (Figure 2, Supplementary Tables S1–3). The local genetic
overlap of AD and EA was also shown in the chromosome 14:
9.12M–9.31M region using GWAS-PW analysis (Supplementary
Tables S4–6).

Independent causal relationship

Univariable MR analysis showed causal relationships between
the genetically predicted cognition-related phenotypes and AD
(Figure 3). Every one standard deviation (SD) increase in EA,
cognitive performance, and intelligence was associated with 30%,

FIGURE 2
HESS analysis of AD with EA, cognitive performance, and intelligence. For each sub-figure, top and middle parts represent local genetic correlation
and covariance, respectively, and colored bars represent loci that have significant local genetic correlation and covariance. Bottom part represents local
SNP-heritability for individual traits, and colored bars represent loci that have significant local SNP-heritability. AD, Alzheimer’s disease; EA, educational
attainment; CP, cognitive performance; INT, intelligence. (A) The local genetic correlation of AD and EA. (B) The local genetic correlation of AD and
cognitive performance. (C) The local genetic correlation of AD and intelligence.
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26%, and 27% lower risk of AD (EA: odds ratio (OR), 0.70; 95%
confidence interval (CI), 0.60 to 0.81, p = 2.28E-06; cognitive
performance: OR, 0.74; 95% CI, 0.63 to 0.87, p = 0.00023; and
intelligence: OR, 0.73; 95% CI, 0.62 to 0.87, p = 0.00028),
respectively. MR-PRESSO and MR-Egger found no evidence of
directional pleiotropy.

Owing to the potential causal relationship between EA and AD
and the possible limitations of multivariable MR, we further
performed mtCOJO analysis to adjust for pleiotropic SNPs
among the cognition-related phenotypes and then implemented
GSMR analysis using conditional GWAS (Zhu et al., 2018). After
conditioning, genetically predicted EA was significantly associated
with AD risk (OR = 0.74, 95% CI: 0.58–0.94, p = 0.013)
(Supplementary Table S7). However, there was a non-significant
causal relationship between cognitive performance or intelligence
and AD. The number of SNP instruments for childhood intelligence
was not sufficient to perform MR.

Pleiotropic enrichment and polygenic
overlap

To describe the pleiotropic enrichment between cognition-
related phenotypes and AD, we generated conditional Q–Q plots
for conditioning the cognition-related phenotypes on AD
(Andreassen et al., 2013; Andreassen et al., 2014; Desikan
et al., 2015). A significant upward deflection of the conditional
Q–Q plot was observed for EA, cognitive performance, and
intelligence as conditional traits, suggesting a significant
pleiotropic enrichment of AD with the cognition-related
phenotypes (Figure 4).

In order to identify the overlapping loci of cognition-related
phenotypes and AD, we applied a conjFDR statistical framework
based on GWAS. At conjFDR <0.01, we identified 4, 5, and
4 shared risk loci for AD and EA, cognitive performance, and

intelligence, respectively (Figure 5; Table 2). Among these shared
loci, APOE, PICALM, and HBEGF were susceptibility loci
reported in previous GWAS for AD (Naj et al., 2014;
Rosenberg et al., 2016; Jun et al., 2017). VAC14, EFL1, CKM,
SKA2, and NECTIN2 were novel risk loci. HBEGF was identified
in the shared risk loci for both AD and all cognition-related
phenotypes. HBEGF encodes a growth factor called heparin-
binding epidermal growth factor-like growth factor (HB-EGF),
which binds to APP, the transmembrane glycoprotein central to
AD, and acts synergistically with EGF to promote ERK signaling
and neuritogenesis (da Rocha et al., 2021).

We further evaluated the cis-expression of these loci in GTEx and
found that they regulated the expression of WDR55, RP11-394B2.1,
AP3B2, SAXO2, ADAMTS7P1, UBE2Q2P2, GOLGA2P10, GOLGA6L9,
MARK4,KLC3, TRIM37, RAD51C, TEX14,AC099850.1, SKA2, PRR11,
andNECTIN2 in whole blood and various brain tissues (Supplementary
Table S8). In addition, we enriched these risk loci in GO and KEGG.
The shared risk loci of EA and AD were mainly enriched in the
formation and regulation of Aβ and the binding of tau protein or
lipoprotein receptor (Supplementary Figure S1). The shared risk loci of
cognitive performance and AD were mainly enriched in keratinocyte
migration and glycoprotein biosynthetic processes (Supplementary
Figure S2).

Credible causal genes

Shared loci identified by conjFDR (closest to risk SNPs at
physical distance) may still be affected by limitations of GWAS
(Zhu et al., 2016). In order to identify the credible causal genes of
these phenotypes, we conducted TWAS, colocalization, and fine-
mapping. We selected brain tissue RNA-seq datasets as expression
reference weights and performed the expression imputation to
GWAS on each chromosome in turn (Gusev et al., 2016). As a
result, a total of 18 AD genes, 439 EA genes, 292 cognitive

FIGURE 3
Univariable MR results for the causal relationship between cognition-related phenotypes and AD.
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performance genes, and 276 intelligence genes showed strong
associations with the brain (Supplementary Tables S9–12).
TSPAN14, FAM180B, GOLGA6L9, and MTCH2 showed

significant correlation signals in both AD and cognitive
performance. TSPAN14, FAM180B, and GOLGA6L9 showed
significant correlation signals in both AD and intelligence.

FIGURE 4
Conditional quantile–quantile plots. Dotted lines indicate the expected line under the null hypothesis, and leftward deflection demonstrates the
degree of pleiotropic enrichment. (A) Conditional Q-Q plots for AD and EA. (B)Conditional Q-Q plots for AD and cognitive performance. (C) Conditional
Q-Q plots for AD and intelligence.
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Almost all causal genes identified by TWAS were replicated in
colocalization (Supplementary Tables S9–12). Fine-mapping
prioritized three credible causal genes (TSPAN14, FAM180B, and

GOLGA6L9), which were selected in the credible set the most times
in AD and cognition-related phenotypes (Supplementary
Table S13).

FIGURE 5
Conditional Manhattan plot. The shared risk loci between AD and cognition-related phenotypes weremarked. The statistically significant causality is
defined to be conjFDR<0.05. (A) AD and EA. (B) AD and cognitive performance. (C) AD and intelligence.

Frontiers in Genetics frontiersin.org08

Wang et al. 10.3389/fgene.2023.1243879

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1243879


Discussion

In this study, we observed substantial polygenic overlap between
cognition-related phenotypes and AD. We found high genetic
correlations of AD with EA, cognitive performance, and intelligence
but without childhood intelligence. Similarly, previous studies showed
that genetic variants that mediated the biological effects of AD were
unlikely to operate early in life, and no evidence showed that the genetic
burden of AD was linked to early cognition (Korologou-Linden et al.,
2019; Lamballais et al., 2020). As years of education increased,
intelligence might increase and become a protective factor for AD.
Further local genetic correlation analysis identified chromosome 19:
44.7M–46.1M as a significantly associated region for EA, intelligence,
and AD. Most of the genes in this region were associated with AD risk,
such as APOE, TOMM40, PVRL2, APOC1, and MARK4 (Zhou et al.,
2019; Serrano-Pozo et al., 2021).

Given the interference of covariates among the four cognition-
related phenotypes, we used two approaches to investigate the
independent causal relationship: multivariable MR and mtCOJO
analysis. The results suggested that higher EA might causally reduce
the risk ofAD, independently of cognitive performance and intelligence.
Similarly, Korologou-Linden et al. (2019) found that when SNPs related
to education were removed, the association between low learning
performance of adolescents and AD was weakened. Most of these
behavioral cognition/education-related phenotypes had ambiguous
bidirectional causality. Considering the results of our study alone, we
speculated that intelligence would change significantly with the increase
in age, years of education, and cognitive training and that the acquired
effect was the real reason for AD (Polderman et al., 2015).

Using conditional Q–Q plots and conjFDR statistical framework, we
found significant pleiotropic overlap between AD and cognition-related
phenotypes and identified 11 shared risk loci:APOE, CCDC83, PICALM,
HBEGF, PICALM, EED, VAC14, EFL1, CKM, SKA2, and NECTIN2.
AlthoughVAC14, EFL1,CKM, SKA2, andNECTIN2were novel risk loci,
most of themwere reported to be associatedwithAD, the risk of cognitive

decline, or other brain diseases. Given the limitations of traditional
GWAS, we further integrated GWAS and eQTL of brain tissues to
identify potential causal genes that affected traits by regulating gene
expression (Zhu et al., 2016; Tam et al., 2019). Although methods to
identify causal genes are still lacking, we assessed the most credible risk
genes using three approaches (TWAS, colocalization, and fine-mapping)
that approximate causal genes. In this way, we extended the risk loci of
GWAS to the transcriptome level and prioritized TSPAN14, FAM180B,
and GOLGA6L9 as the credible causal genes. Among these genes,
TSPAN14 regulates maturation and trafficking of the transmembrane
metalloprotease ADAM10, and ADAM10 is involved in reducing the
generation of Aβ peptides (Kunkle et al., 2019; Schwartzentruber et al.,
2021). FAM180B is also a potential susceptibility gene of AD and appears
in the protein–protein interaction network associated with APOE (Han
et al., 2017).MTCH2 induces the production of solute carriers, which is
reported as a risk gene for AD in multiple brain tissue transcripts
(Ruggiero et al., 2017). Although GOLGA6L9 is a novel locus never
reported previously, variant rs2665103, the shared risk loci of AD and
cognition-related phenotypes identified by conjFDR statistics, upregulates
GOLGA6L9 expression in cerebellum, suggesting its potential biological
role (β = 0.56, p = 7.4E-08).

Based on large-scale GWAS summary statistics, our study has several
strengths. First of all, GWAS for EA (1,131,881 individuals), cognitive
performance (257,828 individuals), intelligence (78,308 individuals), and
childhood intelligence (17,989 individuals) contain huge sample sizes,
which greatly improves statistical power. Second, we adjust the covariates
and provide unbiased causal estimation in the study of causality. Third,
since it is difficult to determine the true causal genes in the current
research, we performTWAS/colocalization to test the association between
risk gene regions and expression and verify the credible causal genes in
fine-mapping. However, we acknowledge certain limitations in our study.
The 13 cohorts of intelligenceGWAS consists of eight children (<18 years;
N = 19,509) and five adult cohorts (18–78 years; N = 58,799) (Sniekers
et al., 2017). If the childhood intelligence covariates are removed from the
intelligence GWAS, the number of remaining SNPs may be inadequate

TABLE 2 Shared risk loci of AD and cognition-related phenotypes using conjFDR.

Trait SNP Role Gene Position conjFDR

Educational attainment rs405509 Upstream APOE chr19: 45,408,836 0.000010

rs598561 Intergenic CCDC83 and PICALM chr11: 85,652,826 0.00064

rs7268 3′-UTR HBEGF chr5: 139,712,550 0.0011

rs3844143 Intergenic PICALM and EED chr11: 85,850,243 0.0088

Cognitive performance rs7268 3′-UTR HBEGF chr5:139,712,550 2.60E-05

rs11649476 Intronic VAC14 chr16:70,736,752 0.0017

rs2665103 Intronic EFL1 chr15:82,432,715 0.0035

rs344816 Intronic CKM chr19:45,825,626 0.0066

rs12051897 Intronic SKA2 chr17:57,207,540 0.0082

Intelligence rs2074613 Intronic HBEGF chr5:139,714,564 3.57E-05

rs2665103 Intronic EFL1 chr15:82,432,715 0.0020

rs11649476 Intronic VAC14 chr16:70,736,752 0.0027

rs6859 3′-UTR NECTIN2 chr19:4,5,382,034 0.0042

conjFDR, conjunctional false discovery rate.
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for instrumental variable analysis and genetic association analysis. Finally,
the different analyses performed in the study are interconnected and built
upon each other to provide a comprehensive understanding of the genetic
relationship between AD and cognition-related traits. These findings
suggest that implementing early prevention strategies that focus on
education and cognitive training could potentially reduce the risk of
developing AD. The identification of shared risk loci and credible causal
genes provides potential targets and personalizedmedicine approaches for
future therapeutic interventions.

In conclusion, this genome-wide cross-trait analysis strengthened
the view that genetically predicted EA, cognitive performance, and
intelligence were statistically related to AD risk. We identified
11 pleiotropic risk loci of AD and cognition-related phenotypes, of
which five were novel. Our research provided new insights into the
shared genetic basis of AD and cognition-related phenotypes from
multiple levels and opened a new way for the early prevention of AD.
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