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Introduction: Compared to Genome-Wide Association Studies (GWAS) for
common variants, single-marker association analysis for rare variants is
underpowered. Set-based association analyses for rare variants are powerful
tools that capture some of the missing heritability in trait association studies.

Methods: We extend the convex-optimized SKAT (cSKAT) test set procedure
which learns from data the optimal convex combination of kernels, to the full
Generalised Linear Model (GLM) setting with arbitrary non-genetic covariates. We
call this extended cSKAT (ecSKAT) and show that the resulting optimization
problem is a quadratic programming problem that can be solved with no
additional cost compared to cSKAT.

Results:We show that a modified objective is related to an upper bound for the p-
value through a decreasing exponential term in the objective function, indicating
that optimizing this objective function is a principled way of learning the
combination of kernels. We evaluate the performance of the proposed method
on continuous and binary traits using simulation studies and illustrate its
application using UK Biobank Whole Exome Sequencing data on hand grip
strength and systemic lupus erythematosus rare variant association analysis.

Discussion: Our proposed ecSKAT method enables correcting for important
confounders in association studies such as age, sex or population structure for
both quantitative and binary traits. Simulation studies showed that ecSKAT can
recover sensible weights and achieve higher power across different sample sizes
and misspecification settings. Compared to the burden test and SKAT method,
ecSKAT gives a lower p-value for the genes tested in both quantitative and binary
traits in the UKBiobank cohort.
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1 Introduction

Genome-wide association studies (GWAS) (Visscher et al., 2017) have been shown to be
a powerful way to identify common genetic variants (Cordell and Clayton, 2005); (Hindorff
et al., 2009). However, for most diseases, the common susceptibility variants identified to
date explain only a small proportion of the heritable component of disease risk. It is known
that for low-frequency variants and rare variants, the power to detect the effect is limited (Lee
et al., 2014) in GWAS. Rare variants are known to play an important role in human diseases.
It is a well-established hypothesis that rare variants may be able to explain the missing
heritability (Zuk et al., 2014).
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The common approach to tackle this problem is to aggregate the
variants in a gene set.Most of these testing procedures can be classified
into two groups: the burden test, which collapses the SNPs in the gene
set into one scalar value to then be regressed onto the trait
(Morgenthaler and Thilly, 2007); (Lee et al., 2014); (Guo et al.,
2016), and variance component tests, of which the sequence kernel
association test (SKAT) is the prototypical procedure in genetic testing
(Wu et al., 2011; Lee et al., 2012; Liu et al., 2019). SKAT ismore flexible
than the burden test because it makes fewer assumptions about the
data, but the burden test has greater power when a large proportion of
variants are causal and effects are in the same direction. In reality, the
burden test can be shown to be a special case of SKAT (Wu et al.,
2011), and the unifying framework is that of kernels (Aronszajn, 1950;
Hofmann et al., 2008). The kernel framework allows for building a
kernel, encoding affinity between two objects such as gene sets
(Borgwardt, 2011). However, with the current availability of data, it
is possible to learn a superior kernel from the data itself, commonly
known as learning the kernel or multiple kernel learning (Cortes et al.,
2012; Gönen and Alpaydın, 2011; Sonnenburg et al., 2006). Posner
et al. (2020) proposed a way to learn a kernel as a convex combination
of linear kernels from the data itself, calling this procedure convex
SKAT (cSKAT). Although Posner et al. (2020) claimed to handle non-
genetic covariates beyond the regression setting, their derivation is
flawed due to a mistake, leading to the wrong denominator in the
objective (Supplementary Appendix SA1). Due to this flaw, their
method (cSKAT) only optimizes the correct objective for the
regression setting with no non-genetic covariates and does not
extend to the case when we have non-genetic covariates, which is
important for accounting for population stratification (Cardon and
Palmer, 2003), for potentially binary traits.

In this paper, we extend cSKAT (Posner et al., 2020) to any
statistical model that comes under the mixed linear model (Zhang
et al., 2010) (an extension of the generalized linear model (GLM)
framework Nelder and Wedderburn (1972), which generalizes
regression to a large family of models, including logistic
regression) while allowing for non-genetic covariates. We call the
resulting model extended cSKAT (ecSKAT). We note that although
Posner et al. (2020) focused on annotated genetic data, their method
applies beyond this setting (Section 2.4), which shows the process in
detail. Although ecSKAT can be applied to annotated genetic data, we
do not pursue this direction here and instead focus on the standard
genetic data included in our experiments. The model has several
advantages over standard SKAT because it allows for learning the
kernel in a data-driven way by solving an optimization problem
shown to be equivalent to a quadratic program (QP), leading to
increased power over using a hand-picked kernel. Hence, it has the
same computational and memory complexity as that of Posner et al.
(2020), so the additional generality comes with no extra cost.
Theoretically, we use concentration inequalities for a convex
combination of independent χ2-random variables to show that a
modified ecSKAT objective relates to the null p-value through an
upper bound that reaches zero exponentially in the objective value.

2 Materials and methods

We are interested in hypothesis testing using the score test in the
context of genomic studies; in particular, given a dataset of patients

with a response, non-genetic covariates, and a number of gene sets,
for each gene set, we are interested in testing for the association
between the gene set and response, taking into account the non-
genetic covariates. Our work extends cSKAT (Posner et al., 2020),
which itself comes from the line of work initiated by Wu et al.
(2011). Interestingly, both Lee et al. (2012) and Ionita-Laza et al.
(2013) proposed a convex combination of two very specific kernels,
but the papers did not make this connection explicitly, which was
pointed out in Larson et al. (2019). Zhao et al. (2015) created an
algorithm for learning a kernel from multiple base kernels, which is
probably the work closest to our proposed method, except for
cSKAT. However, their algorithm is expensive as it requires us to
calculate p-values for each iteration, while ours is efficient due to the
optimization step being QP.

2.1 Model

We consider a genetic association study of sample size n where
we try to find a significant association between genetic variants and
some outcomes (a trait or phenotype generally associated with
disease) while controlling for stratification by taking into account
non-genetic covariates. Given non-genetic and genetic covariates
denoted by x ∈ Rm and g ∈ {0,1,2}p1, respectively, and output y ∈ R

from n subjects, where m and p are the non-genetic and genetic
dimensions, we collect the data into a dataset D � (xi, gi, yi)ni�1.
Additionally, we define the non-genetic and genetic design matrices
X ∈ Rn×m and G ∈ Rn×p, respectively, and the output vector y ∈ Rn.
For logistic regression, we encode an outcome as 1 and a lack of
outcomes as 0. We limit ourselves to the setting of linear and logistic
regression but note that other models, such as multinomial and
Poisson regression, are easily handled due to the flexibility of the
GLM framework (Nelder andWedderburn, 1972), and themodel we
use for the testing procedure is that of the generalized linear mixed-
effect model (Gelman and Hill, 2006), relating the phenotype to the
genetic and non-genetic covariates.

For a gene set giving rise to the genetic design matrix G, we are
interested in testing for an association between the trait and genetic
information. We use the standard frequentist hypothesis testing
framework (Casella and Berger, 2021), and we formulate the null
and alternative hypotheses as follows:

H0: h � 0, Halt: h ≠ 0. (1)
Letting h to be linear in some set of parameters β ∈ Rp, then the

function space containing h consists of linear functions of the form
h(g) � βTg with some inner products defined between functions
h � βTg, h′(x) � β′Tg, and 〈h, h′〉 � βTΛβ′ for some positive semi-
definite Λ. If Λ is full-rank, Eq. 1 becomes

H0: β � 0, Halt: β ≠ 0. (2)

1 The value is given by the number of minor variants of the SNP at the
marker, and other schemes can trivially be handled.
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2.2 Score tests

SKAT was first introduced in Wu et al. (2011), who highlighted
the need for new association tests that may take into account the
importance of rare variants while being able to incorporate genetic
effects that are sparse and have different directions of impact on the
response, such as some genetic variants being deleterious while
others being beneficial. The burden test (Madsen and Browning,
2009), another commonly used testing procedure, typically struggles
with these kinds of settings. SKAT uses the variance component
score test (Lin, 1997) to devise a testing procedure that takes into
account effect sizes of differing signs and allows injecting prior
knowledge about how rarity is related to the magnitude of effect size.

The family of SKAT-like testing procedures, including their
many descendants (Lee et al., 2012; 2014) (Larson et al., 2019),
assume that β follows Gaussian distribution, which makes it
explicitly linked to Gaussian processes (Rasmussen, 2003), and
something that was also pointed out in Wu et al. (2011). In
particular, assuming that h follows a Gaussian process with
mean function 0 and covariance function τK(·, ·) with τ ≥ 0
and K a valid kernel function, the vectorized output h(G) �
(h(gi))ni�1 follows the Gaussian distribution N(0, τK)2, where
Kij = K(gi, gj) is the so-called kernel matrix encoding affinity
between the individuals through the gene set. When h(g) � βTg,
this is equivalent to β ~ N(0, τ · diag(w))3 for some w, where
we assume w ∈ △p, with △p being the set of probability vectors
of dimension p4, for simplicity. Choosing w allows us to design
a test that fits the domain knowledge by weighing the
contribution of individual variants according to the weight
vector w. From here on, we will only consider weighted linear
kernels K(g, g′) � ∑p

j�1wjgjgj′, where w ∈ △p.
In this case, we can reformulate Eq. 1 as an equivalent to testing if

H0: τ � 0, Halt: τ > 0, (3)
and the variance component test (Lin, 1997), in this case, reduces to
the SKAT statistic (Wu et al., 2011). Let (α̂0, α̂) � ~̂α and μ̂0 �
η−1(α̂0 + Xα̂) be the maximum likelihood conditional mean and r �
y − μ̂0 be the raw residuals of the null model. Then, the SKAT
statistic takes the following form:

QSKAT � rTKr

ϕ̂0

, (4)

where ϕ̂0 is the maximum likelihood estimate of the dispersion
parameter. For the case of a binary outcome, ϕ̂0 � 1 and for the
continuous outcome ϕ̂0 � σ̂20, which is the residual sample variance
under the null model. Under the null hypothesis, the asymptotic
distribution of QSKAT follows a mixture of independent χ21 variables
with the mixture coefficients being the eigenvalues of the matrix
A � P1/2

0 KP1/2
0 /ϕ̂0, where P0 � V − VX(XTVX)−1XTV , P0 is a

positive semi-definite, and V = diag(v), where vi is the maximum
likelihood conditional variance of yi under the null model. For

binary outcomes, vi � 1
μ̂0(1−μ̂0), while for continuous outcomes, it

takes the form vi � σ̂20 (Wu et al., 2011; Posner et al., 2020). We let λ0
be the eigenvalues of A, denoted by λ0 = eig(A).

Based on the aforementioned findings, we obtain the p-value
function as follows:

p0 q( ) � Pr QSKAT ≥ q( ), (5)
where QSKAT � ∑p

j�1λ0,jχ21 and the probability is with respect to the
null distribution. We cannot evaluate p0 analytically, but it can be
evaluated numerically up to arbitrary precision using Davie’s
method (Davies, 1980) or approximately (Liu et al., 2009).

2.3 Extended convex-optimized SKAT

In this section, we extend the analysis of Posner et al. (2020) as
follows: first, we show that their annotated kernel formulation can be
reformulated as a specific kernel through an explicit featuremap of g and
we generalize this formulation. Second, we derive the objective in case of
the existence of non-genetic covariates and models other than linear
regression and show that this leads to an objective that results in a similar
but qualitatively different solution compared to centered kernel
target alignment, which can nevertheless be solved efficiently through
a QP. Finally, using a large deviation theory, we show that the objective
proposed in Posner et al. (2020) is related to an upper bound on the
p-value under the null hypothesis as maximizing the objectiveminimizes
the upper bound, putting the proposed solution on a principled footing
and clarifying the nature of the weights that ecSKAT learns.

2.4 Reducing cSKAT to ecSKAT

Although Posner et al. (2020) introduced theirmethod in the setting
of learning with genetic annotations, we show, in this section, that their
method is a multiple kernel learning method in disguise and so can be
applied to any setting where we have a dataset in the form of an input
matrixG, confounding input matrix X and traits y, whereG can now be
anymatrix of stacked feature vectors per patient which we want to relate
to traits y. In particular, G can be the original genetic design matrix or
the aggregated genetic annotation matrix ~G defined as follows.

Posner et al. (2020) assumed that for each SNP indexed by j, we
have a sequence of annotation vectors (al,j)Ll�1 ∈ Rd1 ×/× RdL ,
where dl is the dimensionality of al,j for any j. The form of the
kernel they proposed is Kw(g, g′) � ∑L

l�1wlKl(g, g′), where w ∈△L

and Kl(g, g′)∝∑p
j�1(1Tal,j)2gjgj′. It should be noticed that

(1Tal,j)2 is a scalar function of al,j, so replacing this by any scalar
function ϕl: R

dl → R+, where we enforce positivity to make sure
that Kl is a valid kernel, does not change the form of Kl. This would
allow for further flexibility in choosing how to aggregate annotation
data, if available, with some suggestions being ϕl(x) � |x|p for p ≥ 1
or ϕl(x) = exp(−x), which leads to the so-called softmax weighing
function. In practice, one could choose ϕl from a pool of candidates
(for example, from those outlined previously) using cross-validation
on the train set ((Hastie et al., 2009; Section 7.10) for an introduction
to cross-validation). For simplicity, we can assume from here that
ϕl(x) = x2, which reduces to using the aggregation method in Posner
et al. (2020). Let Φl ∈ Rp be the vector such that Φl,j = ϕl(al,j), Dl =
diag(Φl), and F � [ ���

D1
√

, . . . ,
���
DL

√ ] ∈ RL×p. Then, let the

2 N(μ, V) is the Gaussian distribution with mean μ and covariance matrix V.

3 For a vector x ∈ Rd, diag(x) is the n × n diagonal matrix with x on the
diagonal.

4 Explicitly, w ∈ △p is equivalent for any i ∈ {1, . . ., p}, wi ≥ 0, and ∑p
i�1wi � 1.
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transformed genetic vector be ~g � Fg and define ~G to be the design
matrix of this new genetic dataset of the cohort. The kernel matrix can
then be expressed in the form K � ~GW ~G

T � GFTWFGT, which is of
the form we considered previously. This shows that the setting of
Posner et al. (2020) can be handled in the general linear kernel case
where the genetic feature vectors are first preprocessed using F, and w
is then learned usingmultiple kernel learning techniques (Cortes et al.,
2012). In this work, we do not use annotations for simplicity and only
consider K � GTWG.

2.5 General cSKAT

Posner et al. (2020) laid out a strategy for how to select w in a
data-driven way but only derived an explicit form for the case of no
non-genetic covariates (only fitting α0, which can be shown to be
equivalent to centering y in this case) and linear regression. Here, we
solve the full case when X is non-zero and for any valid conditional
response model that comes under the GLM framework with a
canonical link function. They proposed to split the data into a
train and a validation set, D = Dtr ∪ Dts, where Dtr is used to finding
w and Dts to perform the hypothesis test using w. The learning
procedure of w is defined through the following objective:

J w( ) � QSKAT w( )���λ0 w( )‖2 , (6)

where we view QSKAT and λ0 as functions of Kw through w. The
induced optimization problem becomes

w* � arg max
w∈△p

J w( ). (7)

As shown in theorem 1.1, we may rewrite J(w) � wTs
‖w‖B⊙B, where

B � GT(V − VX(XTVX)−1XTV)G and s � (GTr)2 is the
component score vector where the square is applied component-
wise, and the solutionw* in Eq. 7 can be shown to be proportional to
the solution of QP:

w*∝ arg min
z≥0

zT B ⊙ B( )z − 2zTs, (8)

which can be solved effectively using modern convex solvers
(Diamond and Boyd, 2016).

2.6 Relating optimization objective to
p-value

As pointed out in Posner et al. (2020, A1), there is no a-priori
reason that optimizing the objective (Eq. 6) will lead to a test with
good power, what we would like to do theoretically is to maximize the
power directly. As a proxy to power maximization, we would instead
prefer minimizing the p-value (Eq. 5) on the training set in terms ofw.
However, it is not clear how to optimize the p-value since it is highly
non-convex and complicated. A commonly used approach in
optimization is to instead optimize an upper bound, p0(Q(w); w) ≤
u(w), where u(w) is tight and convex. Here, we have explained
explicitly the dependency of p0(q) on w.

In theorem 1.2, we show using large deviation theory
(Wainwright, 2019; Vershynin, 2018) in the form of sub-
exponential concentration inequalities applied to the linear

combination of independent χ21 random variables that the p-value
is upper-bounded through

p0 Q w( )( )≤ exp −1
8
min J w( ), J w( )2( )( ), (9)

where J(w) differs from the cSKAT objective (Eq. 7) as the
numerator now takes the form wT(s − b), where b = diag(B), the
diagonal of B as a vector, instead of wTs. Assuming that J(w) ≥ 1,
then the upper bound is exp(−J(w)/8). Since the function f(x) =
exp(−x/8) is decreasing, we observe that minimizing f is equivalent
to maximizing J(w), which again reduces to a QP problem similar to
Eq. 22. The result shows that the modified cSKAT objective is a
principled objective and that maximizing it is equivalent to
minimizing an upper bound on the p-value, and furthermore, as
the objective grows in value, the upper bound decreases and reaches
zero as J(w) → ∞ exponentially fast. In particular, for any a ≥ 0,
fixing a minimum level p0(Q(w); w) ≤ 10−a can be certified as long as
a≥ 1

8min(J(w), J(w)2), which is easy to check after optimization.

3 Results

3.1 Synthetic and semi-empirical models

In order to benchmark the models (including ecSKAT), we need
to know how the genetic and non-genetic covariates are related to
the output. We simulate the data using a model of the relationship of
the GLM form as follows:

η μ x, g( )( ) � α0 + αTx + βTg + gTΓg, (10)
where we generate α0, α and β together with a potential genetic
interaction term gTΓg, where Γ has zero diagonal and is only non-
zero for the causal terms corresponding to β. The interaction term is
only used when evaluating the performance of the model under
model misspecification and Γ = 0 when there is no model
misspecification. Model misspecification aims to answer the
question of what happens when using a model that specifies
some assumptions of the world when these assumptions are
violated in some pre-specified way. In this case, we aim to
capture what happens when the model is violated in the sense
that the linear term βTg is replaced by the linear and interaction
term βTg + gTΓg � (βT + Γg)Tg. As in practice, our model is always
misspecified, seeing how the methods performing under
misspecification is integral, and we would prefer the procedure to
degrade gracefully when there is non-severe model misspecification.
The following settings depend on the marginal distribution and
functional relationship, among others (Supplementary Appendix
SA1), for a detailed specification for each setting.

We benchmark ecSKAT against the burden test using the sum as
an aggregation, uniform SKAT, where the weights are equal to 1/p,
and SKAT, where we set the weights using β(1, 25)-pdf, as outlined
in Wu et al. (2011); we denote these algorithms by ecSKAT, Burden
(Sum), SKAT (Uniform), and SKAT (β(1, 25)) in the figures and
experiments, in terms of estimated Type I error and power. For the
marginal distributions of the non-genetic and genetic covariates (ρX
and ρG), we either generate them synthetically or use the empirical
distributions of the UKBiobank dataset through using available
datapoints (patients) relating to the gene PARK7 with non-
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genetic covariates of age (in years), sex (one-hot encoded), and
10 principal components from the full genetic whole-exome
sequencing (WES) dataset and sample without replacement (due
to the size of the database the id violation is negligible) from these
patients 1,000 times in order to get 95% confidence intervals for
Figures 3, 4. For ecSKAT, we use a train ratio of 0.3. Another
approach would be to consider the marginal distribution of
evolutionary simulation models such as in Wu et al. (2011),
Hamilton (2021), and Yuan et al. (2012). We instead use the
empirical data directly as they explain the ground truth and large
sample size in UKBiobank to make this feasible without introducing
artifacts due to the finite size of the original dataset.

Figures 1, 2 show that under idealized settings, ecSKATmanages
to recover sensible weights, in particular, weights that add mass to
semi-rare causal variants. Although this does not prove that the
resulting test will perform well, it provides evidence that ecSKAT
discards non-causal SNPs.

In the Type I error experiment (Figure 3), we show how the Type
I error behaves as a function of the size of the dataset under the
correctly specified setting. We test this for two sample sizes,
1,000 and 1,0000, and for α = 10−1, 10−2, 10−3, and perform this
experiment 1,000 times to get 95% confidence intervals. We see that
all algorithms control the Type I error for big α but struggle for α =
10−3. However, it should be noted that for all algorithms in all plots,
the current significance level falls within the confidence interval.

Finally, for the power experiment (Figure 4), we look at the
power of the correct (row 1) and misspecified cases (row 2) for
different significance levels. As in the Type I error experiment, we
repeat this experiment 1,000 times and calculate 95% confidence

intervals. It should be noted that the confidence intervals are too
small to be seen. For the correctly specified case (row 1), ecSKAT
rejects the null hypothesis correctly for all plots, which can be seen
by the straight line at 1 (maximum power). For a smaller α and large
sample size, the other SKAT methods (β(1, 25), Uniform) also have
maximum power, while the burden (Sum) test fails to perform well,
probably because it assumes all weights to have the same sign, which
is not true here. For the misspecified case (row 2), we see that only
SKAT (β(1, 25)) and ecSKAT manage to perform well with their
performance improving in the sample size and decreasing with
smaller α. From this, we can see that ecSKAT performs best and
SKAT variants perform well in terms of power for the correctly
specified case, while only ecSKAT and SKAT (β(1, 25)) perform well
in the misspecified case, probably due to the data-dependent nature
of how they reweigh each genetic covariate.

3.2 Application to the UKBiobank data

We applied our proposed method to analyze the UK Biobank
exome sequencing data.We tested associations of hand grip strength
(quantitative trait) in 73,424 individuals and systemic lupus
erythematosus (SLE) (binary trait) with 966 cases and
4,296 controls, adjusting for sex, age, and 10 principal
components. We restricted our analysis to the predicted loss-of-
function (LoF; i.e., essential splice site changes, stop codon gain, or
frameshifts) (MacArthur et al., 2012)) variants with MAF <0.01. In
addition to testing for an association via ecSKAT, we also applied the
weighted sum burden test, weighted max burden test, and SKAT

FIGURE 1
Recoveredweights using the ecSKAT objective to findwwhen y is continuous. The y-axis is themagnitude of eachweight, and the x-axis is the index
of the true weight vector β and the found weights w. The true weights β are sparse, and the marginal distribution has minor allele frequency (MAF),
following a power law, with indices for which MAF is lower, typically leading to weights of large magnitude if they are non-zero.w is sparse with the non-
zero indices falling in the set of non-zero indices of β but fails to learn large weights that correspond to extremely rare SNPs.
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with a weighting of β(1, 25)-pdf of the MAF. For handgrip strength,
we analyzed variants in TPTEP2-CSNK1E and ZDHHC8
(Karczewski et al., 2022), which were reported to be associated
with the phenotype in Genebass. For SLE, we uncovered the
association of aggregation of LoF in gene PCSK9, which was not

reported in Genebass but was shown to be associated with disease
activity in SLE (Frostegard et al., 2020). The underlying cause could
be that oxidized LDL promotes DC activation, which depends on
PCSK9, with a higher effect among SLE patients. PCSK9 could play
an unexpected immunological role in SLE. Our proposed ecSKAT

FIGURE 2
Recovered weights using the ecSKAT objective to findwwhen y is binary. The y-axis is the magnitude of each weight, and the x-axis is the index of
the true weight vector β and the found weightsw. The true weights β are sparse, and themarginal distribution has minor allele frequency (MAF), following
a power law, with indices for which the MAF is lower, typically leading to weights of large magnitude if they are non-zero.w is sparse with the non-zero
indices overlapping with the set of non-zero indices of β but fails to learn large weights that correspond to extremely rare SNPs and has some small
non-zero entries not overlapping with the non-zero indices of β.

FIGURE 3
Type I error analysis for the correctly specified setting when y is continuous for all of the benchmarked algorithms (SKAT with weights of Wu et al.
(2011), SKAT with uniform weights, our algorithm ecSKAT, and the burden test with sum aggregation). The columns are ordered by the pre-specified
significance levels of 10−1,10−2,10−3, and the rows range from n =1000 to n =10000. We obtain the mean Type I error and 95% confidence intervals by
repeating the setup 1,000 times and calculating the fraction of times that the algorithms choose to reject the null hypothesis.

Frontiers in Genetics frontiersin.org06

Falk et al. 10.3389/fgene.2023.1245238

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1245238


was the most powerful test for both quantitative and binary traits
and has much smaller p-values than the burden test and SKAT for
the genes that we tested (Tables 1, 2).

4 Discussion

This study generalised the cSKAT formulation to general
GLM models with non-genetic covariates and showed that this
formulation, while being considerably more general and
applicable in practice as compared to the linear model, the no
covariate setting of Posner et al. (2020) still allows for finding the
optimal weights through a QP, thus being equally
computationally complex to the simpler setting. Our
theoretical and methodological contributions are threefold.

1. We showed that the weighted annotation method of Posner
et al. (2020) can be formulated as an instance of the SKAT
setting where we first apply a linear feature map to the genetic
covariates.

2. We completed the analysis of cSKAT for the case of an arbitrary
GLM model when the covariates are non-zero, showing that the
objective can be solved using a similar QP procedure as the
original cSKAT algorithm, retaining the same computational
complexity.

3. Finally, we showed that a slight modification of the cSKAT
objective is related to an upper bound on the p-value as a
function of w and that this bound is tight as the objective goes
to infinity, indicating that cSKAT is a principled objective
since it relates well to the objective of the study (the actual
p-value).

Simulation studies showed that ecSKAT can recover sensible
weights and achieve higher power across different sample sizes and
misspecification settings. In real data analysis, we applied the
method to both the binary (SLE) and quantitative (hand grip
strength) traits in the UKBiobank cohort. Compared to the
burden test and SKAT method, ecSKAT gives a slightly lower
p-value for the genes tested in both quantitative and binary traits.

FIGURE 4
Power analysis when y is continuous for all benchmarked algorithms (SKAT with weights of Wu et al. (2011), SKAT with uniform weights, our
algorithm ecSKAT, and the burden test with sum aggregation). The columns indicate different significance levels used α = 10−1, 10−3, 10−5, 10−7, and the
rows specify different true functional relationships (no misspecification and misspecification with the additional covariance structure). We obtain the
power mean and 95% confidence intervals by repeating the setup 1,000 times and calculating the fraction of times that the algorithms choose to
correctly reject the null hypothesis.

TABLE 1 Association test for hand grip strength (p-value).

Method

Gene Category Burden (sum) Burden (max) SKAT ecSKAT

TPTEP2-CSNK1E LoF 5.14 × 10−2 5.14 × 10−2 4.73 × 10−2 3.08 × 10−2

ZDHHC8 LoF 4.91 × 10−2 4.91 × 10−2 4.85 × 10−2 3.76 × 10−2

TABLE 2 Association test for systemic lupus erythematosus (p-value).

Method

Gene Category Burden (sum) Burden (max) SKAT ecSKAT

PCSK9 LoF 1.4 × 10−5 2.5 × 10−5 1.0 × 10−5 0.8 × 10−5

CSNK2A1 LoF 2.47 × 10−2 2.47 × 10−2 2.45 × 10−2 2.31 × 10−2
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In the future, we would like to theoretically analyze the power in
terms of the true value w* and the size of the training and validation
sets. Furthermore, given a fixed dataset size n, we would like to
analyze the optimal training set size, which would be of interest
in practice. Finally, we would like to perform more large-scale
experiments, in particular, on the newly released 500-k WES
cohort of UKBiobank (Backman et al., 2021; Szustakowski et al.,
2021).
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