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Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease that poses
a significant challenge tomedical professionals due to its increasing incidence and
prevalence coupled with the limited understanding of its underlying molecular
mechanisms. In this study, we employed a novel approach by integrating five
expression datasets from bulk tissue with single-cell datasets; they underwent
pseudotime trajectory analysis, switch gene selection, and cell communication
analysis. Utilizing the prognostic information derived from the GSE47460 dataset,
we identified 22 differentially expressed switch genes that were correlated with
clinical indicators as important genes. Among these genes, we found that the
midkine (MDK) gene has the potential to serve as amarker of Idiopathic pulmonary
fibrosis because its cellular communicating genes are differentially expressed in
the epithelial cells. We then utilized midkine and its cellular communication-
related genes to calculate the midkine score. Machine learning models were
further constructed through midkine and related genes to predict Idiopathic
pulmonary fibrosis disease through the bulk gene expression datasets. The
midkine score demonstrated a correlation with clinical indexes, and the
machine learning model achieved an AUC of 0.94 and 0.86 in the Idiopathic
pulmonary fibrosis classification task based on lung tissue samples and peripheral
blood mononuclear cell samples, respectively. Our findings offer valuable insights
into the pathogenesis of Idiopathic pulmonary fibrosis, providing new therapeutic
directions and target genes for further investigation.
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1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive
lung disease characterized by the accumulation of scar tissue in the
lungs, leading to difficulty breathing and chronic respiratory failure
(Martinez et al., 2017; Chanda et al., 2019). The disease primarily
affects older adults and is associated with high mortality rates, with a
median survival of 3–5 years if untreated. The exact cause of IPF is
not yet fully understood, though it is believed to be a result of a
combination of genetic susceptibility and environmental exposures
such as smoking, air pollution, and viral infections (Martinez et al.,
2017). Currently, treatment options for IPF are limited, and there is
still much to discover about its underlying mechanisms and
potential therapeutic targets.

Some studies have focused on several key pathways involved in
IPF pathogenesis, including epithelial-mesenchymal transition
(EMT) and extracellular matrix (ECM) dysregulation (Chanda
et al., 2019; Peng et al., 2020). In response to environmental
triggers, immune cells such as macrophages and T cells are
activated, leading to the release of pro-inflammatory cytokines
and chemokines (Lee et al., 2021; Tanner et al., 2023). This
activation results in the recruitment and activation of
fibroblasts, which contribute to excessive ECM deposition and
scarring in the lungs. EMT is a process in which epithelial cells lose
their characteristic properties and acquire mesenchymal
characteristics, enabling them to migrate and differentiate into
other cell types. In IPF, EMT contributes to the accumulation of
activated fibroblasts and myofibroblasts, which play a major role in
ECM remodeling and fibrosis. ECM dysregulation is a hallmark of
IPF and is characterized by excessive deposition and remodeling of
ECM proteins such as collagen, fibronectin, and elastin.
Understanding the complex interactions between these
pathways and identifying potential therapeutic targets are major
areas of focus in current IPF research (Martinez et al., 2017;
Chanda et al., 2019).

The single-cell technique is a high-throughput analytical
technique that enables gene expression profiling of individual
cells, allowing for the detection of subtypes and functional
differences between different cells, identification of rare cell types,
and discovery of disease-related key genes and pathways at the
cellular level (Sklavenitis-Pistofidis et al., 2021). Moreover, single-
cell studies have also made significant contributions to the
understanding of the pathogenesis of IPF. For instance, Morse
et al. revealed an increase in fibroblasts, basal cells, ciliated cells,
and club cells in IPF. They also identified macrophages expressing
high levels of SPP1 and MERTK, which contribute significantly to
lung fibrosis (Morse et al., 2019). Adams et al. discovered a unique
basal cell population in IPF that expresses markers associated with
basal cells, epithelial cells, mesenchymal cells, aging, and
development. These findings suggest that the appearance of this
cell population may be related to EMT in IPF patients (Peng et al.,
2020). Additionally, Kobayashi et al. focused on the pre-alveolar
type-1 transitional cell state (PATS) and found that markers of
stratifin (SFN), tumor protein p63 (TP63), keratin 17 (KRT17), and
TP63 are co-expressed with collagen type I alpha 1 chain (COL1A1)
in highly fibrotic cells, resulting in an aberrant elongated shape of
the PATS cells (Kobayashi et al., 2020). Despite the progress made in
understanding IPF through these studies, the specific pathogenesis

of IPF, as well as the underlying causes of EMT and ECM formation
in IPF, remain unclear and require further investigation.

In this study, we integrated five bulk gene expressing datasets
and performed a comprehensive analysis with single-cell RNA
sequencing (scRNA-seq) data results. We identified several
differentially expressed genes that have clinical relevance and
provided new insights into pathogenic factors, such as ECM and
EMT, that are involved in IPF. Specifically, we constructed an SVM
classifier for the MDK gene and related communication genes,
achieving high accuracy in both lung tissue and peripheral blood
sequencing datasets. These findings offer new directions for future
research into the pathogenesis of IPF.

2 Results

2.1 Integrated bulk gene expression datasets
identified consistently differentially
expressed genes

Following acquisition of the bulk gene expression datasets, we
conducted an analysis and identified a total of 1215 differentially
expressed genes (DEGs). Among these DEGs, 745 were upregulated
in more than two datasets, and 23 genes were consistently
upregulated in all five datasets (Figure 1A, Supplementary Figure
S1). Notably, the upregulated genes, such as MDK, tetraspanin 1
(TSPAN1), COL1A1, and collagen type I alpha 2 chain (COL1A2),
were found to be enriched in extracellular matrix-related pathways,
cytokines and cytokine receptor pathways, and collagen binding
pathways (Supplementary Figures S1A, S1B). On the other hand, the
downregulated genes were primarily enriched in G protein-coupled
receptor (GPCR) signaling and cytokine binding (Supplementary
Figures S1C, S1D).

To elucidate the interplay among the DEGs and provide insight
into their biological functions in IPF, we conducted protein–protein
interaction (PPI) network analysis using the STRING database, which
enabled identification of subnetworks. Notably, we identified a subnet
consisting of the COL1A1 and COL1A2 genes, which showed
significant enrichment in extracellular matrix (ECM)-related
pathways (Figure 1B), predominantly comprising upregulated
genes. This finding corroborated previous research, highlighting
the pivotal role of ECM in IPF pathogenesis (Figure 1C).

2.2 Single-cell atlas of IPF lung tissues
reveals the roles of different cell types in IPF

During the single-cell RNA sequencing (scRNA-seq) process, we
initially selected IPF and normal samples from the
GSE135893 dataset, specifically targeting IPF and normal control
samples. We excluded samples diagnosed with interstitial lung
disease (ILD) from the dataset (Habermann et al., 2020a). After
discarding empty droplets, doublet cells, and dead cells, we
ultimately identified a total of 54,151 cells from 12 IPF samples
and 29,601 cells from 10 normal samples. We annotated these cells
as belonging to four primary groups based on the marker genes and
unsupervised clustering: fibroblasts, endothelial cells, epithelial cells,
and immune cells (Figure 2A). Subsequently, each primary group
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was further divided into specific cell types, including 16 types of
immune cells, 4 types of endothelial cells, 7 types of epithelial cells,
and 7 types of fibroblasts (Figures 2B, C).

We further performed cell proportion analysis, pseudotime
analysis, switch gene selection, and cell communication analysis
on the primary cell types. For immune cells, we identified
124 downregulated and 182 upregulated DEGs (Supplementary
Table S2), with a subset of 8 downregulated and 12 upregulated
DEGs observed in the bulk gene expression data. Similarly, for
endothelial cells, we detected 327 downregulated and
270 upregulated DEGs (Supplementary Table S2), among which
79 downregulated and 14 upregulated DEGs were also identified in
the bulk gene expression data.

Within fibroblasts, we identified 334 downregulated DEGs and
569 upregulated DEGs (Supplementary Table S2), with
24 downregulated and 68 upregulated DEGs overlapping with the
DEGs from bulk gene expression data. The proportion of fibroblasts
has increased from 2% in the control group to 5% in the IPF group
(Figure 2D). Notably, a subgroup of fibroblast exhibiting high
expression of gene markers for both myofibroblasts [COL1A1, actin
alpha 2, smooth muscle (ACTA2)] and lipofibroblasts [COL1A1,
perilipin 2 (PLIN2)] was identified and classified as PLIN2+

myofibroblasts (Figures 2B,C; Figure 3A). Most of the myofibroblasts
and lipofibroblasts were derived from IPF patients (Figure 3B,
Supplementary Figure S5F). We analyzed the pseudotime trajectory
from the lipofibroblasts to myofibroblasts in IPF (Figures 3C,D), and

FIGURE 1
Consistent differentially expressed genes from bulk gene expression datasets, their subnetwork, and enriched pathways of IPF. (A). Dot plot shows
the fold change and p-values of consistent DEGs in all five lung tissue bulk gene expression datasets (GSE110147, GSE134692, GSE47460, GSE48149, and
GSE53845). (B). The sub-network from the protein–protein interactions network (PPI network), which includes the genes related to ECM of the IPF, with
the red ones representing high expression in IPF, orange ones representing both high expression and being clinically related in IPF, light blue ones
representing low expression in IPF, and deep blue one representing both low expression and being clinically related in IPF. (C). The Reactomes enrich
pathways related to the subnet of Figure 1B.
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identified 17 transcription factors and 34 surface proteins, many of
which were related to ECM pathways (Supplementary Figure S3,
Figure 3E). Additionally, cell communication analysis revealed strong

communication in ECM-related pathways, particularly in collagen
signaling (Figure 3F), which are critical components of ECM, and
has been implicated in IPF (Chanda et al., 2019; Hamanaka et al., 2019).

FIGURE 2
Construction of single-cell RNA-seq atlas of the lung tissue from IPF (A). The UMAP plot of four main cell types in single-cell sequencing data,
including endothelial cells, immune cells, epithelial cells, and fibroblasts. (B). The UMAP plot of the single-cell sequencing data, including 83752 cells of
34 cell types from the lung tissue. (C). The TSNE plot with the label of different cell types, which have the same label as Figure 2B. (D). The cell proportion
of fourmain types in different groups, revealing the high proportion of fibroblasts and epithelial cells in the IPF group. (E). The volcano plot of the cell
markers in different types of cells in the single-cell sequencing data.
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The most significant difference between IPF and control groups
was found in the epithelial cells. There were 107 downregulated
DEGs and 163 upregulated DEGs identified in both the single-cell

dataset and bulk gene expression (Supplementary Table S1 and
Supplementary Table S2). The proportion of the epithelial cells in
IPF patients was higher (44%) compared to the control group (27%)

FIGURE 3
Overview and pseudotime results of fibroblasts from single-cell RNA-seq dataset (A). The UMAP plot of the fibroblasts in single cell sequencing data,
containing seven subtypes of fibroblasts. (B). The UMAP plot with the labels of different groups, with the blue representing the control group and red the
IPF group. (C). Pseudotime trajectory plot of fibroblast calculated by monocle2. The trace from left to right reveals the trace from lipofibroblasts to
myofibroblasts. (D). The pseudotime of the cell development trajectory plot in Figure 3C. (E). The switch DEGs of the GO: extracellular matrix
pathway in the trace from lipofibroblasts to myofibroblasts. (F). The strength of the cell-to-cell communication pathways in fibroblasts from the IPF
group. The collagen-related communication shows the strongest communication.
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(Figure 2D, Supplementary Figure S5G). Specifically, epithelial cells
from IPF samples were predominantly ciliated and club cells, while
normal epithelial cells were primarily composed of alveolar type
2 progenitor (AT2) cells (Figures 4A, B). To gain a better
understanding of the transition of epithelial cells, we analyzed
the pseudotime trajectory from basal cells to AT2 cells and

identified switch genes in this trace from control and IPF groups
(Figure 4C). In the IPF group, a total of 1241 genes were identified as
switch genes. Among these genes, there were 83 differentially
expressed genes with absolute log2 fold change (|log2FC|) > 0.58.
Additionally, we found 87 surface proteins, including MDK,
TSPAN1, and serpin family F member 1 (SERPINF1), as well as

FIGURE 4
Overview and communication results of epithelial cells from single-cell RNA-seq dataset (A). UMAP plot of the epithelial cells in single-cell
sequencing data containing seven subtypes of epithelial cells. (B). UMAP plot with the labels of different groups of epithelial cells, with blue representing
the control group and red the IPF group. (C). Pseudotime trajectory plot of epithelial cells calculated by monocle2. The trace from beneath to right up
reveals the trace from basal cells to AT2 and AT1 cells. (D). The number of inferred cell-to-cell interactions (left) and the interaction strength (right) in
epithelial cells. (E). The upregulated pathways in the communication of epithelial cells from the IPF group. (F). The comparison of overall signaling patterns
in the IPF and control groups of epithelial cells.
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37 transcription factors, such as nuclear receptor 4A 1 (NR4A1)
(Supplementary Table S3). In the control group, 1198 genes were
identified as switch genes, including 74 differentially expressed
genes, 79 surface proteins (including MDK, TIMP metallopeptidase
inhibitor 1 (TIMP1), and TSPAN1), and 39 transcription factors
(including NR4A1) (Supplementary Table S3). Among these genes,
28 were identified as distinct switch genes between IPF and control
groups, with 8 exhibiting differential expression. For the common
switch genes, by intersecting with DEGs in bulk gene expression
datasets and single cell datasets, specific genes such as MDK and
TSPAN1 are highlighted.

Furthermore, cell communication analysis revealed more
interactions and similar strengths in the IPF group compared to
the control group (Figure 4D). In particular, cell communication that
was more expressed in IPF epithelial cells was mainly concentrated in
MDK, CD99, and other pathways (Figure 4E). Besides, ECM-related
cell communication was found to be increased in basal cells and
ciliated cells but decreased in AT2 and AT1 cells (Figure 4F). Notably,
we identified a potentially important gene, MDK, based on multiple
lines of evidence. Firstly, the expression of theMDK genewas found to
be upregulated in both bulk datasets and epithelial cells. Secondly,
MDK was identified as a switch gene in both the IPF and Control
groups. Thirdly, MDK-related communication pathway genes
showed differential expression between the IPF and Control
group. The related midkine pathway also exhibited significant
differences between the IPF and control groups (Figure 4F),
suggesting that MDK plays a major role in the progression of IPF.
These findings provide novel insights into the underlyingmechanisms
of IPF pathogenesis and offer potential targets for therapeutic
intervention.

2.3 Clinical indexes correlation analysis in
GSE47460 identified the clinically related
genes of IPF

To evaluate the clinical relevance of the differentially expressed
genes and switch genes, we analyzed the dataset GSE47460. We
calculated the Pearson’s correlation coefficient (PCC) between gene
expression data and various clinical indicators, such as pre- and
post-bronchodilator Forced Expiratory Volume (FEV1), pre- and
post-bronchodilator Forced Vital Capacity (FVC), and diffusing
capacity of the lungs for carbon monoxide (DLCO). Among the
differentially expressed genes identified from five lung tissue gene
expression datasets, we found 143 genes that showed moderate
correlation with clinical indicators, including 79 upregulated genes
and 64 downregulated genes (|PCC| > 0.4). Specifically, upregulated
genes were negatively correlated with clinical indicators, whereas
downregulated genes showed the opposite trend (Supplementary
Figure S4). Additionally, enriched pathway analysis revealed that the
upregulated genes associated with clinical relevance were primarily
involved in ECM and GPCR binding-related pathways
(Supplementary Table S2). These findings provide valuable
insights into the link between gene expression and clinical
indicators in IPF patients.

In order to further screen the related genes of IPF disease, we
defined the genes satisfying the following conditions as important
genes: 1. DEGs obtained from bulk gene expression datasets, 2.

DEGs of different cell types from single-cell sequencing, 3. switch
genes in main cell types, and 4. genes related to clinical indicators.
This led to the identification of 22 genes (Supplementary Table S5).
Among these genes, caveolin 1 (CAV1), insulin-like growth factor
(IGF1), and TSPAN1 have previously been reported as potential
markers of IPF (Lin et al., 2019; Liu et al., 2019; Hernandez et al.,
2020). For other genes, glutathione peroxidase 3 (GPX3) was
identified as a switch gene in both endothelial and immune cells
and as a DEG in all five gene expression datasets. Furthermore, the
MDK gene, as previously mentioned, may play an important role in
the development of IPF in epithelial cells through the MDK-related
pathway and the MDK-TSPAN1 ligand-receptor pair.

2.4 Regulation of MDK genes in epithelial
and endothelial cells of IPF

Through integrative analysis of bulk gene expression and single-
cell RNA sequencing data, we identifiedMDK as an important gene in
IPF. MDK was upregulated in three gene expression datasets, similar
to TSPAN1 expression, which is another important gene and
composed ligand-receptor pair with MDK. Both MDK and
TSPAN1 were significantly correlated with clinical indicators.
Specifically, MDK expression showed a negative correlation with
FEV indices and DLCO index (post-bronchodilator FEV:
coefficient = −0.47; pre-bronchodilator FEV: coefficient = −0.4;
DLCO: coefficient = −0.32), while TSPAN1 was negatively
correlated with the DLCO index (coefficient = −0.45) (Figure 5A).
Moreover, MDK was highly expressed in both endothelial and
epithelial cells in the single-cell RNA sequencing data, whereas
TSPAN1 exhibited high expression specifically in epithelial cells
(Figure 5B). Furthermore, MDK was identified as a switch gene in
the cell trajectory analysis from basal cells to AT2 cells in both IPF and
control groups together with TSPAN1 (Supplementary Table S3).

Through cell communication analysis, we observed that the
MDK gene exhibited a high degree of communication with club cells
and ciliated cells in IPF group. In contrast, AT2 cells showed
increased communication in the control group (Figure 5C,
Supplementary Figure S3A). Specifically, in the IPF group, club
cells were identified as the senders in the MDK communication
pathway, with ciliated cells and club cells acting as the main
receivers. Other cells, including AT2 cells and basal cells, acted as
mediators and influencers in the communication process
(Figure 5D). In contrast, in addition to club cells, the senders in
the control group were also comprised of ciliated cells and goblet
cells, with only AT2 cells serving as the receivers (Figure 5D). Other
cells, such as basal cells, club cells, and ciliated cells, were relatively
reduced in the MDK signaling pathway network. These findings
highlight the complex interactions involved in MDK-mediated cell
communication in the context of IPF.

To elucidate the mechanisms underlying the transition of ciliated
cells from senders to receivers in the IPF group, we conducted an
analysis of the ligand-receptor pairs in the IPF and control groups.
The results revealed that MDK-nucleolin (NCL), MDK- syndecan 1
(SDC1), MDK-SDC2, and MDK-SDC4 were involved in signaling
from ciliated cells to AT2 cells in the control group, while no such
signal was detected in the IPF group. Moreover, the ligand-receptor
pairs MDK-NCL and MDK-SDC4 were involved in signaling from
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ciliated cells to ciliated cells or club cells in the control group, whereas
in the IPF group, MDK-SDC4 and MDK-NCL exhibited higher
expression in basal cells, club cells, and goblet cells compared to
ciliated cells. These findings may be related to the abnormal
expression patterns observed in the epithelial cells of IPF.

Additionally, other differences in cell communication were mainly
observed between club and AT2 cells (Figure 5E).

In addition to its role in epithelial cells, MDK has also been
identified as a DEG in endothelial cells, prompting us to conduct an
analysis of its cellular communication. The results revealed that in IPF,

FIGURE 5
Analysis results of MK signaling pathway and prediction result of lung tissue datasets (A). Pearson coefficient of MDK and TSPAN1 gene in five clinical
indexes in GSE47460. (B). Violin plot of MDK and TSPAN1 in the epithelial cells, with the red representing the control group and the blue representing the
IPF group. (C). Chord chart of cell-to-cell communication of the MK signaling pathway in epithelial cells, with the left one being IPF and the right one the
control group. (D). The MK signaling pathway network in the epithelial cells, with the upper one being the IPF group and the lower one being the
control group. (E). The bubble plot of increasing and decreasing signaling ligand–receptor pairs in IPF, with high communication of club cells being seen
in IPF and low communication in AT2 cells in IPF. (F). Chord chart of MK signaling pathway network in endothelial cells. Statistical analysis was performed
to verify the Pearson correlation, or the two-sample t-test was used for comparisons between two groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001.
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lymphatic endothelial cells and vein cells primarily functioned as
senders, with vein cells acting as the main receivers. In contrast, in the
control group, the role of lymphatic endothelial cells was diminished,
and the communication was predominantly observed in the artery
and capillary endothelial cells (Figure 5F, Supplementary Figure S3B,
C). The ligand-receptor pairs involved in the MDK signaling pathway
in endothelial cells are mainly comprised of MDK-NCL and MDK-
[integrin subunit alpha 6 (ITGA6) + integrin subunit beta 1 (ITGB1)]
(Supplementary Figure S3D). Taken together with the findings from
our analysis of epithelial cells, these results highlight the differential
expression pattern and cellular communication mechanisms of MDK
and their potential implications for disease pathogenesis.

2.5 SVM models accurately classify the IPF
using MDK and its communication genes in
both lung tissue and PBMC datasets

In the previous section, we identified MDK as a crucial gene
involved in the pathogenesis of IPF. The regulation of MDK is
primarily mediated by two potential pathways: the MDK-TSPAN1
ligand–receptor pair and the MK signaling pathway in epithelial
cells. We hypothesized that differences in the MK signaling pathway
network in ciliated cells, club cells, and AT2 cells may play a critical
role in the development of IPF. To investigate whether MDK and
related receptors can serve as markers for IPF, we constructed a
machine learning model utilizing gene expression data from both
lung tissue and PBMC samples. Our aim is to examine the diagnostic
potential of MDK and its associated genes in identifying patients
with IPF.

In this analysis, we employed an approach to calculate the MDK
score (referred to asMK score) in lung tissue by determining themean
expression levels of MDK-related genes. The set of MDK-related
genes includedMDK, TSPAN1, SDC1, SDC2, SDC4, protein tyrosine
phosphatase receptor type Z1 (PTPRZ1), ITGA4, ITGA6, ITGB1,
low-density lipoprotein receptor-related protein-1 (LRP1), NCL, and
anaplastic lymphoma kinase (ALK). To explore the relationship
between the MK score and clinical indicators, we utilized the
GSE47460 dataset. Pearman’s correlation analysis revealed a
moderate correlation between the MK score and clinical indicators,
which included −0.466 for DLCO, −0.315 and −0.321 for pre- and
post-FEV1, and -0.394 and −0.418 for pre- and post-FVC (Figure 6A).
These findings support the feasibility of employing MDK-related
genes as potential markers of IPF.

Moreover, we employed machine learning techniques to develop
predictive models for the identification of IPF using three lung tissue
bulk gene expression datasets and three PBMC bulk gene expression
datasets. Prior to model development, we conducted rigorous quality
checks and performed necessary data preprocessing on the lung tissue
datasets. We utilized 316 samples for training and testing purposes,
with an 8:2 ratio, and selected 78 independent validation samples.
Among the various models (support vector machine, Adaboost, and
random forest) after five-fold cross-validation and grid search, the
support vector machine (SVM) model exhibited the highest accuracy
of 0.838 in the test dataset. Importantly, the independent validation
dataset demonstrated an accuracy of 0.821. The AUC of 0.94 and
0.86 for test and validate datasets (Figures 6B, C). Regarding the
PBMC datasets, we performed a random split of the samples into
training (227 samples) and testing datasets (56 samples) with an 8:
2 ratio. The SVMmodel yielded an AUC of 0.86, with precision rates

FIGURE 6
Prediction and correlation analysis result of MK score and MDK related genes (A). Dot plot of the Pearson coefficient of MK score in five clinical
indexes in GSE47460, labeling the value of the Pearson coefficient and the p-value of the result. (B). The ROC curve of the IPF disease classification test
dataset by SVM model based on the expression of MDK and related genes in lung tissue bulk gene expression data, with an AUC = 0.94. (C). The ROC
curve of the individual validation dataset of lung tissue by SVM based on the expression of MDK and related genes. (D). The ROC curve of the IPF
disease classification by SVM model based on the expression of MDK and related genes in PBMC bulk gene expression data, with an AUC = 0.86.
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of 0.857 for IPF patients and 0.6 for the control group (Figure 6D).
These findings suggest that MDK may serve as a potential marker
gene for IPF diagnosis, highlighting its significant role in the context
of IPF.

3 Methods

3.1 Data acquisition

The datasets utilized in this study were obtained from the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/).
The datasets included the GSE47460, GSE110147, GSE134692,
GSE48149, and GSE53845 gene expression datasets from lung
samples (DePianto et al., 2015; Anathy et al., 2018; Cecchini
et al., 2018; Sivakumar et al., 2019; Renaud et al., 2020),
GSE135893 single-cell RNA sequencing dataset from lung
samples (Habermann et al., 2020b), and GSE132607, GSE28042,
as well as GSE38958 (Herazo-Maya et al., 2013; Huang et al., 2014;
2021) gene expression datasets from PBMC samples. A total of
365 IPF lung samples and 155 normal lung tissue bulk gene
expression data, 184 IPF and 99 normal PBMC bulk gene
expression data, as well as 12 IPF lung and 10 normal lung
single-cell RNA sequencing data, were analyzed. Further details
regarding the dataset can be found in Supplementary Table S6.

3.2 The process of bulk gene expression
datasets

For each bulk dataset of lung samples, we first checked the
quality of samples by measuring the distribution of relative log
expression (RLE). Assuming the majority of expressed genes are not
differentially expressed, the RLE values should generally be centered
around 0 and spread within a limited range (Gregory Alvord et al.,
2007). As shown in Supplementary Figure S4, most of the samples
have RLE centered around 0 and spread within a small range
(Supplementary Figure S4A, S4B). Then we performed
differential analysis using the limma package for expression chips
or EdgeR package for bulk gene expression data by selecting genes
with absolute log2 fold change (|log2FC|) >1 and adjusted p < 0.05 as
the differentially expressed genes in each dataset (Ritchie et al., 2015;
Zhu et al., 2021). We subsequently selected genes with consistently
up- or downregulated in at least two datasets and no opposite
differential expression in other datasets like DEGs. Using the
clusterProfiler package (Yu et al., 2012), we conducted pathway
enrichment analysis of GO (Carbon et al., 2021), KEGG (Kanehisa
et al., 2021), and Reactome (Gillespie et al., 2022) for the
differentially expressed genes, using adjusted p-value <0.05 as the
screening criteria to obtain relevant gene pathways. Additionally, we
carried out PPI analysis of the selected differentially expressed genes
through the protein network interaction database STRING (https://
string-db.org/), which was then imported into the cytoscape 3.7.
2 software (Shannon et al., 2003) and identified key gene modules
using the MCODE plug-in. We used the haircut method with a node
score of 0.2 and selected nodes with a degree of more than 2,
maximum depth of 100, and k-core of 2 to discover relevant gene
clusters.

3.3 The process of single-cell RNA
sequencing

3.3.1 Quality check
In this study, we utilized single-cell RNA sequencing analysis by R

(version 3.6.0) and Seurat (version 4.0.1) (Stuart et al., 2019; Qiu et al.,
2023).We first used emptyDropsmethod from Seurat to calculate and
select FDR less than 0.1 as threshold to replace the empty droplets.
After that, we used the PercentageFeatureSet function to calculate the
proportion of mitochondrial genes in the cells and replaced the dead
cells deciding by a mitochondrial genes proportion more than 25%
combined with identifying RNA values of less than 1000
(Supplementary Figure S4C). For each sample, the top
2000 variable feature genes were selected by using the
FindVariableFeatures function from 27674 genes in each cell. The
repeatedly present variable genes were selected by using the
SelectIntegrationFeatures function. Then, the samples were
integrated using the FindIntegrationAnchors and IntegrateData
functions. These integration steps can align cell populations from
different batches to correct for technical differences between datasets.
Then the integrated data for all cells were further processed using the
ScaleData, RunPCA, and RunUMAP functions. Cells were finally
clustered with the FindNeighbors and FindClusters functions. The
cells are generally clustered by cell types and not by sample or disease
status (Supplementary Figures S5A–D).

3.3.2 Cell annotation, double droplets removal, and
DEG calling

To classify cells with high accuracy, we divided the cell
annotation process into two steps. Firstly, cells are divided into
four major kinds: immune cells (PTPRC+), stroma cells (PTPRC-,
EPCAM-, PECAM1-), epithelial cells (EPCAM+), and endothelial
cells (PECAM1+, CLDN5+, VWF+, CDH5+, NRP1+)
(Supplementary Figure S5E). Then, for each major subtype
cluster, we conducted the same preprocess steps as described
above and extracted marker genes from the
CellMarker2.0 database (Hu et al., 2023) and the classical
published paper (Travaglini et al., 2020), which is constructing
the cell atlas of human lungs to classify the specific cell clusters
with affiliated verification from the SingleR package (Aran et al.,
2019). Furthermore, to remove the cells expressing markers of
different cell types, which is caused by the doublet cells, we used
the DoubletFinder R package to calculate the possible multi-droplet
and removed the doublet cells identified by the pk > 0.25 (McGinnis
et al., 2019). For each cell type, we identified differentially expressed
genes (DEGs) using the FindAllMarkers function from the Seurat
package with the following settings: logfc.threshold = 0.25, min.pct =
0.1, only.pos = True and test.use = "wilcox".

3.3.3 Trajectory analysis and switch gene analysis
The R package monocle2 was used to perform pseudo-time-based

cell trajectory analysis (Qiu et al., 2017) of four main types, separately.
With the result of the cell trajectory analysis, switch genes were
identified using R package GeneSwitches (Cao et al., 2020). The switch
genes, which may influence cell differentiation and transformation,
were further enriched by the GO and KEGG pathways by way of the
find_switch_pathway function with default parameters to reflect the
pathway expression in the pseudo-time.
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3.3.4 Cell communication analysis
To analyze the cell-to-cell interactions in different major types,

we used R package CellChat (Jin et al., 2021). The
computeCommunProb function was used to identify related
ligand-receptor pairs in the cell communication, while the
computeCommunProbPathway function was used to calculate the
expression of the pathways related to the cells. Besides, we used the
compareInteractions function to find the disparity communication
pathways and ligand-receptor pair in the IPF and control groups.

3.4 Filter DEGs related to clinical indexes

To investigate the genetic basis of clinical data in lung fibrosis,
we obtained the GSE47460 dataset with clinical data and removed
samples unrelated to lung fibrosis (Anathy et al., 2018). Using the
prognostic data within this dataset, we selected DLCO, FEV1 pre/
post, and FVC pre/post as prognostic indicators. We then conducted
a Pearson’s correlation analysis between genes (which includes
MDK and TSPAN1) and clinical data. Differentially expressed
genes of moderate correlation (>0.4) with at least one clinical
criterion were treated as clinically relevant.

Additionally, we selected genes related to intercellular
communication with MDK expression (MDK, SDC1, SDC2,
SDC4, PTPRZ1, ITGA4, ITGA6, ITGB1, LRP1, NCL, ALK,
TSPAN1) and calculated their average expression levels, resulting
in a score named MK score. The MK score was also subjected to
Pearson’s correlation analysis with the prognostic indicators.

3.5 Machine learning model building to
classify IPF with MDK-related genes

To evaluate the function of MDK-related communication genes
in the IPF, we used bulk gene expression datasets GSE47460,
GSE110147, and GSE48149 as the lung tissue group and bulk
gene expression datasets GSE132607, GSE28042, and
GSE38958 as the PBMC group to construct machine learning
models separately. For GSE132607, we selected samples with the
source name of “COMET-IPF_Baseline” to represent IPF patients.
Quality control and preprocessing are performed for each dataset,
and batch effects between different datasets are eliminated by the
SVA package’s Combat function (Leek et al., 2012). The scikit-learn
python package is used in the model construction, cross-validation,
and result visualization in this section.

To be specific, the GSE47460 has two sub-datasets sequenced by
different platforms. The sub-dataset sequenced by GPL 14550 was
selected as the validation dataset. We integrated the sub-dataset
sequenced by GPL6480 and two other datasets (GSE110147 and
GSE48149) to construct the training and test datasets by correcting
the batch effect using the SVA package’s Combat function (Leek et al.,
2012). To train and testing the model, we randomly split the integrated
datasets into a training part and test part with a ratio of 8:2. On the
other hand, for the PBMC samples, we first integrated GSE132607,
GSE28042, and GSE38958 datasets by correcting the batch effect using
the SVA package’s Combat function. Then the integrated dataset was
randomly split into a training part and testing part with a ratio of 8:2.
We selected random forest (RF), support vector machine (SVM), and

AdaBoost algorithms as our testing models. We used the
GridSearchCV function to select the best parameters of the model
and set the 5-fold cross-validation during the training process.

4 Discussion

IPF is a chronic and progressive lung disease that predominantly
affects the elderly population and is characterized by thickening and
scarring of lung tissue, leading to difficulty breathing. Despite being
associated with high mortality rates, its etiology remains unclear.
However, recent advances in sequencing technology and single-cell
sequencing provide new possibilities for comprehensively analyzing
IPF pathogenesis. In light of these developments, this study endeavors
to execute a multi-dimensional interrogation of assorted sequencing
data modalities with the objective of pinpointing key genes implicated
in IPF pathogenesis that exhibit a strong correlation with established
clinical indices of pulmonary function.

To investigate IPF pathogenesis, we utilized five datasets of bulk
gene expression data as well as one single-cell RNA-sequencing
dataset for comprehensive analysis. Analysis of the bulk gene
expression dataset revealed that upregulated genes were primarily
enriched in the ECM and cytokine-cytokine related pathways,
whereas downregulated genes were enriched in the regulation of G
protein-coupled receptors. These pathways have been previously
reported to be associated with IPF pathogenesis (Chanda et al.,
2019). To further excavate the function behind the genes, we
calculated the correlation coefficient of clinical indexes and process
gene switch analysis. Among the final selected 22 important genes, we
identified that the MDK gene has the potential to regulate certain
physiological processes in the epithelial cell of IPF.

The MDK gene encodes the midkine protein associated with cell
growth, migration, and angiogenesis, and it has been identified as a
key regulator of epithelial and endothelial cells (Filippou et al.,
2020). In endothelial cells, the MDK signaling pathway occurs
separately in IPF for lymphoid endothelial cells as ligand cells
and vein cells as receptors. The main differences were
concentrated in epithelial cells, club cells, and ciliated cells in
IPF, which accounted for the majority of MK signaling, while
AT2 cells are major components of the control
group. Coincidentally, the expression strength of the MDK
signaling pathway matched the proportion of epithelial cells in
both the IPF and control group. Additionally, switch gene
analysis on the trajectory of AT2 cells indicated that MDK may
be involved in the development of AT2 cells. Further research and
analysis found that the pathway focused on communication with
MDK as a ligand, with NCL, SDC1, and SDC4 acting as receptors.
These genes have been shown to be involved in the EMT process.

EMT is critical factor considered to be involved in the
pathogenesis of pulmonary fibrosis, leading to changes in the
balance and communication between lung cell groups, and
contributing to the development of IPF (Liu et al., 2019).
Although there are some works that reveal the role of MDK in
the EMT process, most of them are associated with physiological
processes involved in organ formation during embryogenesis. In our
study, by screening differentially expressed genes and analyzing
their relation to prognostic indicators, we found that MDK regulates
EMT processes by communicating with SDC1, SDC2, SDC4, NCL,
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and TSPAN1 in IPF patients. Notably, it was previously reported
that the MDK gene has a certain effect on the TGFβ signaling
pathway, which has the ability to induce the development of EMT,
enabling epithelial cells to acquire a mesenchymal phenotype. In
addition to MDK, genes related to cell communication have also
been shown to affect the development of the TGFβ signaling
pathway. Our results potentially suggested that extrabronchial
secretory cells known as club cells may elicit TGFβ signaling by
secreting MDK protein and binding to the ligand gene on AT2 cell
surfaces. This stimulation leads to induce of EMT processes
(Ichihashi et al., 2016; Liu et al., 2019; 2020; Thatikonda et al.,
2023), thereby facilitating transformation of epithelial cells in IPF
patients and contributing to the progression of pulmonary fibrosis.

In a noteworthy development, validation of the hypothesis was
accomplished by demonstrating a correlation between MDK gene
expression, the MK score computed utilizing these genes, and
numerous clinical indicators. Furthermore, the IPF machine
learning classification model exhibited high accuracy in both lung
tissue samples (AUC = 0.94 for test dataset and AUC = 0.86 for
validate dataset) and PBMC samples (AUC = 0.86). For comparative
purposes,White employed logistic regression to uncover biomarkers
in the blood of IPF patients, utilizing the OPN, SP-D, and MMP-7
genes for IPF patient prediction and achieving an AUC of 0.709
(White et al., 2016). Ley et al. reported an AUC of 0.76 using
cCK18 to differentiate IPF from HP/NSIP (Ley et al., 2014). The
elevated accuracy of the classification model in this investigation
serves to bolster the evidence, supporting the substantial influence of
MDK and its related communication in the pathogenesis of IPF.

Studies have shown that administration of bleomycin in mice has
been shown to increase the expression ofMDK in lung tissue, while the
lung tissue of MDK gene knockout mice exhibited decreased
expression of fibrosis markers such as collagen, α-SMA, TNF-α,
and TGF-β. This suggests the importance of MDK in the
inflammatory response and fibrosis process (Misa et al., 2017).
Furthermore, studies by Horiba et al. (Horiba et al., 2000) have
demonstrated that MDK can enhance the recruitment of
inflammatory cells, which may be involved in promoting lung
fibrosis. Zhang et al. (Zhang et al., 2015) have found that MDK
plays a critical role in the mechanical stress-induced EMT spectrum
in human lung epithelial cells. The absence of MDK weakened these
EMT features. This indicates that MDK may promote lung fibrosis by
interacting with Notch2 and activating angiotensin-converting enzyme
(ACE) expression. Additionally, the research by Xu et al. (Xu et al.,
2021) has revealed that inhibiting MDK can improve lung injury
induced by sepsis through the ACE/Ang II pathway and the
involvement of Notch 2. This further emphasizes the role of MDK
and provides potential therapeutic value for MDK as a target. In
summary, these studies suggest that MDK plays an important
regulatory role in the pathogenesis of lung fibrosis, including
promoting inflammation and extracellular matrix deposition,
participating in epithelial-mesenchymal transition, and modulating
ACE expression. Further research will help to elucidate the exact role
and mechanisms of MDK in the development of IPF, providing new
directions for future therapeutic strategies.

In addition, we noticed the myofibroblasts and lipofibroblasts
mostly occur in the IPF group (Supplementary Figure S5F), where
communication are related to the collagen of ECM. Previous studies
have shown that the peptides and glycoproteins in the ECM stimulate

fibroblast growth and activation, exacerbating the degree of lung
fibrosis (Tian et al., 2019). In our study, fibroblasts increased ECM
synthesis by raising collagen-related communication in
myofibroblasts and lipofibroblasts by way of switch DEGs such as
IGF1 and SFRP1 (Blackstock et al., 2014; Wang, 2020).

Despite the interesting and noteworthy findings, several
limitations should be noticed. Firstly, although the machine
learning model achieved notable improvement in identifying IPF
samples, the model may be further improved with larger and more
balanced datasets. Secondly, in our analysis, MDK and its receptors
are important for IPF development. However, further functional
experiments and mechanical studies would better resolve the
relationship between MDK signaling and IPF. Additionally, it is
worth noting that our original data lacked comprehensive
information of factors such as gender, age, comorbidities, and
clinical manifestations. Therefore, conducting further analysis
that incorporates these variables would yield a more nuanced
understanding of the association between MDK and IPF,
particularly in different clinical contexts and human characteristics.

In summary, we employed a comprehensive analysis utilizing
single-cell datasets and multiple bulk gene expression datasets to
identify clinically relevant DEGs associated with IPF pathogenesis.
We also incorporated a detailed examination of MDK gene
regulation mechanisms and constructed a machine learning
model to identify IPF patients based on both lung tissue and
PBMC samples. Our study provides valuable insights for future
investigations into the regulatory processes underlying IPF.
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