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Maize serves as a crucial nutrient reservoir for a significant portion of the global
population. However, to effectively address the growing world population’s
hidden hunger, it is essential to focus on two key aspects: biofortification of
maize and improving its yield potential through advanced breeding techniques.
Moreover, the coordination of multiple targets within a single breeding program
poses a complex challenge. This study compiledmapping studies conducted over
the past decade, identifying quantitative trait loci associated with grain quality and
yield related traits in maize. Meta-QTL analysis of 2,974 QTLs for 169 component
traits (associated with quality and yield related traits) revealed 68 MQTLs across
different genetic backgrounds and environments. Most of these MQTLs were
further validated using the data from genome-wide association studies (GWAS).
Further, ten MQTLs, referred to as breeding-friendly MQTLs (BF-MQTLs), with a
significant phenotypic variation explained over 10% and confidence interval less
than 2 Mb, were shortlisted. BF-MQTLs were further used to identify potential
candidate genes, including 59 genes encoding important proteins/products
involved in essential metabolic pathways. Five BF-MQTLs associated with both
quality and yield traits were also recommended to be utilized in future breeding
programs. Synteny analysis with wheat and rice genomes revealed conserved
regions across the genomes, indicating these hotspot regions as validated targets
for developing biofortified, high-yielding maize varieties in future breeding
programs. After validation, the identified candidate genes can also be utilized
to effectively model the plant architecture and enhance desirable quality traits
through various approaches such as marker-assisted breeding, genetic
engineering, and genome editing.
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1 Introduction

Maize (Zea mays L.), the third most prevalent cereal crop after
wheat and rice, is consumed as a staple food in many developed and
developing countries worldwide (Prasanna et al., 2001). Being a
C4 and day-neutral plant, maize has less water requirement and
wider adaptability under a range of agro-climatic conditions (Kaur
et al., 2022). Combating the ever-increasing demands for food due to
the continuously increasing population is an extreme challenge for
developing countries. With the emergence of the green revolution,
the yield-related parameters took the whole attention of maize
breeders, thus the nutritional quality remained a complex
problem (Maqbool et al., 2021). Later, improvement in breeding
strategies to develop nutritionally superior maize resulted in poor
agronomic characteristics leading to huge productivity loss. Since
the nutritional value is determined by both physiological traits and
nutrient content, knowledge of the inheritance of grain yield,
nutrient content (macro and micro-nutrients), as well as the
genetic relationships among these traits, can facilitate maize
breeders working on biofortified varieties with enhanced yield
potential (Das et al., 2021).

Traits contributing to yield and grain quality are usually
antagonist to each other. Moreover, such traits are
quantitatively inherited and controlled by number of genetic
loci. Numerous mapping studies have been conducted in maize
which have led to the identification of hundreds of QTLs
associated with nutritional quality traits such as protein,
starch, fat, carotenoids, tocopherol, phosphorus contents, etc.,
and yield-related traits including grain yield per se, kernel length,
kernel width, kernel weight, etc. (Chen et al., 2008; Li et al., 2012;
Zdunic et al., 2014; Venado et al., 2017; Fei et al., 2022; Xu et al.,
2022; Banerjee et al., 2023).

The validity of QTL mapping findings is influenced by various
factors, such as the specific experimental conditions, size and
composition of the mapping population, density of genetic
markers employed, statistical methodologies utilized, and the
presence of genotype-environment and epistatic interactions
(Goffinet and Gerber, 2000; Mackay, 2001; Arcade et al., 2004;
Halladakeri et al., 2023). Additionally, it is common for QTLs to
span relatively large genetic intervals, which can pose challenges
when transferring desired QTLs through marker-assisted breeding
(MAB). This phenomenon is often referred to as “linkage drag,”
where undesirable genetic regions linked to the target QTL are
unintentionally transferred along with it. To overcome this
limitation, it is essential to precisely localize QTLs within narrow
genetic intervals. This not only minimizes the potential for linkage
drag but also enhances the efficiency and effectiveness of MAB and
QTL cloning efforts. To enhance the reliability and robustness of
QTL studies, researchers often employ multiple mapping
populations evaluated across diverse locations and over multiple
years. This approach helps account for genotype-environment
interactions, ensuring that the identified QTLs exhibit consistent
effects across different genetic backgrounds and environmental
conditions. Consensus QTLs that consistently demonstrate
significant associations with the target trait across multiple
populations and environments are regarded as particularly
suitable candidates for integration into MAB programs (Goffinet
and Gerber, 2000; Halladakeri et al., 2023).

Meta-QTL analysis represents a conceptual approach that
combines QTL discoveries from various studies and refines the
positions of QTLs on a consensus map (Goffinet and Gerber, 2000).
When numerous QTLs associated with the specific trait are analysed
together through meta-analysis, the resulting consensus QTLs are
referred to as “meta-QTLs (MQTLs).” This approach can not only
identify redundant QTLs and candidate genes (CGs), but also
facilitate the selection of promising QTLs for breeding
applications involving MAB (Goffinet and Gerber, 2000; Sandhu
et al., 2021; Saini et al., 2022; Sheoran et al., 2022; Tanin et al., 2022;
Kumar A. et al., 2023; Halladakeri et al., 2023; Karnatam et al., 2023).

In maize, significant advancements have been made in the field
of MQTL analysis, which involves identifying genetic regions
associated with various traits such as fungal disease resistance
(Gupta et al., 2023), multiple abiotic stress tolerance (Sheoran
et al., 2022), popping traits (Kaur et al., 2021), and root-related
traits (Karnatam et al., 2023). Additionally, specific MQTL studies
have focused on yield-related traits (Semagn et al., 2013; Wang Y.
et al., 2016; Wang et al., 2020; Chen et al., 2017; Zhou et al., 2020) or
quality-related traits (Jin et al., 2013; Dong et al., 2015). However, it
is important to note that none of the previous studies have
conducted MQTL analysis for QTLs associated with both yield-
related and quality traits in maize. Additionally, several new studies
on QTL analysis for both yield-related and quality traits in maize
have been conducted since the publication of earlier studies, but they
have not been utilized for predicting MQTLs or identifying
promising candidate genes (CGs). In our present study, we
aimed to address this gap by simultaneously investigating the
genetic regions influencing both yield-related and quality traits in
maize. As a result, we can contribute to the development of
improved maize varieties with enhanced yield and quality traits,
benefiting both farmers and consumers alike.

The current study utilized QTL data from 56 studies associated
with various yield-related and quality traits to perform MQTL
analysis. The primary objectives of this study were as follows: i)
constructing a high-density consensus genetic map, ii) identifying
robust and consistent MQTLs with narrower confidence intervals
compared to initial QTLs, iii) determining precise flanking markers
for MQTLs to facilitate MAB, iv) validating MQTLs through
genome-wide association studies (GWAS), v) identifying CGs
within promising MQTL regions, and vi) conducting expression
analysis of the identified CGs. It is anticipated that these efforts will
greatly enhance the selection efficiency for various yield-related and
quality traits in maize.

2 Materials and methods

In the present analysis, a MQTL analysis was conducted to
identify the genomic regions associated with yield and quality-
related traits in maize. The analysis involved following five key
steps: i) bibliographic search and compilation of QTL mapping
studies related to quality and yield-associated traits, ii) integration of
high quality linkage maps and markers from the individual studies
to create a consensus map, iii) prediction of MQTLs and their
validation using GWAS, iv) mining genes within potential MQTL
regions and in silico expression analysis, v) synteny analysis among
the maize, wheat, and rice for the key genomic regions. By
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employing these steps, the study aimed to gain insights into the
genetic basis underlying both yield and quality-related traits in
maize and related cereals.

2.1 Bibliographic search and compilation of
QTL mapping studies

The various traits that impact both maize quality and yield are
illustrated in Supplementary Table S1. Several QTL mapping studies
have highlighted the significance of these traits in defining maize
quality and enhancing yield. To gather relevant information, these
studies were collected from online platforms such as Google Scholar
(https://scholar.google.com/) and PubMed Central (https://www.
ncbi.nlm.nih.gov/pmc/), using appropriate keywords. The
collected studies provided essential data for the meta-QTL
analysis, including the size and type of the mapping population,
the specific map used in each study, the marker positions associated
with QTLs, the traits linked to the QTLs, the confidence interval of
the markers, the LOD score, and the phenotypic variation explained
by individual QTLs (represented as R2 or PVE). However, certain
studies were not included in the meta-analysis due to the lack of
important data. Further, to facilitate clarity and uniqueness, the
QTLs used in the present study were assigned distinctive names,
which included the trait name, followed by the chromosome
number, and finally, the number of the QTL on the chromosome.

2.2 Consensus map development and QTL
projection

To construct a highly dense consensus map, the present study
incorporated two high-quality, high resolution, mixed marker
(involving RFLP, SSR, SNP and InDels) linkage maps, i.e., “ISU
Integrated IBM 2009” and IBM2 (intermated B73/Mo17) (https://
www.maizegdb.org/data_center/map) These maps were carefully
compiled and enriched to ensure accuracy and reliability.
Furthermore, all the markers flanking the QTLs extracted from
different studies were integrated into this consensus map, facilitating
the projection of a greater number of QTLs. The construction of the
consensus map was accomplished using the LPMerge package
within the R environment as described by Kumar R et al (2022).

The collected QTLs underwent a rigorous screening process to
identify reliable QTLs with complete information essential for
projection and meta-analysis. Our initial selection criteria
involved identifying stable and consistent QTLs across diverse
environments within each study, while excluding those that were
specific to particular environments (i.e., environment-specific
QTLs). Additionally, QTLs without available LOD or PVE values
were excluded, as well as those lacking information on flanking
markers and genetic positions. Subsequently, the selected QTLs were
projected onto the consensus map using BioMercator
v4.2.3 software, which served as the projection tool
(ChardonVirlon et al., 2004). For QTL projection optimization,
QTLProj, a dynamic strategy, was employed. This strategy utilizes
pairs of common markers flanking the QTLs in the original map,
along with an estimate of the distance between the initial and
consensus maps. The QTL projection procedure and map

distance calculation are influenced by the minimum value of the
flanking marker distance ratio and the minimum p-value. These
parameters were carefully adjusted to ensure the similarity of
flanking marker interval distances between the initial and
consensus maps, thereby enhancing the accuracy of QTL projection.

2.3 Prediction of MQTLs

In this study, maize quality and yield-related traits were
considered as meta-traits. A meta-QTL refers to a genomic
region that contains two or more QTLs for a trait, obtained from
at least two different mapping studies. The prediction of meta-QTLs
was carried out using a two-step process described by Veyrieras et al.
(2007). In the first step, the best MQTL model was selected by
comparing five different models: i) AIC (Akaike information
criterion), ii) AICc (AIC correction), iii) AIC3 (AIC 3 candidate
models), iv) BIC (Bayesian information criterion), and v) AWE
(average weight of evidence). The model with the lowest value
among three out of the five models was chosen. The second step
involved determining the total number of MQTLs on a
chromosome, their weightage according to the selected model,
and the confidence interval (CI).

To calculate the LOD and PVE values of the predicted MQTLs,
the average of the LOD and PVE values of the initial QTLs
comprising the meta-QTL was taken. In cases where multiple
MQTLs were predicted on a single chromosome; a standardized
naming procedure was followed. Each meta-QTL was assigned a
name starting with “MQTL,” followed by the numeric
representation of the chromosome number, a period, and
another numeric value indicating the sequence of the MQTL on
that specific chromosome (e.g., MQTL1.1, MQTL1.2). To obtain the
physical position of each meta-QTL, the flanking markers associated
with them were used. Published studies or online databases such as
MaizeGDB (https://www.maizegdb.org/), GrainGenes (https://
wheat.pw.usda.gov/GG3/), and Gramene (https://www.gramene.
org/) were utilized to obtain information on the nucleotide
sequences of the flanking markers. The obtained sequence
information was then subjected to BLAST analysis against the
reference genome of maize available on the Ensembl Plants
database (https://plants.ensembl.org/index.html).

2.4 Validation of MQTLs using GWAS

To validate the projected MQTLs, a validation process was
conducted using 10 independent GWAS studies focused on traits
related to grain yield and quality (viz., Li et al., 2013; Liu et al., 2016;
Fang et al., 2021; Ma and Cao, 2021; Ndlovu et al., 2022; Qu et al.,
2022; Suwarno et al., 2015; Zheng et al., 2021; Zeng et al., 2022;
Zhang et al., 2022). These GWAS studies encompassed maize
populations consisting of 180–410 genotypes/accessions. To
determine the physical position of the identified significant
markers (marker-trait associations; MTAs) from the GWAS
studies, the database MaizeGDB was utilized. The retrieved
physical positions were then compared to the physical positions
of the MQTLs present on individual chromosomes. MQTLs that co-
localized with markers from the significant GWAS studies were
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considered as GWAS-verified MQTLs, further enhancing their
credibility and relevance in the context of the study.

2.5 Selection of breeder friendly MQTLs

The MQTLs investigated in this study cover broad genomic
regions impacting yield and quality related traits in maize. To
enable practical implementation by plant breeders, “breeder
friendly MQTLs” were selected based on the following criteria:
PVE >10%, genetic confidence interval <2 cM, physical
confidence interval <1 Mb, and involvement of at least
10 initial QTLs. These precise MQTLs provide targeted
regions of interest for plant breeders to enhance grain yield
and quality in maize varieties.

2.6 Candidate gene mining within breeder
friendly MQTL regions

The regions identified as BF-MQTLs were further investigated
for candidate gene mining and expression analysis related to
maize quality and yield traits. MaizeGDB, utilizing the
MaizeMine tool, was employed for candidate gene mining.
The genomic regions corresponding to each MQTL were
analysed to identify genes of interest within the Zm-B73-
REFERENCE-NAM-5.0 assembly. This approach provided
valuable information about the various genes encompassed
within the selected genomic regions.

2.7 Expression analysis of candidate genes
and their syntenic regions in wheat and rice
genomes

Each gene identified within the MQTL region was analysed
for expression patterns using the qTeller tool available on
MaizeGDB. qTeller provides information on gene expression
across different tissues throughout maize development. To
gain insights into the functional characteristics of the
identified genes, as well as to explore potential orthologous
relationships, functional descriptions and orthologous studies
in wheat (Triticum aestivum) and rice (Oryza sativa) were
conducted using the MaizeMine tool on MaizeGDB. The
wheat and rice homologous collected through MaizeMine were
assessed through Ensembl Plants to retrieve their chromosomal
location on respective genomes. MQTLs containing similar gene
models located on conserved genomic regions across wheat, rice,
and maize were considered as ortho-MQTLs.

3 Results

3.1 Bibliographic search and collected QTL
information

A comprehensive analysis was conducted, encompassing data
from 56 interval mapping studies, yielding a total of 2,974 QTLs

associated with 169 component traits, with 48 yield-associated
traits, 23 oil-associated traits, 28 protein-associated traits,
13 starch-associated traits, 25 carotenoid-associated traits,
16 metal ion associated traits, 10 tocopherol associated traits
and 6 traits deciphering associated macromolecules
(Supplementary Table S1). Among these studies, 37 studies
focused on quality-associated traits, 10 on yield-related traits
and 9 studies had a combined focus on both yield and maize grain
quality (Supplementary Table S2). The studies employed
67 different bi-parental populations, including doubled
haploid (DH), recombinant inbred lines (RILs), F2, and
backcross populations. It is worth noting that certain
populations were assessed for various traits in multiple
studies. The range of population sizes utilized in the study
varied from 10 to 4,699 individuals (Supplementary Table S2).

The number of QTLs varied across different categories of traits,
with 1,877 QTLs identified for quality-related traits, 387 QTLs for
yield-related traits, and 710 QTLs for combined quality and yield-
related traits (Figure 1). The distribution of collected QTLs across
the 10 maize chromosomes was uneven, ranging from 190 QTLs on
chromosome 10 to 377 QTLs on chromosome 1, with an average of
approximately 284 QTLs per chromosome. The individual QTLs
exhibited a wide range of LOD scores, spanning from 1.88 to 75.3,
and averaging at 4.71. Notably, over 80% of the QTLs had LOD
scores falling within the 3 to 75.3 range. As for the PVE, it varied
from 0.01% to 49.3%, with an average of 9.01%. These QTLs
demonstrated a typical L-shaped distribution, with approximately
70% of them showing a PVE of 10% or less. Regarding the
confidence intervals (CIs) of the individual QTLs, they ranged
from 0 to 119.5 cM, with an average of 11.31 cM. Interestingly, a
considerable portion of the QTLs (more than 38%) had CIs equal to
or greater than 10 cM.

FIGURE 1
Distribution of QTLs associated with quality and yield related
traits.
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3.2 Features of consensus map

The consensus map integrated an extensive set of
57,523 markers, encompassing a diverse range of SSR, RFLP, and
SNP markers. These markers were strategically distributed across a
genetic span of 3,959.9 cM. Across the individual chromosomes, the
lengths exhibited notable variation, ranging from 157.4 cM for
chromosome 10 to 1,135.4 cM for chromosome 1, with an overall
average of 395.99 cM. Remarkably, an average of approximately
14 markers were identified per cM, emphasizing the marker-rich
nature of the map. Examining the marker density across
chromosomes, the maximum density of 34.3 markers per cM was
observed on chromosome 5, signifying a concentrated marker
distribution. Conversely, chromosome 7 displayed the minimum
marker density of 8.9 markers per cM, indicating a relatively sparser
marker distribution on that particular chromosome.

3.3 QTLs projected on consensus map

Among the QTLs selected from the collected QTLs, as many as
965 were successfully projected onto the consensus map. The
965 projected QTLs were grouped into 75 hotspot regions.
However, seven hotspot regions consisting of only a single QTL
from an individual study were not considered true MQTLs. As a
result, a total of 68 MQTLs were obtained from the present study,
distributed across the 10 chromosomes. The highest number of
MQTLs, nine in total, were identified on chromosomes 2 and 7,
while the minimum of two MQTLs were found on chromosome 9

(Figure 2A). The number of QTLs within each MQTL varied,
ranging from 2 (MQTL 3.9) to 64 (MQTL 1.1). Sixteen MQTLs
comprised 20 or more QTLs from different studies (Figure 2B). The
proportion of MQTLs and the number of QTLs varied on each
chromosome (Supplementary Table S3).

All the MQTLs identified in this study exhibited LOD scores
ranging from 3 to 12.25 and phenotypic variation explained (PVE)
ranging from 3.86% to 21.41%. Among the reported MQTLs, 19 had
high LOD scores (≥5) and PVE values (≥10%), namely,: MQTL1.4,
MQTL2.4, MQTL2.8, MQTL3.5, MQTL5.3, MQTL6.4, MQTL6.8,
MQTL7.2, MQTL7.3, MQTL7.4, MQTL7.5, MQTL7.7, MQTL7.8,
MQTL8.1, MQTL8.3, MQTL8.4, MQTL8.6, MQTL10.7, MQTL10.8
(Figure 2B). The average CI of the MQTLs was 1.59 cM, which was
6.12 times smaller than the average CI of the initial QTLs
(11.32 cM). Significant reductions in CI were observed on
different chromosomes, with the highest fold change observed on
chromosome 1 (14.21-times) and the lowest on chromosome 9 (2.4-
times) (refer to Figure 2C).

All the MQTLs were physically mapped onto the maize reference
genome Zm-B73-REFERENCE-NAM-5.0. The physical CI of these
MQTLs ranged from 2,049 bp (MQTL7.3) to 39.95Mb (MQTL 4.4),
with a mean physical CI of 3.30Mb. Collectively, these MQTLs
occupied a physical length of 224.52 Mb across the genome (refer to
Figure 3). Among the 68 MQTLs, two were exclusively associated with
yield related traits (MQTL10.7, MQTL10.8), and 14 were exclusively
associated with quality traits (MQTL1.5, 1.6, 2.9, 3.3, 3.5, 4.1, 4.2, 6.1,
7.6, 7.7, 7.8, 8.1, 8.2, 8.3, 8.4). Notably, MQTL6.1 was found to be
associated with carotenoid synthesis, while MQTL4.2 was exclusively
associated with amino acid biosynthesis (Figure 3).

FIGURE 2
Some characteristic features of QTLs and MQTLs (A) Distribution of MQTLs on different maize chromosomes; (B) Number of QTLs under each
MQTL; (C) Average CI of QTLs and MQTLs available on different maize chromosomes.
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3.4 Breeders friendly MQTLs

Out of the 68 MQTLs reported, a subset of 10 MQTLs was
selected and designated as “breeder-friendly MQTLs” (BF-MQTLs).
The selection criteria for identifying BF-MQTLs were as follows: a
PVE value of more than 10%, a genetic CI of less than 2 cM, a
physical CI of less than 1 Mb, and involvement of at least 10 initial
QTLs from different studies. Detailed information on these BF-
MQTLs can be found in Table 1. Among the 10 BF-MQTLs, eight
MQTLs encompassed QTLs associated with both quality and yield-
related traits, while one MQTL included QTLs solely for quality-
related traits, and another MQTL comprised QTLs exclusively
associated with yield-related traits (refer to Figure 3).

3.5 Validation of MQTLs with the GWAS
based MTAs and the availability of known
genes within MQTL regions

The physical positions of MQTLs identified through meta-
analysis were compared with the physical positions of significant
markers (MTAs) identified for the same traits using the GWAS
approach. Data obtained from 10 different GWAS studies provided
information on 250 MTAs, that overlapped with 47 MQTLs out of

68 reported MQTLs. The count of overlapping MTAs or adjacent
MTAs (within a 1 Mb region surrounding theMQTL regions) varied
for each MQTL, with MQTL9.3 exhibiting the highest number of
overlaps with 36 MTAs. Notably, among the overlapped MTAs,
35 were associated with oil-related traits, 26 were associated with
yield-related traits, 17 were associated with carotenoid-related traits,
2 were associated with sugar-related traits, and 1 was associated with
protein-related traits (see Supplementary Table S4 and
Supplementary Figure S1). It is important to mention that these
GWAS-validated MQTLs also included all the breeder-friendly
MQTLs (BF-MQTLs).

GWAS studies provided valuable insights into the genes
associated with the traits under investigation (see Supplementary
Table S4). Specifically, a total of 13 genes were found to be co-
localized with MQTLs affecting yield. These included one gene
associated with cob weight (i.e., Zm00001d002000), two genes
associated with kernel length (viz., Zm00001d036024,
Zm00001d000184), three genes associated with kernel number per
row (viz., GRMZM2G049091, GRMZM2G138067,
GRMZM2G446921), one gene associated with kernel thickness
(i.e., Zm00001d041972), two genes associated with kernel weight
(viz., GRMZM2G010933, GRMZM2G464985), one gene associated
with moisture content (i.e., GRMZM2G069024), and four genes
associated with grain yield (viz., GRMZM2G391473,

FIGURE 3
Distribution of MQTLs on different maize chromosomes. Common: MQTLs associated with both quality and yield-associated traits, BFQ: breeder-
friendly quality trait MQTLs, BFY: breeder-friendly yield trait MQTLs, BFC: breeder-friendly common MQTLs (involving both quality and yield-related
traits).
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GRMZM2G125557, GRMZM5G845736, GRMZM2G151649).
Interestingly, three breeder-friendly MQTLs (BF-MQTL2.8, BF-
MQTL7.3, BF-MQTL7.4) were found to be associated with these
reported genes that influence grain yield.

Furthermore, 13 genes were identified to be co-localized with
some MQTLs affecting grain quality. Among them, 10 genes were
associated with grain oil content (viz., GRMZM2G059138,
GRMZM5G828253, GRMZM2G118423, GRMZM2G176542,
GRMZM2G125268, GRMZM2G122767, GRMZM2G417435,
GRMZM2G169089, GRMZM2G077789, GRMZM2G136072), two
genes were associated with starch content (viz.,
GRMZM2G404453, GRMZM2G104325), and one gene was
validated for grain protein content (i.e., GRMZM2G049681). Two
breeder-friendly MQTLs (viz., BF-MQTL6.4, BF-MQTL6.8) were
found to be associated with these reported genes affecting grain
quality. Notably, these genes encode essential enzymes (e.g.,
cytochrome c oxidase copper chaperone 1, serine/threonine-

protein kinase D6PKL1, beta-glucosidase 11) involved in
significant metabolic pathways and transcription factors (e.g.,
transcription factor MYBS3, transcription initiation factor IIF
beta subunit), as well as proteins (e.g., protein LURP-one-related
5, F-box domain containing protein) that are believed to play crucial
roles in influencing grain yield and quality (see Supplementary
Table S4).

3.6 In silico gene mining and tissue-specific
expression analysis

The genes residing within the genomic regions of BF-MQTLs
were investigated using maizeGDB database. A total of 59 genes
were identified within these BF-MQTL regions, which are located on
chromosomes 1, 2, 6, 8, and 10 (see Figure 4). Among the analysed
genes, 15 genes were found to encode enzymes involved in crucial

TABLE 1 Detailed information of Breeder Friendly MQTLs. These MQTLs were selected based on the following criteria: PVE>10%, CI < 2 cM, and number of initial
QTLs involved> 10.

MQTL
name

chr CI
(95%)

Average
pve

Average
lod

No of QTLs
involved

QTLs involved

MQTL1.4 1 1.03 10.02 5.30 21 qSTAR1, qINCY1-1, qSC8-1, qGP1-4, qGP1-1, qMgC1, qKD1, qZnC1-1,
qATPH1-1, qED1, qBCP1-1, qED1-1, qBCT1-1, qCT1-2, qMnC1-3,
qRPE1, qRPE1-1, qGY1, qKL1, qPAC1, qPH1-4

MQTL2.4 2 0.05 10.71 4.79 13 qKW2-1, qSC2-9, qSC2-3, qPC2-2, qPC2, qEF1A2, qSC2-1, qZEA/LUT/
BCAR2, qZEA2, qZEX2-1, qLINO2, qOC2-5, qILE/TAA2

MQTL2.8 2 0.86 12.62 3.94 23 qSPC2-1, qEWLR2-1, qMET/TAA2, qLYS/ATT2, qOSC2, qEW2-1, qKV2-
1, qOPC2-1, qGP2-5, qKV2, qOLE2-1, qMET/ATT2, qPOC2, qEEWR2-1,
qLIO2, qSOC2-1, qSOC2, qEO2-2, qSTE2, qKWI2, qGDR2, qGDR2-2,
qGDR2-1

MQTL6.4 6 0.78 12.87 4.66 23 qGDR6-1, qSTE6, qOC6-2, qOPC6, qOC6-4, qOLE6, qOC6-1, qLIO6,
qKWI6-5, qSC6-1, qOSC6, qEO6, qBEH6, qKO6, qLIG6, qSER/TAA6,
qEOD6, qKT6, qOC6-3, qHKW6, qOLE6-1, qPAL6, qTC6

MQTL6.8 6 0.93 14.12 5.94 11 qPC6-1, qPAC6, qOPAC6, qACAR6-1, qHKW6-1, qED6, qVITR6, qSPC6,
qBELI6, qTEXT6, qPSC6

MQTL7.2 7 0.31 14.06 8.14 20 qHKW7, qBCRP7, qZEA7, qERN7-1, qLUT7, qZEA/LUT/BCAR7,
qBCAR7, qGT/TAA7-1, qVITR7, qEF7, q100GW7, qGLX/GT7, qKV7-1,
qST/TAA7, qTCAR7, qPHE7, qC/CL7, qGP7-2, qGLX/GT7-1, qGP7-6

MQTL7.3 7 0.5 10.47 4.79 32 qGP7-4, qGP7-7, qKW7-8, qKW7-7, qARG/TAA7, qKW7-2, qILE/
BCAA7, qLYS/TAA7, qKW7, qLEU/BCAA7, qST/TAA7-1, qGLX7-1,
qTHR/TAA7, qAT/TAA7, qKV7, qKW7-10, qLIO7, qOLE7, qKW7-5,
qKW7-4, qSFA7, qFeC7-1, qLYS/TAA7-1, qGP7-1, qKW7-1, qKW7-6,
qKW7-3, qKW7-9, qGP7-8, qGP7-5, qPT/TAA7, qSC7

MQTL7.4 7 0.54 10.44 5.00 41 qHKW7-1, qHKW7-3, qEL7, qKWI7, qKWI7-1, qKV7-3, qKV7-2, qKT7,
qPHE/TAA7, qTCAR7-1, qCP7-1, qZEA7-1, qBCF7-1, qZnC7, qPAL7,
qFAA7, qEW7, qASX/ATT7-1, qILE/ATT7, qGLY/TAA7, qPT/TAA7-1,
qASX/ATT7, qARG/GT7, qLEU/BCAA7-1, qVAL/AT7, qAT7-7, qLEU/
AT7, qBCAA7, qGLY/ST7-1, qCYS/TAA7, qGLX/TAA7, qSER/ST7,
qLYS/ATT7, qALA/AT7, qLEU/TAA7, qLEU/TAA7-1, qVAL/BCAA7,
qAT/TAA7-1, qVAL/TAA7, qPHE/TAA7-1, qPAC7

MQTL8.1 8 1.71 10.72 5.95 20 qSPC8, qTCAR8-2, qBCRY-TCAR8, q13ZBCAR8-1, qBCRY-PVA8,
qPVA8-2, qTCAR8-1, qBCAR-BCRY8-2, qCBCAR8, q9ZBCAR8-1,
qGTPH8, qATPH8, qTTPH8, qBCAR8-1, qDTPH8, qSTE8, qEO8,
qBCRY-TCAR8-1, qPVA8-1, q13ZBCAR8

MQTL10.8 10 0.72 21.41 5.52 28 qKV10-4, qKV10-6, qKV10, qKV10-20, qKV10-17, qKV10-18, qKV10-16,
qKW10-6, qKV10-13, qKV10-14, qKV10-11, qKV10-5, qKV10-7, qKW10-
8, qKW10-10, qKW10-9, qKV10-19, qKW10-4, qKV10-15, qKW10-3,
qKV10-12, qKV10-10, qKV10-3, qKL10, qKV10-2, qKW10-1, qKW10-5,
qKWI0
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metabolic processes such as lipid, amino acid, protein, sugar,
nucleotide and secondary metabolite metabolism. Some enzymes
were also involved in isomerization, endomembrane homeostasis
and gene regulation, 10 genes encoded versatile groups of
transcription factors (e.g., C2H2-type domain-containing protein,
eukaryotic translation initiation factor 3 subunit E, Mediator of
RNA polymerase II transcription subunit 17, NAC domain-
containing protein, RING-H2 finger protein ATL80, transcription
factor ICE1, transcription factor PHYTOCHROME
INTERACTING FACTOR-LIKE 13, transposition associated

factors, zinc finger protein WIP2), 6 genes encoded transporter
proteins (e.g., magnesium transporter (2), protein transport protein
Sec61 subunit gamma, HMA domain-containing protein, adenine/
guanine permease AZG1, putative VHS/GAT domain containing
family protein, 6 genes were associated with signalling (e.g., ras-
related protein RABC1, calcium mediated signalling (3), auxin-
responsive protein SAUR22, tr-type G domain-containing
protein), 2 genes each were related to apoptosis (e.g., senescence
associated gene 20, ubiquitin carboxyl-terminal hydrolase 19),
ribonuclease (e.g., U5 small nuclear ribonucleoprotein 40 kDa

FIGURE 4
Diagram deciphering the salient characteristics of MQTLs, BF-MQTLs, candidate genes. Outermost circle represents the location of MQTLs
predicted during the present study. Second circle (blue) provides an overview of density of MQTLs on different chromosomes. Third circle represents
locations and densities of BF-MQTL along with putative gene density. Lines within innermost circle represents phylogenetic relationships between
identified genes.
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protein, ribonuclease P protein subunit p29), and chloroplast (e.g.,
multiple chloroplast division site 1, protein EXECUTER
2 chloroplastic) proteins, and one gene was reported to function
in peroxisomes (i.e., peroxisome biogenesis protein 22) (see
Figure 5).

Additionally, the expression analysis of these genes was
performed using the expression analysis tool within the
MaizeMine, revealing tissue-specific expression patterns
(Figure 6; Supplementary Table S5). Among the eight different
tissues studied, a single gene showed expression in anthers
(i.e., Zm00001eb034640), four genes were expressed in shoot axis
internodes, 41 genes were expressed in stem and shoot apical
meristems, 49 genes were expressed in reproductive tissues,
52 genes were expressed in roots and internodes, 53 genes were
expressed in leaves, and 54 genes were expressed in seeds.

3.7 Synteny of genes identified in maize
MQTL regions with wheat and rice genomes

Synteny analysis was conducted to identify conserved regions of
the reported maize MQTLs in the genomes of wheat and rice. In
total, 59 genes identified in the maize genome within the 10 BF-
MQTL regions corresponded to 42 genes in the rice genome
(Figure 7A) and 150 genes in the wheat genome (see Figure 7B).
The genes obtained from the BF-MQTLs showed variation in the
number of orthologs in the wheat genome, with the maximum
number of orthologs (34) observed for genes derived from
MQTL10.8, while the minimum (12) was observed for genes

from MQTL2.4. Similarly, in the rice genome, the maximum
number of orthologous genes was reported for genes derived
from MQTL1.4, while the minimum (3) was observed for genes
from MQTL2.8. Overall, the synteny analysis demonstrated the
presence of conserved genomic regions between maize and rice,
as well as betweenmaize and wheat. These regions can be considered
as ortho-MQTL regions (see Figure 7).

4 Discussion

Grain quality and grain yield are critical traits in maize breeding,
as they determine the nutritional value and productivity of the
crop. Maize is a major source of macronutrients such as protein,
starch, and fat, as well as micronutrients and phytochemicals
including tocopherols, carotenoids, metal ions (Fe, Zn, etc.), and
phytic acid, which are essential for the maize-consuming population
(Owens et al., 2014; Tanumihardjo et al., 2019). Numerous studies
have been conducted over the years, identifying a large number of
QTLs associated with various traits related to maize grain quality
and yield (Supplementary Table S1). However, most of the QTLs
reported in previous studies have low PVE values, wide CIs and
other potential limitations, limiting their potential for utilization in
breeding programs aimed at developing nutrient-rich, high-yielding
maize varieties. Moreover, several studies have demonstrated the co-
localization of QTLs linked to various aspects of grain quality and
yield-related characteristics in maize (Yang et al., 2013). These
findings suggest that a single genetic locus may exert influence
over multiple facets of grain development. Consequently,

FIGURE 5
Biological functions of various classes of genes annotated under BF-MQTLs region.
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FIGURE 6
Tissue-specific expression of different genes available from MQTL regions (A: anther, IN: internode, L: leaf, RP: reproductive, R: root, S: shoot, SA:
shoot axis internode, SSAM: stem and shoot apical meristem).

FIGURE 7
Syntenic relationships of genes available from the maize MQTL regions with the (A) rice and (B) wheat genomes. The physical lengths of the
chromosomes are indicated by the rulers drawn above on each chromosome.
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investigating these genomic regions and analysing the hotspot areas
that affect both grain quality and yield can significantly enhance
future maize breeding programs.

Meta-analyses of QTLs associated with a variety of traits have
been recently conducted in different crops such as wheat (Kumar
et al., 2021; Kumar et al., 2022 A. C.; Kumar et al., 2023 S.; Saini et al.,
2021; Saini et al., 2022; Tanin et al., 2022), rice (Sandhu et al., 2021;
Kumari et al., 2023), barley (Akbari et al., 2022), common bean
(Shafi et al., 2022), pigeon pea (Halladakeri et al., 2023), including
maize (Kaur et al., 2021; Sheoran et al., 2022; Wang et al., 2022;
Gupta et al., 2023; Karnatam et al., 2023), for diverse traits, including
both yield-related traits (Semagn et al., 2013; Wang Y. et al., 2016;
2020; Chen et al., 2017; Zhou et al., 2020) and quality traits (Jin et al.,
2013; Dong et al., 2015). However, there is currently no
comprehensive study on the genomic regions influencing both
grain quality and yield in maize. This study aims to fill this gap
by identifying QTL clusters in defined regions using a large dataset
of yield-related and quality trait data from multiple studies.

The findings of this study can significantly contribute to
advancing maize breeding programs. Further, our study
represents a significant advancement over previous meta-analyses
conducted on various yield and quality-related traits. It offers a more
up-to-date and comprehensive analysis, distinguishing itself in
several key aspects (Supplementary Table S6). The present study
offers a broad perspective on recent mapping studies (published up
to 2022) related to maize grain yield and quality. The consensus map
used in this study is comprehensive and densely populated, covering
the entire maize genome with high precision. A total of
57,523 markers, including SSR, SNP, and RFLP markers, were
employed in the consensus maps, distributed across a length of
3,959.9 cM. The highest number of markers was reported on
chromosome 1 (10,341), while the lowest was observed on
chromosome 10 (4,566). The distribution of markers and QTL
density on maize chromosomes observed in this study aligns
with findings from previous meta-QTL studies on maize
(Sheoran et al., 2022; Wang et al., 2022).

A total of 75 hotspot regions were distributed across the
10 chromosomes in the present study. The majority of these
hotspot regions were found in the upper terminal regions of the
chromosomes, which have been previously identified as regions with
high gene density (Ghaffari et al., 2013). These regions exhibited
multiple yield and quality-associated QTLs within a single MQTL
region, indicating a strong correlation of these genomic regions in
enhancing maize grain quality and yield. The hotspot regions
established in present study can be considered in future breeding
programs to obtain high yield and high-quality hybrids. Several
biochemical andmapping studies have been conducted previously to
establish correlation between yield and quality associated traits
(Zheng et al., 2021; Amegbor et al., 2022).

In the context of maize, grain nutrient quality is primarily
determined by the levels of tryptophan and lysine in the maize
protein. Standard maize varieties generally lack sufficient amounts
of these essential amino acids, resulting in reduced overall protein
quality. This deficiency has led to a significant focus on quality
protein maize breeding over the past decade (Prasanna et al., 2001;
Prasanna et al., 2020). Maize grain quality-associated traits are
complex, and they are regulated by multiple major genes and lots
of minor genes. It is reported that there is a negative association

between grain yield and protein quality. Tryptophan content
showed a significant positive genotypic association with moisture,
oil, and fiber content, but a strong negative correlation with protein
and starch content (Amegbor et al., 2022). Given the intricate
interplay between various quality and yield-related traits, gene
pyramiding is strongly recommended to develop biofortified,
high-yielding hybrids (Zheng et al., 2021). Despite several
mapping studies, the goal of achieving both high yield and grain
quality has proven challenging, with fluctuations observed under
varying environmental conditions. The common hotspot regions for
both grain yield and grain quality traits (BF-MQTL1.4, 2.4, 2.8, 6.4,
6.8, 7.2, 7.3, 7.4) can be beneficial for future breeding programs for
targeting associations between yield and quality traits. Although, the
significant inverse correlations observed between various traits along
with the presence of shared or linked QTLs and epistasis with
opposing effects, may pose potential challenges for plant breeders
aiming to simultaneously enhance these traits in maize.

The present study also refined the CIs of different QTLs for
various quality and yield traits, resulting in an average reduction of
6.12 times compared to the initial QTLs. Further, GWAS was
employed as a precision technique to validate the reported
MQTLs, with approximately 62% of the MQTLs being validated
through previous GWA studies (Suwarno et al., 2015; Ma and Cao,
2021; Zheng et al., 2021; Ndlovu et al., 2022; Zeng et al., 2022; Zhang
et al., 2022). MQTL9.3 showed the highest overlap with a maximum
number of MTAs in GWA studies, with 36 MTAs identified.
Additionally, 27 MQTLs overlapped with only one MTA. Similar
results of MQTL validation through MTAs have been reported in
previous studies, with validation rates of 54.6% and 63% (Saini et al.,
2021; Saini et al., 2022).

The MQTLs validated through GWAS were further
characterized as breeder-friendly based on their high PVE and
low CI values. Among the 10 validated BF- MQTLs in the
present study, a total of 59 CGs were reported. Supplementary
Table S7 presents the orthologs of these 59 CGs in model crops,
including Arabidopsis and rice, along with their respective function
descriptions. Notably, some of these orthologs have been extensively
studied and their associations with the traits under study have been
well-documented. Among these BF-MQTLs, five (BF-MQTL 1.4,
2.4, 2.8, 6.4, 6.8) exhibited QTLs associated with both grain quality
and yield. Among these promising BF-MQTLs, MQTL 6.8 had the
highest number of associated genes (12), followed by MQTL1.4 with
10 genes, and 7 genes each for MQTL2.4, MQTL2.8, and MQTL6.4.
Based on these findings, BF-MQTL1.4, 2.4, 2.8, 6.4, and 6.8 appear to
be the most promising candidates for improving both grain yield
and quality. However, further investigations are required to identify
functional variants of these genes within the MQTL regions.

Several genes identified within the validated hotspot regions encode
enzymes involved in various metabolic processes, such as terpenoid
biosynthesis (1-deoxy-D-xylulose-5-phosphate reductoisomerase)
(Zhang et al., 2020), auxin dependent endomembrane homeostasis
(1-phosphatidylinositol-3-phosphate 5-kinase (Lo et al., 2022), oil
biosynthesis (acyltransferase) (Yan et al., 2018), photorespiration
(alanine--glyoxylate transaminase which is known to facilitate the
transamination between L-alanine and glyoxylate to produce
pyruvate and glycine) (Liepman et al., 2019), lipid metabolism
(aspartic proteinase oryzasin-1) (Alexandrov et al., 2009),
carbohydrate metabolism (endoglucanase) (Jiao et al., 2017), sugar
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isomerization (epimerase domain-containing protein), phosphorus
remobilization (glycerophosphodiester phosphodiesterase) (Wang
J. et al., 2021), etc.

In addition to enzymes, some genes also encode for potent
transcription factors. An example of such transcription factors is
the C2H2-type domain-containing proteins, known as zinc finger
proteins, which play a pivotal role in regulating plant growth and
development (Li et al., 2022). Eukaryotic translation initiation factor
3 subunit E is involved in translating specific mRNA subsets related to
cell proliferation. Mediator of RNA polymerase II transcription
subunit 17 acts as a coactivator, regulating the transcription of
almost all RNA polymerase II-dependent genes. NAC domain-
containing proteins have diverse functions, including nuclear
localization, DNA binding, and the formation of homodimers or
heterodimers with other NAC domain-containing proteins
(Nuruzzaman et al., 2013). Moreover, certain NAC-TFs, such as
ZmNAC128 and ZmNAC130, have been identified to play crucial
roles in the accumulation of starch and protein inmaize, as highlighted
in a study by Zhang et al. (2019). Pentatricopeptide repeat-containing
proteins participate in RNA regulation and metabolism within plant
organelles (Wang X. et al., 2021), and they are recognized for their
multifaceted roles in plant growth and development (Li et al., 2022).
The RING-H2 finger protein ATL80, featuring zinc finger domains,
plays a role in stress response (Gao et al., 2012) and has been associated
with influencing plant architecture and grain yield in rice (Yan et al.,
2022). Another transcription factor, ICE1 MYC-like bHLH, acts as a
transcriptional activator during cold stress response (Waititu et al.,
2021) and is also known to enhance yield in rice. TF
PHYTOCHROME INTERACTING FACTOR-LIKE 13 participates
in light-induced transcription and plays a role in plant growth and
internode elongation (Wu et al., 2019). Additionally, there are
transposition-associated genes and the Zinc finger protein WIP2,
which have been linked to plant growth (Wang et al., 2010; Wang
B. et al., 2016; Li et al., 2022).

A few genes reported within the MQTL regions were categorized
as peroxisome biogenesis protein 22 that participates in peroxisome
assembly (Jiao et al., 2021), multiple chloroplast division sites 1 that
leads to natural variation in chloroplast size (Kadirjan-Kalbach et al.,
2019), protein EXECUTER 2 chloroplastic (Zhang et al., 2019),
U5 small nuclear ribonucleoprotein (part of spliceosome),
ribonuclease P protein subunit p29 which is involved in Mg2
-dependent hydrolysis (Ohtani, 2018). Several genes are
implicated in transport across bio-membranes, for instance, the
putative VHS/GAT domain-containing family protein is known to
be involved in protein transport and energy metabolism, and its
overexpression has been reported to enhance biomass (Nunes et al.,
2019). Additionally, the magnesium transporter is recognized for its
role in chlorophyll synthesis (Li et al., 2018; Li, 2020), while the
protein transport protein Sec61 subunit gamma is responsible for
mediating endoplasmic reticulum translocation (Zimmermann
et al., 2011). Furthermore, the HMA domain-containing protein
contains a conserved domain found in several heavy metal transport
or detoxification proteins (Li et al., 2018; Cao et al., 2019), and the
Adenine/guanine permease AZG1 plays a crucial role in facilitating
adenine and guanine transport across membranes.

Two genes were associated with apoptosis involving senescence-
associated gene 20, and ubiquitin carboxyl-terminal hydrolase 19
(Zhang et al., 2014). Several signalling associated proteins were

encoded by above mentioned genes such as ras-related protein
RABC1 it is a GTP-binding protein that regulates stomatal
movements and drought stress responses by mediating the
interaction with ABA (Wu et al., 2015), calcium mediated
signalling acquisition of stress response (Jiao et al., 2017; Li, 2020),
auxin-responsive protein SAUR22 that is known to promote cell
expansion (Ren and Gray, 2015), calcium-binding EF hand family
protein which actively bind to Ca2+ and chelate the cytosolic Ca to
regulate Ca homeostasis (Mohanta et al., 2015). Tr-type G domain-
containing protein which control a multitude of biological processes,
ranging from cell division, cell cycling, and signal transduction, to
ribosome assembly and protein synthesis (Jin et al., 2021). The above-
mentioned genes exhibited tissue-specific expression, with maximum
expression observed during the seed-filling stage, while fewer genes
were expressed during the anther development.

During the synteny analysis, for MQTL1.4, the maximum number
of orthologs were present on chromosome 9 in rice and on
chromosomes 5 and 7 in wheat. These conserved genes encode
major transcription factors and enzymes that play important roles
in major metabolic pathways. For MQTL2.4 and 2.8, rice orthologs
were found on chromosome 4 and on chromosome 2 in wheat,
respectively. MQTL6.4 showed conserved sequences on
chromosome 6 in rice and chromosome 7 in wheat. In MQTL6.8,
orthologs were present on chromosome 5 in rice and on chromosomes
1 and 7 in wheat. In MQTL8.1, orthologs accumulated on
chromosomes 3, 4, 5, and 7 in wheat, and on chromosomes 6, 3,
and 1 in rice. In MQTL10.8, conserved sequences were reported on
chromosome 4 in rice and chromosome 2 in wheat. Overall,
chromosomes 1, 2, 3, 4, 5, and 7 exhibited conserved regions in
wheat for quality and yield-associated traits, with the maximum
number of genes on chromosome 7 (Liu et al., 2020; Soriano et al.,
2021; Arriagada et al., 2022; Gudi et al., 2022; Khan et al., 2022). In rice,
conserved genes were reported on chromosomes 1, 3, 4, 5, 6, and 9,
with maximum synteny on chromosomes 4 and 6 (Kulkarni et al.,
2020; Khahani, et al., 2021; Zhang et al., 2021; Aloryi et al., 2022;
Kumar R. et al., 2022). Therefore, these validated BF-MQTLs, showing
synteny relations between different cereal crops, are believed to be
promising for improving yield potential and developing high-quality
maize varieties through marker-assisted breeding programs.

5 Conclusion

The present study successfully compiled the results of various
mapping studies on yield and quality-related traits. A total of
68 MQTLs and 7 singletons were identified in the current study.
More than half of the MQTLs were validated through GWAS, and a
total of 10MQTLs were defined as BF-MQTLs based on their CI and
PVE values. A comprehensive analysis revealed nearly 60 different
genes within the genomic regions of these BF-MQTLs. The putative
genes analysed in this study encode essential enzymes involved in
multiple metabolic pathways and transcription factors that impact
the regulation of key genes. Additionally, some genes were found to
be expressed in chloroplasts and peroxisomes, while others function
as transporters and signal proteins. Four potential BF-MQTLs were
identified to significantly influence both maize yield and grain
nutrient quality, making them highly recommended for further
utilization in marker-assisted breeding. The overall findings from
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this study provide valuable insights into robust genomic regions that
can be targeted in future investigations to enhance maize yield and
nutrient quality.
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