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Identification of disease-associated long non-coding RNAs (lncRNAs) is crucial for
unveiling the underlying genetic mechanisms of complex diseases. Multiple types
of similarity networks of lncRNAs (or diseases) can complementary and
comprehensively characterize their similarities. Hence, in this study, we
presented a computational model iLncDA-RSN based on reliable similarity
networks for identifying potential lncRNA-disease associations (LDAs).
Specifically, for constructing reliable similarity networks of lncRNAs and
diseases, miRNA heuristic information with lncRNAs and diseases is firstly
introduced to construct their respective Jaccard similarity networks; then
Gaussian interaction profile (GIP) kernel similarity networks and Jaccard
similarity networks of lncRNAs and diseases are provided based on the
lncRNA-disease association network; a random walk with restart strategy is
finally applied on Jaccard similarity networks, GIP kernel similarity networks, as
well as lncRNA functional similarity network and disease semantic similarity
network to construct reliable similarity networks. Depending on the lncRNA-
disease association network and the reliable similarity networks, feature vectors of
lncRNA-disease pairs are integrated from lncRNA and disease perspectives
respectively, and then dimensionality reduced by the elastic net. Two random
forests are at last used together on different lncRNA-disease association feature
sets to identify potential LDAs. The iLncDA-RSN is evaluated by five-fold cross-
validation to analyse its prediction performance, results of which show that the
iLncDA-RSN outperforms the compared models. Furthermore, case studies of
different complex diseases demonstrate the effectiveness of the iLncDA-RSN in
identifying potential LDAs.

KEYWORDS

lncRNA-disease association, reliable similarity network, random forest, randomwalkwith
restart, elastic net

1 Introduction

Evidences from many studies suggest that the complex process of cancer development is
regulated not only by protein-coding RNAs but also by long non-coding RNAs (lncRNAs), a
class of RNAs larger than 200 bp with no coding potential (Schmitt and Chang, 2016; Wong
et al., 2018). With in-depth research on associations between diseases and lncRNAs, lots of
lncRNAs have been identified to have oncogenic potential and cancer-suppressive effects
(Taniue and Akimitsu, 2021). For example, the expression of lncRNA HOTAIR is

OPEN ACCESS

EDITED BY

Min Zeng,
Central South University, China

REVIEWED BY

Chengqian Lu,
Xiangtan University, China
Wei Lan,
Guangxi University, China

*CORRESPONDENCE

Junliang Shang,
shangjunliang110@163.com

†These authors have contributed equally
to this work

RECEIVED 28 June 2023
ACCEPTED 27 July 2023
PUBLISHED 08 August 2023

CITATION

Li Y, Zhang M, Shang J, Li F, Ren Q and
Liu J-X (2023), iLncDA-RSN:
identification of lncRNA-disease
associations based on reliable
similarity networks.
Front. Genet. 14:1249171.
doi: 10.3389/fgene.2023.1249171

COPYRIGHT

© 2023 Li, Zhang, Shang, Li, Ren and Liu.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Methods
PUBLISHED 08 August 2023
DOI 10.3389/fgene.2023.1249171

https://www.frontiersin.org/articles/10.3389/fgene.2023.1249171/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1249171/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1249171/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1249171/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1249171&domain=pdf&date_stamp=2023-08-08
mailto:shangjunliang110@163.com
mailto:shangjunliang110@163.com
https://doi.org/10.3389/fgene.2023.1249171
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1249171


significantly associated with poor prognosis in lung, colon and
primary breast cancers, which implies that it may be used as
biomarkers for cancer diagnosis and prognosis, as well as
potential treatment targets for various cancer types (Gupta et al.,
2010; Aprile et al., 2020b). The lncRNA NORAD facilitates cancer
development, whose expression is upregulated and associated with
poor prognosis in several cancers, including bladder, squamous cell,
breast, colorectal, esophageal, and pancreatic cancers (Li et al., 2017;
Li et al., 2018; Tan et al., 2019; Zhou et al., 2019; Aprile et al., 2020a;
Soghli et al., 2021). Besides, some lncRNAs play essential roles in the
regulation of tumor suppressor functions. For instance, the
expression of lncRNA GAS5 is negatively related to tumor size,
metastasis and stage in prostate, pancreatic, colon, bladder and
breast cancer (Goustin et al., 2019). Therefore, identifying potential
disease-associated lncRNAs will be helpful for understanding the
disease pathogenesis, and facilitating the diagnosis and therapeutics
of complex diseases.

Nowadays, more and more biologically validated lncRNA-
disease associations (LDAs) are reported, which make it possible
to use computational models to predict potential LDAs (Chen and
Yan, 2013). Introduced a semi-supervised framework LRLSLDA to
identify LDAs, in which the hypothesis of similar diseases normally
being associated with similar lncRNAs was proposed. Based on this
hypothesis, a series of computational models were developed, which
can be mainly divided into three categories, including matrix
decomposition, random walk, and machine learning. For the
matrix decomposition category (Lu et al., 2018), proposed the
SIMCLDA, which uses the principal feature vectors in the
constructed feature matrices to complement the association
matrix based on an inductive matrix complementation
framework. (Wang et al., 2021) regarded as the association
prediction problem as the problem of recommendation system,
and presented the LDGRNMF to employ graph-regularized
nonnegative matrix decomposition to identify potential LDAs.
(Liu et al., 2021) proposed the DSCMF to predict potential
LDAs, which deals with the sparsity by adding 2,1 − norm to the
collaboration matrix decomposition. For the random walk category,
(Sun et al., 2014) developed the RWRlncD by applying random walk
with restart (RWR) strategy to the functional similarity network of
lncRNAs to predict potential LDAs. (Gu et al., 2017) presented the
GrwLDA, which belongs to the semi-supervised learning method,
and can be used for capturing potential associations with isolated
diseases or lncRNAs having no known associations. (Li et al., 2021)
presented the LRWHLDA based on the local random walk strategy,
which can identify potential LDAs in the absence of known LDAs.
For the machine learning category, (Zeng et al., 2020) proposed the
SDLDA, which uses deep learning and singular value decomposition
(SVD) to extract nonlinear and linear features of diseases and
lncRNAs, and then trains the model to predict potential LDAs.
(Zhu et al., 2021) presented the IPCARF to identify LDAs, which
integrates the disease semantic similarity, lncRNA functional
similarity and the Gaussian interaction profile (GIP) kernel
similarity to obtain feature vectors of lncRNA-disease pairs, and
employs incremental principal component analysis to obtain the
optimal subspace, which are then trained by the random forest to
predict potential LDAs.

Although these models show promising results, there are still
several limitations. For instance, some of them only used one type of

similarity network of lncRNAs or diseases, which only describe
their biological characteristics in a single perspective. It is confirmed
that multiple types of similarity networks of lncRNAs (or diseases)
can complementary and comprehensively characterize their
similarities. However, it is a challenge to properly integrate
them without bringing in redundancy and noises. Besides,
heuristic information or priori knowledge of other biomolecules
that associated with lncRNAs and/or diseases should be considered
in the model to fully identifying potential LDAs. Taking the
lncRNA-miRNA interaction as an example, the lncRNA
MALAT1 has been proven to act as a sponge for miRNA miR-
129-5p promoting the development of triple-negative breast cancer
(Volovat et al., 2020).

In this study, we proposed a computational model, namely,
iLncDA-RSN in short, to identify potential LDAs, which based on
reliable similarity networks for integrating multiple types of
similarity networks and utilizing miRNA heuristic information.
Specifically, for constructing reliable similarity networks of
lncRNAs and diseases, miRNA heuristic information with
lncRNAs and diseases is firstly introduced to construct their
respective Jaccard similarity networks; then GIP kernel similarity
networks and Jaccard similarity networks of lncRNAs and diseases
are provided based on the lncRNA-disease association network; a
random walk with restart strategy is finally applied on Jaccard
similarity networks, GIP kernel similarity networks, as well as
lncRNA functional similarity network and disease semantic
similarity network to construct reliable similarity networks.
Depending on the lncRNA-disease association network and the
reliable similarity networks, feature vectors of lncRNA-disease pairs
are integrated from lncRNA and disease perspectives respectively,
and then dimensionality reduced by the elastic net. Two random
forests are at last used together on different lncRNA-disease
association feature sets to identify potential LDAs. The iLncDA-
RSN is evaluated by five-fold cross-validation to analyse its
prediction performance, results of which show that the iLncDA-
RSN outperforms the compared models. Furthermore, case studies
of different complex diseases demonstrate the effectiveness of the
iLncDA-RSN in identifying potential LDAs.

2 Methods

2.1 Disease similarity networks

2.1.1 Disease semantic similarity network and GIP
kernel similarity network

The disease semantic similarity network is constructed using
disease ontology information containing multiple directed acyclic
graphs (Schriml et al., 2012). The disease D can be described as the
directed acyclic graph DAG(D) � (D, T(D), E(D)), where T(D) is
the set of disease nodes including its ancestors and itself, and E(D) is
the set of edges associated with T(D). The disease semantic value
DV(D) of the disease D is defined as,

DV D( ) � ∑
t∈T D( )

DD t( ) (1)

where DD(t) represents the semantic contribution of the ancestor
disease t to the disease D, and can be written as,
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DD t( ) � 1, t � D
max Δ× DD t′( ) t′ ∈ children of t

∣∣∣∣{ }, t ≠ D{ (2)

where the semantic contribution factor Δ is usually set to 0.5 (Wang
et al., 2010). Based on the assumption of more similar two diseases
sharing more directed acyclic graphs, the semantic similarity value
DSS(di, dj) between diseases di and dj is defined as,

DSS di, dj( ) � ∑t∈T di( )∩T dj( ) Ddi t( ) +Ddj t( )( )
DV di( ) +DV dj( ) (3)

Under the assumption that diseases with similar phenotypes
tend to be more associated with similar lncRNAs, and vice versa,
based on the lncRNA-disease association network, the GIP kernel
similarity value GIPD(di, dj) between diseases di and dj is
computed by,

GIPD di, dj( ) � exp −γd IP di( ) − IP dj( )����� �����2( ) (4)

γd � 1/ ∑nd
k�1

IP dk( )‖ ‖2⎛⎝ ⎞⎠ (5)

where IP(di) represents the vector of disease di in the lncRNA-
disease association matrix, γd controls the kernel bandwidth, and nd
is the number of diseases. Since some diseases have the semantic
similarity values and others not, in order to complement these
missing values, we integrated the semantic similarity and the GIP
kernel similarity together as the disease integrated similarity, which
is defined as,

SD di, dj( ) �
DSS di, dj( ) + GIPD di, dj( )

2
DSS di, dj( ) exists

GIPD di, dj( ) otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(6)

where SD(di, dj) is the disease integrated similarity value between
diseases di and dj.

2.1.2 Disease Jaccard similarity network based on
the lncRNA-disease association network

Jaccard similarity is a common statistic used to describe the
degree of similarity between two groups of items and has been
widely applied in the calculation of biological data (Luo et al., 2017;
Zhou et al., 2021). Based on the lncRNA-disease association
network, the disease Jaccard similarity value JDLD(di, dj)
between diseases di and dj is described as,

JDLD di, dj( ) � IPLD di( ) ∩ IPLD dj( )∣∣∣∣∣ ∣∣∣∣∣
IPLD di( ) ∪ IPLD dj( )∣∣∣∣∣ ∣∣∣∣∣ (7)

where IPLD(di) is the vector of disease di in the lncRNA-disease
association matrix, the same as the representation of IP(di).

2.1.3 Disease Jaccard similarity network based on
the miRNA-disease association network

It is believed that heuristic information of other biomolecules
that associated with diseases can help to provide supplementary
prior knowledge for accurately identifying potential LDAs. In this
study, miRNA-disease association network is introduced for

calculating the disease Jaccard similarity value JDMD(di, dj)
between diseases di and dj, which is defined as,

JDMD di, dj( ) � IPMD di( ) ∩ IPMD dj( )∣∣∣∣∣ ∣∣∣∣∣
IPMD di( ) ∪ IPMD dj( )∣∣∣∣∣ ∣∣∣∣∣ (8)

where IPMD(di) is the vector of disease di in the miRNA-disease
association network.

2.2 LncRNA similarity networks

2.2.1 LncRNA functional similarity network and GIP
kernel similarity network

The computation of functional similarity between two lncRNAs
is based on the assumption that lncRNAs with shared functions are
more probable correlated with diseases with similar phenotypes
(Chen et al., 2015). Suppose the disease setD1 � d11, d12,/, d1m{ } is
associated with the lncRNA li, and the disease set D2 �
d21, d22,/, d2n{ } is associated with the lncRNA lj, where m and
n are disease numbers in their respective sets, the semantic similarity
valueDSS(d,D2) between the disease d ∈ D1 and the disease setD2

is defined as,

DSS d,D2( ) � max
1≤ i≤ n,di∈D2

DSS d, di( )( ) (9)

According to the definition of the semantic similarity value
DSS(d,D2), the lncRNA functional similarity value LFS(li, lj)
between lncRNAs li and lj is defined as,

LFS li, lj( ) � ∑1≤ i≤mDSS d1i, D2( ) +∑1≤ j≤ nDSS d2j, D1( )
m + n

(10)

Similar with the computational process of the GIP kernel
similarity value between two diseases, based on the lncRNA-
disease association network, the GIP kernel similarity value
GIPL(li, lj) between lncRNAs li and lj is defined as (Chen and
Yan, 2013),

GIPL li, lj( ) � exp −γl IP li( ) − IP lj( )����� �����2( ) (11)

γl � 1/ ∑nl
k�1

IP lk( )‖ ‖2⎛⎝ ⎞⎠ (12)

where IP(li) represents the vector of lncRNAs lj in the lncRNA-
disease association matrix, γl controls the kernel bandwidth, and nl
is the number of lncRNAs. Since some lncRNAs have the functional
similarity values and others not, in order to complement these
missing values, we integrated the functional similarity and the GIP
kernel similarity together as the lncRNA integrated similarity, which
is defined as,

SL li, lj( ) �
LFS li, lj( ) + GIPL li, lj( )

2
LFS li, lj( ) exists

GIPL li, lj( ) otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (13)

where SL(li, lj) is the lncRNA integrated similarity value between
lncRNAs li and lj.
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2.2.2 LncRNA Jaccard similarity network based on
the lncRNA-disease association network

Based on the lncRNA-disease association network, the lncRNA
Jaccard similarity value JLLD(li, lj) between lncRNAs li and lj is
described as,

JLLD li, lj( ) � IPLD li( ) ∩ IPLD lj( )∣∣∣∣∣ ∣∣∣∣∣
IPLD li( ) ∪ IPLD lj( )∣∣∣∣∣ ∣∣∣∣∣ (14)

where IPLD(li) is the vector of lncRNA li in the lncRNA-disease
association matrix, the same as the representation of IP(li).

FIGURE 1
Flowchart of the iLncDA-RSN.
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2.2.3 LncRNA Jaccard similarity network based on
the lncRNA-miRNA association network

Likewise, lncRNA-miRNA association network is also
introduced for calculating the lncRNA Jaccard similarity value
JLLM(li, lj) between lncRNAs li and lj, which is defined as,

JLLM li, lj( ) � IPLM li( ) ∩ IPLM lj( )∣∣∣∣∣ ∣∣∣∣∣
IPLM li( ) ∪ IPLM lj( )∣∣∣∣∣ ∣∣∣∣∣ (15)

where IPLM(li) is the vector of lncRNA li in the lncRNA-miRNA
association network.

2.3 iLncDA-RSN

In this study, a computational model iLncDA-RSN is proposed
for the Identification of LncRNA-Disease Associations based on
Reliable Similarity Networks. Figure 1 shows its flowchart, from
which it is seen that the iLncDA-RSN mainly has four steps,
i.e., construction of reliable similarity networks, integration of
association features and labels, extraction of key features, and
prediction of association scores.

2.3.1 Construction of reliable similarity networks
One type of similarity network of lncRNAs or diseases only

describe their biological characteristics in a single perspective and
multiple types of similarity networks of lncRNAs (or diseases) can
complementary and comprehensively characterize their similarities.
Hence, it is a challenge to properly integrate them without bringing
in redundancy and noises. In this study, a random walk with restart
(RWR) strategy is applied to construct reliable similarity networks,
rather than directly fuse similarity networks together, since RWR
can take into account the topological connectivity patterns globally
and locally within the network by introducing predefined restart
probabilities at the initial nodes of each iteration to exploit potential
relationships between nodes, either directly or indirectly (Liao et al.,
2009; Cao et al., 2014). Specifically, W is defined as the weighted
adjacency matrix of a similarity network with nd diseases (or nl
lncRNAs), T is the probability matrix where each element T(i, j)
represents the transition probability from node i to node j, which
can be written as,

T i, j( ) � W i, j( )∑W i, ·( ) (16)

Then, Sti is defined as a nd dimensional vector, in which the
probability of each node being visited after t iterations from the node
i during the random walk is stored. The RWR that starts from the
node i can be described as,

St+1i � 1 − pr( )StiT + prei (17)
where ei represents the nd dimensional standard basis vector, and pr

represents the predefined restart probability, which serves to control
the mutual influence of global and local topological information
during diffusion, the higher value placing more emphasis on the
local structure in the network. After a certain number of iterations,
we can obtain the smooth distribution S∞i of the RWR, i.e., the
diffusion state of that node, Si � S∞i . If two nodes have similar

diffusion states, it usually means that they share similar locations
concerning other nodes in the network and therefore may share
similar functions (Luo et al., 2017). Using the RWR strategy, the
disease integrated similarity network SD, the disease Jaccard
similarity networks JDLD and JDLD are constructed as the
disease reliable similarity network RD. Similarly, the lncRNA
integrated similarity network SL, the lncRNA Jaccard similarity
networks JLLD and JLLM are constructed as the lncRNA reliable
similarity network RL.

2.3.2 Integration of association features and labels
Depending on the lncRNA-disease association network LD and

the reliable similarity networks RD, RL, feature vectors of lncRNA-
disease pairs are integrated from lncRNA and disease perspectives
respectively (Liu et al., 2022). Specifically, from the disease
perspective, the reliable similarity vector of each disease in RD is
exhaustively combined with the lncRNA vector of each disease in
LD, resulting in an association feature set of all lncRNA-disease
pairs with nd × nl samples and nd + nl features; from the lncRNA
perspective, the reliable similarity vector of each lncRNA in RL is
exhaustively combined with the disease vector of each lncRNA in
LD, resulting in another association feature set of all lncRNA-
disease pairs with nd × nl samples and nd + nl features.

Labels of samples in these two association feature sets are
marked as known LDAs, i.e., if the lncRNA-disease pair between
the disease d and the lncRNA l belong to the known LDAs, its label is
1, otherwise, 0.

2.3.3 Extraction of key features
To remove redundant features from the association feature sets

to improve the prediction accuracy of LDAs, a feature extraction
method, i.e., elastic net (Liu et al., 2020) is employed in this study.
The elastic net is a regularization and variable selection method that
has been widely used for processing data (Yu et al., 2021). The elastic
net employs two penalty terms (1 − norm and 2 − norm) to
automatically select important features and perform continuous
shrinkage to improve prediction accuracy. Suppose the feature set
is X � [x1, x2,/, xN] ∈ RN×d, and its corresponding label vector is
Y � [y1, y2,/, yN] ∈ RN, the linear regression model and the
elastic net are respective defined as,

min
ω

∑N

i�1 yi − ωTxi( )2 (18)

min
1

2 × N
Y −Xω‖ ‖22 − α × β ω‖ ‖1 + 1

2
α × 1 − β( ) ω‖ ‖22 (19)

where the penalty degree of the model is controlled by adjusting the
weight terms α and β for variable selection.

2.3.4 Prediction of association scores
The random forest is based on the idea of Bagging ensemble

learning, which introduces sample randomness and attributes
randomness. With strong robustness and generalization, the random
forest is extensively applied in the field of bioinformatics (Chen et al.,
2018; Wei et al., 2021). In this study, we also apply the random forest to
the iLncDA-RSN as its classifier to predict the scores of LDAs. Since
there are two lncRNA-disease association feature sets constructed from
lncRNA and disease perspectives respectively, two random forests are
used together on them to identify potential LDAs. The final predicted
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association score Score(d, l) of the iLncDA-RSN between the disease d
and the lncRNA l is,

Score d, l( ) � SRFd d, l( ) + SRFl d, l( )
2

(20)

where SRFd(d, l) is the random forest association score between the
disease d and the lncRNA l on the lncRNA-disease association
feature set from the disease perspective.

3 Results

In the study, a lncRNA-disease association network is downloaded
from the Lnc2Cancer (Ning et al., 2016), GeneRIF (Lu et al., 2007) and
LncRNADisease (Chen et al., 2013) databases, which includes
412 diseases, 240 lncRNAs, and 2,697 known LDAs. For a fair
experimental comparison, we divided 80% of the samples into the
benchmark dataset and the remaining 20% into the independent
validation set (Zhang et al., 2022). The benchmark dataset is
employed to select optimal parameters as well as to train the
iLncDA-RSN, while the independent validation set is employed to
compare the iLncDA-RSN with other computational models. To
provide prior knowledge for accurately identifying potential LDAs, a
miRNA-disease association network is introduced from the HMDD
2.0 database (Li et al., 2014), in which includes 13,562 experimentally
validated miRNA-disease associations, and a lncRNA-miRNA
association network is also introduced from the starBase database
(Li et al., 2014), in which includes 1,002 experimentally validated
lncRNA-miRNA associations.

We performed the 5-fold cross-validation on the benchmark
dataset and used five evaluation metrics to evaluate the iLncDA-
RSN, i.e., area under the receiver operating characteristic curve
(AUC), Accuracy (Acc), Sensitivity (Sen), Matthews correlation
coefficient (MCC) and F1-score (F1), which are defined as,

Acc � TN + TP

TN + TP + FN + FP
(21)

Sen � TP

TP + FN
(22)

MCC � TP × TN − FP × FN��������������������������������������������
TP + FN( ) × TP + FP( ) × TN + FN( ) × TN + FP( )√

(23)
F1 � 2TP

2TP + FP + FN
(24)

where TP, FN, TN, and FP represent true positives, false negatives,
true negatives and false positives, respectively.

3.1 Evaluation of prediction ability

To comprehensively evaluate the prediction ability of the iLncDA-
RSN, this study performed experiments on the benchmark dataset
using the 5-fold cross-validation, and evaluated experimental results
using 5 metrics, including AUC, Acc, Sen, MCC, and F1. Table 1 lists
its experimental results, from which it is seen that the iLncDA-RSN
obtained an average AUC of 91.59%, Acc of 90.70%, Sen of 91.36%,
MCC of 81.34% and F1 of 90.75%, respectively. These results
demonstrate that the iLncDA-RSN has high prediction ability and

can play an important role in identifying potential LDAs. Besides, it is
also seen that the prediction ability of the iLncDA-RSN is stable since
the standard deviations are small in terms of 5 metrics. Figure 2 shows
receiver operating characteristic (ROC) curves of the iLncDA-RSN on
the benchmark dataset under the 5-fold cross-validation. It is seen that
the ROC curves on different test sets are very similar, implying that its
high stability and reliability.

3.2 Evaluation of the reliable similarity
network

To demonstrate that the reliable similarity network is important for
the iLncDA-RSN to improve the prediction ability, we performed a
comparison experiment between the iLncDA-RSN and the iLncDA-
NULL. Compared with the iLncDA-RSN, the iLncDA-NULL uses the
directly integrated similarity networks of lncRNAs and diseases, rather
than reliable similarity networks. For a fair comparison, all experimental
steps and parameter settings are the same. Figure 3 shows ROC curves of
the iLncDA-RSN and the iLncDA-NULL under the 5-fold cross-
validation on the benchmark dataset. It is seen that the iLncDA-RSN
significantly outperforms the iLncDA-NULL with their respective AUC
values being 0.9159 and 0.8982, implying that the reliable similarity
network is indeed important for improving the prediction ability.

3.3 Evaluation of the miRNA heuristic
information

To validate that the iLncDA-RSN is advantageous by introducing
the miRNA heuristic information to construct reliable similarity
network, we performed a comparison experiment between the
iLncDA-RSN and the same model that does not introduce the
miRNA heuristic information. Figure 4 shows ROC curves of the
iLncDA-RSN with and without miRNA heuristic information on the
benchmark dataset. It is seen that the iLncDA-RSN is significantly
superior to the model without introducing the miRNA heuristic
information in terms of AUC, implying that the introduced
miRNA heuristic information can help to provide supplementary
prior knowledge for accurately identifying potential LDAs.

3.4 Comparison with other dimensionality
reduction methods

To test the performance of the elastic net for dimensionality
reduction in the iLncDA-RSN, we compared it with other three
dimensionality reduction methods, including extra-trees (ETS) (Liu
et al., 2020), LASSO (Ranstam and Cook, 2018) and SVD (Zeng et al.,
2020). The feature extraction part of the iLncDA-RSN is replaced by
these three dimensionality reduction methods and other parts are the
same to ensure a fair comparison. Figure 5 shows ROC curves of the
iLncDA-RSN with different dimensionality reductionmethods on the
benchmark dataset. It is seen that their AUC values are 0.9025, 0.8982,
0.8838, and 0.9159 corresponding to LASSO, SVD, ETS and the elastic
net, respectively. Hence, in the iLncDA-RSN, the elastic net method is
employed to remove redundant features from the association feature
sets to improve the prediction accuracy of LDAs.
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3.5 Comparison with other classifiers

To find the most suitable classifier for the iLncDA-RSN,
multiple classic classifiers, including random forest (RF),
XGBoost (XGB) (Chen and Guestrin, 2016), k-nearest neighbor
(KNN) (Liu et al., 2020), AdaBoost (Zhao et al., 2019) and Bayesian
network (BN) (Marcot and Penman, 2019), were tested. Figure 6
shows ROC curves of the iLncDA-RSN with different classifiers on
the benchmark dataset. It is seen that AUC values of RF, XGB, KNN,
AdaBoost, and BN are 0.9159, 0.8962, 0.9042, 0.8762, and 0.8222,
respectively, implying that the winner random forest is the most
suitable classifier among them.

3.6 Comparison with other computational
models

To further evaluate the prediction ability of the iLncDA-RSN,
5-fold cross-validation was performed to compare the iLncDA-RSN
and other five state-of-the-art models, including IPCARF (Zhu et al.,

2021), DSCMF (Liu et al., 2021), SIMCLDA (Lu et al., 2018), LRLSLDA
(Chen and Yan, 2013) and NPCMF (Gao et al., 2019) on the
independent validation set. Figure 7 shows ROC curves of all
compared computational models. It is seen that the iLncDA-RSN
has the largest area under the ROC curve, achieving an AUC value
of 0.9311, while the other five computational models have AUC values
of 0.8817, 0.8562, 0.8257, 0.7325, and 0.8442, respectively. This indicates
that the iLncDA-RSN has better prediction ability and can predict
potential LDAs more accurately.

3.7 Case study

To validate the ability of the iLncDA-RSN in predicting
potential LDAs, we performed case studies for cervical cancer,
colon cancer and gastric cancer. All known LDAs and miRNA-
disease associations were employed to train the iLncDA-RSN, which
then predicts lncRNAs associated with each disease, and gives their
association scores. The predicted lncRNAs were ranked based on
their association scores and the top 15 lncRNAs would be verified

TABLE 1 5-Fold cross-validation results of the iLncRNA-RSN on benchmark dataset.

Test set Acc (%) Sen (%) Mcc (%) F1 (%) AUC (%)

1 91.73 91.62 81.94 91.78 92.05

2 92.16 90.75 82.51 91.03 92.23

3 91.12 92.84 82.75 90.56 91.76

4 88.45 89.86 76.51 89.01 90.32

5 90.04 91.71 83.00 91.38 91.59

Average 90.70 ± 1.49 91.36 ± 1.12 81.34 ± 2.73 90.75 ± 1.07 91.59 ± 0.75

FIGURE 2
ROC curves of the iLncDA-RSN on the benchmark dataset under the 5-fold cross-validation.
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through the databases Lnc2Cancer v2.0 (Ning et al., 2016) and
lncRNADisease v2.0 (Chen et al., 2013).

Cervical cancer is diagnosed in more than 500,000 women,
which causes more than 300,000 deaths worldwide (Jiang et al.,
2021). Top 15 lncRNAs predicted by the iLncRNA-RSN for the
cervical cancer is recorded in Table 2. Through a series of
experiments, Zhang et al. (2017) demonstrated that the

expression of lncRNA CDKN2B-AS1 is remarkably high in both
cervical cancer tissues and cell lines, and the CDKN2B-AS1may take
an essential part in the progression of cervical cancer, implying that
CDKN2B-AS1 may work as a new cervical cancer therapeutic target
and prognostic biomarker. Wang and Zhu (2018) demonstrated that
lncRNA NEAT1 serves as a miR-101 sponge in cervical cancer and
its upregulated level is associated with poor prognosis and poor

FIGURE 3
ROC curves of the iLncDA-RSN and the iLncDA-NULL on the benchmark dataset.

FIGURE 4
ROC curves of the iLncDA-RSN with and without miRNA heuristic information on the benchmark dataset.
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clinical-pathological factors, implying that NEAT1 might be a target
for the treatment of cervical cancer. Yan et al. (2018) performed a
luciferase reporter gene analysis, which showed that there is a
binding site between the UCA1 lncRNA and miR-206, and the
UCA1 is upregulated in the tissues of cervical cancer patients.

Colon cancer, a common preventable cancer, has been
increasing in incidence and mortality among young people under

the age of 50 in the past 25 years (Ahmed, 2020). Top 15 lncRNAs
predicted by the iLncRNA-RSN for the colon cancer is recorded in
Table 3. Of them, 14 lncRNAs are verified in databases C and D.
(Tseng et al., 2014) found that lncRNA PVT1 increases MYC
protein level, which in turn increases the cancer rate of colon
cancer. (Li et al., 2019) showed that lncRNA KCNQ1OT1 fosters
chemoresistance in colon cancer via sponging miR-34a and may act

FIGURE 5
ROC curves of the iLncDA-RSN with different dimensionality reduction methods on the benchmark dataset.

FIGURE 6
ROC curves of the iLncDA-RSN with different classifiers on the benchmark dataset.
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as a possible target for the therapy of colon cancer. (Sun et al., 2018)
used qRT-PCR to measure the expression of lncRNA XIST in colon
cancer tissues as well as in adjacent normal tissues, and showed that
XIST expression is upregulated remarkably in tissues of colon
cancer, thus indicating that XIST plays an oncogenic role in
colon cancer.

Most patients with gastric cancer are diagnosed at an advanced
phase and suffer from a poor prognosis (Lian et al., 2016). Top
15 lncRNAs predicted by the iLncRNA-RSN for the gastric cancer is
recorded in Table 4. Several studies (Chang et al., 2016; Wang et al.,
2016; Ye et al., 2016) found that lncRNA HOTTIP may play a
significant part in the initiation and progression of gastric cancer,
andmay be both a new prognostic marker and a prospective target for

FIGURE 7
ROC curves of compared computational models on the independent validation set.

TABLE 2 Top 15 lncRNAs predicted by the iLncRNA-RSN for the cervical cancer.

Rank LncRNA Evidence

1 CDKN2B-AS1 Ca&Db

2 NEAT1 C&D

3 CDKN2A-AS1 D

4 MIR17HG D

5 UCA1 C&D

6 KCNQ1OT1 D

7 HCP5 C&D

8 TP53COR1 C&D

9 MIR155HG D

10 HOTTIP D

11 DANCR C&D

12 XIST C&D

13 ATXN8OS D

14 TP53TG1 D

15 LINC00299 D

aC represents Lnc2Cancer v2.0 database.
bD represents lncRNADisease v2.0 database.

TABLE 3 Top 15 lncRNAs predicted by the iLncRNA-RSN for the colon cancer.

Rank LncRNA Evidence

1 CDKN2B-AS1 C&D

2 GAS5 C&D

3 MIR17HG D

4 PVT1 C&D

5 DISC2 D

6 KCNQ1OT1 C&D

7 NEAT1 C&D

8 XIST C&D

9 HCP5 Unidentified

10 ATXN8OS D

11 PISRT1 D

12 MIAT D

13 MIR155HG C&D

14 UCA1 C&D

15 SPRY4-IT1 D
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the therapy of gastric cancer. Sha et al. (2018) conducted real-time
PCR with gastric cancer specimens and adjacent matched regular
tissues, and showed that the level of lncRNA MIAT in gastric cancer
tissues is elevated. (Tan et al., 2019b) found that the downregulation of
lncRNA NEAT1 significantly inhibited gastric cancer progression,
while overexpression of NEAT1 induced gastric cancer development.
(Du et al., 2016) showed that the expression of lncRNA WT1-AS is
downregulated in the tissues and cells of gastric cancer, and
demonstrated that WT1-AS may be associated with gastric cancer
of tumor progression.

4 Conclusion

In this study, we presented a computational model iLncDA-RSN
based on reliable similarity networks for identifying potential LDAs.
Specifically, for constructing reliable similarity networks of lncRNAs
and diseases, miRNA heuristic information with lncRNAs and
diseases is firstly introduced to construct their respective Jaccard
similarity networks; then GIP kernel similarity networks and Jaccard
similarity networks of lncRNAs and diseases are provided based on
the lncRNA-disease association network; a randomwalk with restart
strategy is finally applied on Jaccard similarity networks, GIP kernel
similarity networks, as well as lncRNA functional similarity network
and disease semantic similarity network to construct reliable
similarity networks. Depending on the lncRNA-disease
association network and the reliable similarity networks, feature
vectors of lncRNA-disease pairs are integrated from lncRNA and
disease perspectives respectively, and then dimensionality reduced
by the elastic net. Two random forests are at last used together on
different lncRNA-disease association feature sets to identify

potential LDAs. The iLncDA-RSN is evaluated by five-fold cross-
validation and five experiments were performed, including
evaluation of prediction ability, evaluation of the reliable
similarity network, evaluation of the miRNA heuristic
information, comparison with other dimensionality reduction
methods, comparison with other classifiers, and comparison with
other computational models. Experimental results show that the
iLncDA-RSN outperforms the compared models. Furthermore, case
studies of different complex diseases demonstrate the effectiveness
of the iLncDA-RSN in identifying potential LDAs.
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TABLE 4 Top 15 lncRNAs predicted by the iLncRNA-RSN for the gastric cancer.

Rank LncRNA Evidence

1 ERICH1-AS1 Unidentified

2 LINC01628 D

3 NALT1 C&D

4 PISRT1 D

5 MIR100HG C&D

6 HOTTIP C&D

7 ATXN8OS D

8 MIAT C&D

9 HCP5 Unidentified

10 ESRG D

11 MIR17HG D

12 NEAT1 C&D

13 IFNG-AS1 D

14 LINC01080 D

15 WT1-AS C&D
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