
An efficient convolutional neural
network-based diagnosis system
for citrus fruit diseases

Zhangcai Huang1, Xiaoxiao Jiang1*, Shaodong Huang1,
Sheng Qin1* and Su Yang2

1Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, School of Electronic and
Information Engineering, Guangxi Normal University, Guilin, China, 2Department of Computer Science,
Swansea University, Swansea, United Kingdom

Introduction: Fruit diseases have a serious impact on fruit production, causing a
significant drop in economic returns from agricultural products. Due to its
excellent performance, deep learning is widely used for disease identification
and severity diagnosis of crops. This paper focuses on leveraging the high-latitude
feature extraction capability of deep convolutional neural networks to improve
classification performance.

Methods: The proposed neural network is formed by combining the Inception
module with the current state-of-the-art EfficientNetV2 for better multi-scale
feature extraction and disease identification of citrus fruits. The VGG is used to
replace the U-Net backbone to enhance the segmentation performance of the
network.

Results: Compared to existing networks, the proposed method achieved
recognition accuracy of over 95%. In addition, the accuracies of the
segmentation models were compared. VGG-U-Net, a network generated by
replacing the backbone of U-Net with VGG, is found to have the best
segmentation performance with an accuracy of 87.66%. This method is most
suitable for diagnosing the severity level of citrus fruit diseases. In the meantime,
transfer learning is applied to improve the training cycle of the network model,
both in the detection and severity diagnosis phases of the disease.

Discussion: The results of the comparison experiments reveal that the proposed
method is effective in identifying and diagnosing the severity of citrus fruit diseases
identification.
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1 Introduction

Citrus is cultivated worldwide for its high commercial and nutritional value (Yang et al.,
2022). The popularity of citrus cultivation in southern China has endured because of its good
economic returns, especially in Guangxi (Zhou, 2020). With the great growth of citrus
cultivation, the direct economic losses caused by citrus diseases are also climbed. Citrus
canker is one of the major diseases affecting the quality of citrus, which is difficult to
eradicate (Conti et al., 2020). Therefore, prompt treatment of citrus diseases is particularly
important. To achieve this, the accurate identification of the disease type in citrus fruit and
the accurate assessment of its severity is indispensable.
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Many techniques are used for the identification of citrus
diseases. Computer vision is one of the important methods,
which is divided into pre-processing, segmentation, feature
extraction and final classification. Pre-processing refers to the
optimization of plant images to prepare for the next image
processing. Common methods include image binarisation, noise
reduction, enhancement, geometric changes and interpolation.
Segmentation extracts feature such as size, colour and texture
from an image by dividing it into different regions. Finally, the
image is classified based on the extracted feature information (Lee
et al., 2017). The refinement of accurate diagnostic computer
systems has solved many of the problems of plant disease
identification. Enables computer vision technology to be used in
a wide range of practical scenarios. However, traditional computer
vision techniques rely on manual feature extraction algorithms,
which require high-quality data sets, making it difficult to
achieve the accuracy expect from detection.

The progress of machine learning algorithms promotes the
emergence of new methods. Deep Learning (DL) is regarded as
the most potential and future computing technology in modern
agriculture because of its high accuracy in classification and
recognition tasks. Hence, DL plays an indispensable role in the
automation of disease identification and detection. Especially, due to
the excellent performance of Convolutional Neural Networks
(CNNs) in image feature extraction, it is widely used for fruit
recognition and prediction by providing an automatic feature
extraction scheme without human intervention (Vasconez et al.,
2020). CNN automatically extracts relevant features through
training a large number of data sets, thus eliminating the
traditional manual feature extraction link. The accuracy of the
former is often much higher than that of the latter.

Different CNN models show different efficiencies. Depending
on the database in question, the CNN with optimized depth, width
and resolution may lead to much-improved results. Improving the
network from these three aspects also means improving the network
performance, and strengthening feature extraction capabilities.
Features are divided into basic features and high-dimensional
features, and network improvements nowadays tend to focus on
the former rather than the latter. This results in models that
increased complexity but struggle to reap corresponding
performance gains. Improvements in high-latitude feature
extraction are gaining attention in models saturated with basic
feature extraction. High-latitude features are features that are
extracted from multiple scales to exploit the multi-scale
information of the image, in a way that is not limited to only
one dimension. The enhanced capability of high-latitude feature
extraction can improve the generalization performance of the
network model and enhance the adaptability of the model to
different datasets. Therefore, it is challenging to improve the
ability of the model to extract high-dimensional features. and the
quality of the extracted high-dimensional features can be judged by
the accuracy of the disease identification. Once the type of disease
has been accurately determined, the next challenge is to quantify the
severity of the disease to determine the dose of medication.

Indeed, it is difficult to gauge the effectiveness of management
practices without a quantifiable measure. Traditionally, the human
eye relies on experience with the help of measurement aids to
determine the severity of the disease, but this method lacks

accuracy (Hassan et al., 2021). On the other hand, the traditional
machine learning methods cannot quantify the severity, they can
only determine the interval of the disease, such as early or late stages.
It cannot give good advice on the progression and subtle changes in
some subsequent diseases because it cannot achieve sufficient
detection accuracy (Wang et al., 2017). Benefiting from the
extension of the DL model, the image can be detected with
sufficient resolution. Through pixel-by-pixel detection, the
highest accuracy can be achieved when calculating the severity of
the disease. However, the training of DL model depends on a large
number of tagged image data, Therefore, collecting data for training
is one of the challenges for disease severity analysis.

The main contributions of this study are: 1) A citrus disease
detection system has been constructed, which is divided into a phase
for the identification of disease species and a phase for the diagnosis
of their severity. 2) A fast and accurate model for citrus fruit disease
diagnosis is constructed by integrating InceptionV1 and
EfficientNetV2. 3) In the system proposed in this paper, Transfer
Learning (TL) is used to import the initialization weights of the
network to reduce the training cycle of the model and compare it
with the advanced models of disease diagnosis. 4) Estimationmodels
are constructed to quantify the severity of citrus diseases, and the
performance of different segmentation models is compared on our
dataset.

The rest of the paper is organized as follows: Section 2 introduces
the background of disease identification and severity quantification.
Section 3 outlines the materials andmethods of the proposedmodels
for disease identification, and the experiment results using other
advanced DLmodels are discussed and compared with the proposed
method. The architecture and implementation of disease severity
analysis are described in Section 4. Finally, the contribution of this
study and plans are summarized in Section 5.

2 Related work

This section reviews the methods of disease recognition and
semantic segmentation. Representative methods applied to these
two fields in engineering are presented.

2.1 Disease recognition

Traditional manual methods of identifying citrus diseases often
make identification inefficient and difficult to achieve the desired
level of accuracy due to the tedious nature of the identification
process and the variability of the preceding and following processes
(Ismail and Malik, 2021). Compared with traditional manual
recognition, computer vision-based technology can provide better
solutions for citrus disease recognition. Images contain many visible
features including textures, shapes, and colors. The machine
learning methods extract the feature information contained in
the image through the algorithm processing of the citrus image,
to achieve the purpose of citrus classification. Citrus images are
detected by a multispectral imaging sensor. Moreover, an approach
for citrus classification using threshold processing is proposed in
(Abdelsalam and Sayed, 2016). Adaptive neuro-fuzzy inference
systems and linear, and nonlinear regression methods are used to
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grade citrus fruits (Sabzi et al., 2017). A system for classifying
diseases of orange using multiclass Support Vector Machines
(SVM) and calculating the severity of diseases using fuzzy logic is
proposed in (Behera et al., 2018). The automatic citrus grading
detection is performed by using BP neural network (Chen et al.,
2018). These methods are interpretable and have the features of a
high correct recognition rate compared with the manual method but
the tediousness of the feature extraction process and the loss of
features due to dimensionality reduction are challenges that need to
be addressed (Chao et al., 2021). Although these methods are a
significant improvement over manual methods, the non-automatic
nature of feature extraction in the recognition process has prevented
their widespread use in practical production.

DL has been widely researched for its automated feature extraction
process, and it can effectively reduce the loss of information caused by
manual feature extraction algorithms. In particular, the rise of CNNs
has raised enthusiasm for DL to a whole new level. VGG (Simonyan
and Zisserman, 2014), AlexNet (Iandola et al., 2016) and GoogleNet
(Szegedy et al., 2015) are classic representations of CNN models,
although these models cannot achieve very high accuracy, they are
still widely employed in the field of agricultural engineering. These
networks only require an input image to actively extract the feature
information embedded in the image, but the performance of their
output fluctuates with the merit of the dataset. This means that these
models cannot be applied in some complex environments, and the
reason for this is the inadequate feature extraction capability of these
network models. In recent years, based on the developed computer
hardware, people begin to optimize the depth learning model from
depth, width and resolution. So deep Residual Neural Networks
(ResNet) (Wu et al., 2019), Xception (Avery et al., 2014),
EfficientNet (Tan and Le, 2019) and other more generalized DL
models emerged at the times required.

ResNet classifiers are trained to detect the defects of tomato fruit
(da Costa et al., 2020) and achieved an average precision of 94.6%.
By combining TL with ShuffleNet, a lightweight model (Context
Driven Detection Network) is constructed to detect and classify
surface defects in carrots (Deng et al., 2021). Achieving 99.82% and
93.01% accuracy in binary and multiclass classification, respectively.
The conclusion that CNNs are more accurate than SVM is proved in
(Fan et al., 2020) by comparing the performance of CNN and SVM
in Apple defect detection. Three learning models: AlexNet,
GoogleNet and ResNet50 are used to grade Okra (Raikar et al.,
2020). The accuracies obtained are 63.45% for AlexNet, 68.99% for
the GoogleNet model and 99% for ResNet50 which is better than the
others. By training, testing and comparing ResNet, DenseNet,
MobileNetV2, NASNet and EfficientNet, EfficientNet is proven to
be the best fruit grading model (Ismail and Malik, 2021). The
accuracy exceeded 98% on both the apple and banana datasets.
Although these models have better accuracy than those classical
models, it can be observed that these models lack the ability to
extract multi-scale features. The lack of high latitude feature
extraction capability makes the DL model unable to achieve ideal
results on some similar data sets. At the same time, the optimization
of depth, width or resolution means the increase of model
parameters and the occupation of computing resources.
Therefore, it is a challenge for all DL models to improve the high
latitude feature extraction capability of the model and reduce
computing resources.

2.2 Disease severity diagnosis

To effectively control and treat plant diseases, an accurate
diagnosis of the severity of the disease is an integral part of the
effective identification of the plant disease. Disease severity diagnosis
can be used to improve crop yields and reduce the economic losses
caused by plant diseases. Disease detection models at this stage are
not suitable for disease severity diagnosis. More often, segmentation
models are used to distinguish between diseased and healthy areas
for the next step of disease severity analysis.

A fuzzy logic inference system based on the DeeplabV3+model
is proposed in (Ji and Wu, 2022) for automated detection and
disease analysis of grapevine black measles disease. DeeplabV3+ is
used to separate the infected and healthy areas and a fuzzy
inference system is introduced to diagnose the disease severity.
The method has been shown to have high classification accuracy
and also to be able to accurately measure the severity of grapevine
black measles disease under controlled conditions. Also based on
DeeplabV3+, a DeeplabV3+ model with multi-scale inputs is
proposed to improve image recognition and segmentation
performance of cancerous areas in pathological sections of
gastric cancer (Wang and Liu, 2021). By incorporating a unique
nested jumping device in U-Net to generate semantically similar
feature maps in the connected section, a model called U-Net++ is
proposed (Cheng et al., 2018). By comparing the segmentation
performance of a set of the most representative models
(Deeplabv3+, U-Net and U-Net++) for the bull’s-eye region in
ultrasound images. It is concluded that U-Net++ has the best
performance compared to the other models, achieving a
segmentation accuracy of more than 97% (de Melo et al., 2022).
A real-time detection system for apple leaf disease detection is
proposed in (Khan et al., 2022). The system divides the detection
phase into 2 stages, initial and detection. The initial phase is used to
differentiate between diseased and disease-free leaves, while the
detection phase is used to detect disease-susceptible areas of the
leaves. By combining VGG and U-Net, a system for diagnosing the
severity of tomato leaf diseases is proposed in (Wspanialy and
Moussa, 2020), obtaining results comparable to human
assessments. The proportion of regions suggested as the most
appropriate indicators of disease severity for plant diseases caused
by fungi or bacteria, the ordinal classification is more applicable to
diseases caused by viruses or insects.

3 Methodology

EfficientNetV2 (Tan and Le, 2021) and the Inceptionmodule are
introduced in detail in this section and an improved
EfficientNetV2 is applied to disease detection in citrus fruits. In
addition to this, several different segmentation algorithms are
compared to find the most suitable model for disease severity
diagnosis.

3.1 Dataset

The dataset for this article is mainly from the Kaggle website,
which includes 800 images for the citrus fruit black spot and canker
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diseases. All of them are taken in a uniform laboratory setting, and
some sample images are shown in Figure 1.

For effective differentiation in the experiment, fresh citrus
images without disease are added for classification based on these
two disease images. In addition to this, the disease images are
expanded to 2,000 by data enhancement operations, including
mirror flip and angular rotation. Moreover, of these
2,000 images, the number of black spots and cankers each
accounted for 50%. At the stage of severity diagnosis, Manual
pixel-level labels of the raw dataset are made by using an
annotation tool named labelme (Marois and Syssau, 2008), image
pixels are labelled in one of four categories: healthy, black spotted,
cankered and background. We use different colors to differentiate.

3.2 EfficientNetV2

EfficientNet is considered the best CNN network when it is first
proposed. It improves the performance of the network by

simultaneously improving the width, depth and resolution of the
network. However, with the improved performance,
EfficientNet also has its drawbacks: 1) The training period is
limited by the size of the input image and becomes extremely
inefficient when the image size is too large. 2) Premature use of
deep convolution can make the model counterproductive. 3)
Equivalent amplification of each stage is suboptimal. These
drawbacks limited EfficientNet and prevented it from being
widely used in practice until the advent of EfficientNetV2.

EfficientNetV2 replaces the originally available MBConv by
Fused-MBConv based on EfficientNet and proposes an improved
progressive learning method that can not only improve the training
speed but also the accuracy rate. Fused-MBConv replaces expansion
conv1x1 and depth-wise conv3x3 in the main branch with a normal
conv3x3, as shown in Figure 2. However, structure replacement like
this does not happen at every layer, if the shallowMBConv structure
is replaced with a Fused-MBConv structure, the training speed can
be significantly improved, but if one is to use all Fused-MBConv
modules instead, the training period would rise significantly with the

FIGURE 1
Citrus dataset: (A) Citrus black spot; (B) Citrus black spot after mirror flip; (C) Citrus black spot after rotation; (D) Citrus canker; (E)Citrus canker after
mirror flip; (F) Citrus canker after rotation.

FIGURE 2
Structure of Fused-MBConv module.

Frontiers in Genetics frontiersin.org04

Huang et al. 10.3389/fgene.2023.1253934

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1253934


increase in computational complexity. So the best combination of
MBConv and Fused-MBConv is searched in EfficientNetV2 using
NAS technology.

Similar to EfficientNet, which includes several models from B0-
B7, EfficientNetV2 also includes several classical models, namely,
EfficientNetV2-S, EfficientNetV2-M and EfficientNetV2-L. In our
experiments, EfficientNetV2-S is used as a base model. The structure
of the EfficientNetV2-S is shown in Figure 3.

3.3 Transfer learning

The advent of TL has brought new life to DL models, where
weights trained on the initial training set are migrated to the
target network to reduce training cycles and improve model
accuracy. Using TL means that instead of training with
randomly initialized weights from start to finish, weights for
up-training on some large labelled datasets (e.g., public image
datasets, etc.) can be obtained by pre-training them and using
them as a way to initialize the target network weights. In this
paper, pre-trained models learned from ImageNet are considered
and transferred to the target dataset for task-specific training.
Pre-training weights trained on ImageNet are imported into the
EfficientNetV2 model as a way to improve the classification
performance of the model.

3.4 Proposed approach

As mentioned in Section 3.2, EfficientNet represents the most
advanced CNN model framework. It further reduces the
computational complexity and improves performance. However,
EfficientNetV2’s thin final stage layer caught our attention. The gap
before pooling and 1 × 1 convolution mean that the final layer of the
EfficientNetV2 model does not allow for the extraction of multi-
scale features, which will inevitably have an impact on the final
classification. The first few convolutional layers of a convolutional
neural network are usually used to extract colour and corner point
features of an image, while the end layer performs the resolution of
weights and computation of features, so the lack of performance of

the end layer is critical to the overall network model. In addition, the
MBConv in EfficientNetV2 also inspires and reminds us of the
Inception module (de Melo et al., 2022), which is similar to it. The
Inception module is added to the final phase of EfficientNetV2 to
enhance network performance.

MBConv is an inverted linear bottleneck layer with depth-
separated convolution, Inception is a module that is a discrete
spectrum between normal convolution and convolution along
depth-separated convolution, compared to normal convolution,
the major difference between these two types of convolutions is
the much-reduced number of parameters. Suppose the input
feature map dimension is (H1 × W1 × M), where H1, W1, and
M is the height, width and number of channels of the input
feature map respectively. The convolution kernel size is
(DK × DK ), where DK is the height and width of the
convolution kernel. The output feature map dimension is
(HO × WO × N), where HO, WO, and N is the height, width
and number of channels of the output feature map respectively.
For the standard convolution, the computational complexity can
be calculated as

FIGURE 3
Structure of EfficientNetV2-S.

FIGURE 4
Structure of InceptionV1.
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F1 � HO × WO× DK × DK × N × M, (1)
where F1 is the computation of the standard convolution. Depth-
separable convolution can be calculated as

F2 � HO × WO× DK × DK × M +HO × WO × N × M, (2)
where F2 is the computation of the depth-separable convolution.
The ratio between the two calculations can be found as

R � F2

F1
� 1
N

+ 1
DK × DK

, (3)

where R is the ratio of the calculation volumes of the two calculation
methods. The advantage of the Inception module is that it allows the
aggregation of visual information of different sizes, while first down-
scaling larger matrices to facilitate feature extraction from different
scales. The framework of the InceptionV1 module used in this paper
is shown in Figure 4, which replaces vertically stacked convolutions
with parallel convolutions. This module uses three different scales of
convolution kernels (1 × 1, 3 × 3, 5 × 5) and a maximum pooling
kernel (3 × 3) to increase the adaptability of the network to different
scales.

Features from the previous layer are extracted and stitched
together at the end after passing through these three different
sizes of convolution kernels. This means that the network can
perceive local areas of the image from different sizes in the same
layer and fuse features from different scales. Thus, InceptionV1 has
the following advantages over standard convolution:

• Control the computational complexity while increasing the
parameters.

• The multi-scale processing performance of the network is
improved by aggregating feature information.

In this paper, a 2-layer InceptionV1 module is added to the final
stage between the 1 × 1 convolutional layer and the global pooling
layer, moreover, the newly generated network architecture is shown
in Table 1.

The excellent multi-scale inference capability of the
InceptionV1 model fills in well the lack of feature extraction
capability before the descending convolution of the tail layer. It

both picks up the feature extraction from the previous stage and
prepares the ground for the dimensionality reduction operation in
the next part. Therefore, the newly generated network usually
consists of two parts: the first part is the pre-training module,
stages 0–6, which is used for basic feature extraction; the second
part is the extension layer, stage 7, which is used for extracting high-
latitude features and using multi-scale feature maps for
classification. In addition, the training of the model is performed
using two-TL with the following training strategy. In the first step,
model parameters are inferred from scratch while freezing the
weights from the bottom multiscale module (stage 7) pre-trained
from ImageNet. The second step retrains all weights by loading the
model imported in the first stage of training and using the target
citrus dataset. The multiscale module at the bottom of the model has
initial weights and is trained using the citrus dataset, thus network
performance is improved.

3.5 Severity diagnosis

Severity diagnosis is one of the sub-tasks of semantic
segmentation, which aims to calculate the severity of disease by
accurately measuring the area of the diseased region, calculated as

S � DA
TA

, (4)

where S is the severity of the disease, DA is the area of the disease
area and TA is the total fruit area.

Using the label annotation of the dataset in Section 3.1,
400 images are obtained for the two citrus fruit diseases shown
in Figure 5. Each disease category dataset is divided into subsets for

TABLE 1 Parameters related to the proposed network model.

Stage Type Kernel size Stride Layers

0 Conv3 × 3 3 × 3 2 1

1 Fused-MBConv1 3 × 3 1 2

2 Fused-MBConv4 3 × 3 2 4

3 Fused-MBConv4 3 × 3 2 4

4 MBConv4 3 × 3 2 6

5 MBConv6 3 × 3 1 9

6 MBConv6 3 × 3 2 15

7 InceptionV1 - 1 2

Conv1 × 1&Pooling&FC - - 1

FIGURE 5
Images of citrus fruit before and after labelling: (A)Original black
spot image; (B) Original canker disease image; (C) Image of the black
spot after labelling; (D) Image of canker disease after labelling.
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training, validation and testing in proportions of 70%, 10% and 20%
respectively.

The U-Net, as the name suggests, is a U-shaped network
architecture, divided into a down-sampling part (the backbone
feature extraction network) and an up-sampling part (the
enhanced feature extraction network). The “U” structure of its
features consists of conventional convolution and maximum
pooling forming the down-sampling, followed by a mirroring up-
sampling step. In this work, the down-sampling part of U-Net will be
replaced by VGG16 to enhance feature extraction from its backbone
feature network. 3 × 3 convolution is used in the same horizontal
layer as the ReLu activation function and is carried through to the
next dimension by 2 × 2 maximum pooling. The last step of each
horizontal layer is connected to its associated up-sampling block in
the upstream path as shown in Figure 6. Similarly, in the training
phase, the VGG16 weights pre-trained on ImageNet are imported
into the model with the help of TL to shorten its training cycle. The
U-Net model is then retrained on the citrus fruit dataset and the
parameters are fine-tuned to obtain the optimal weights. Finally, the
test output of the model is compared with the real labels and its
performance is analyzed.

4 Results

This section provides the results of the qualitative analysis of the
disease detection models presented and the quantitative analysis of
the severity diagnosis models in Section 3, which analyses the
performance of these two types of models in detail.

4.1 Experimental configuration and
parameters

In this paper, experiments are conducted using the
Python3 programming language, and the models are

implemented using the Tensorflow 2.0 (Mart´ın et al., 2016)
framework. In addition, the training and testing of network
models in this paper are performed on an AMD5700G and an
NVIDIA A6000. In the model training stage, set the training batch
size to 8, and a stochastic gradient descent algorithm is chosen to
optimize the parameters. The initial learning rate is set to 0.01 and
decreased with training epochs. Meanwhile, the momentum is set to
0.9 for accelerating convergence. The dropout is set to 0.1 for
preventing overfitting.

4.2 Disease recognition results

Based on the model proposed in Section 3.4, this section trained
and tested the model on the citrus fruit dataset. To fairly evaluate the
performance of the model, each class of citrus fruit is randomly and
evenly divided into 5 portions. Four of these are used to train the
fine-tuned model and the remaining one is used to test and evaluate
the model’s performance. In addition, we use K-fold cross-validation
(K = 5) for model training and hyperparameter selection. Thus the
ratio of the training, validation and test sets for the experiment is set
to 6:2:2. Five different fine-tuned models are obtained after cross-
validation. Where the accuracy of a single model is calculated by

A � 1
n

1, f xi( ) � yi
0, f xi( )! � yi

{ , (5)

where A is the accuracy, n is the number of inputs, f (xi) is the
predicted outcome of the model and yi is its true label. These
5 model results are combined to obtain the average accuracy of the
model. The average accuracy avoids the errors caused by single
training and gives us a more objective view of the model’s
performance.

Table 2 shows the test results of the 5 training sessions and what
can be seen is that although there is some fluctuation in the results of
the 5 data sessions, the overall performance is at a high level. In
addition, to further assess the feasibility of the proposed

FIGURE 6
VGG-U-Net Architecture.
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TABLE 2 Results for 5 training sessions of the model.

- 1st fold 2nd fold 3rd fold 4th fold 5th fold Average

Accuracy 97.5 98.4 98.7 97.2 99.2 98.2

Loss 0.123 0.076 0.076 0.112 0.043 0.086

FIGURE 7
Accuracy and loss of the proposed method on the citrus dataset: (A) accuracy; (B) loss.

TABLE 3 Performance comparisons with other approaches.

Pre-trained model Average accuracy
(train)%

Average
accuracy (val)%

Average accuracy
(test)%

Average
loss

Average time
(each epoch)

ResNet50 Ji and Wu, (2022) 96.6 94.9 90.2 0.123 17′25″

GoogleNet qun PAN et al., (2022) 97.7 96.4 92.5 0.100 2′05″

EfficientNet Espejo-Garcia et al.,
(2022)

96.0 94.3 89.6 0.335 23′43″

EfficientNetV2 Tan and Le, (2021) 97.3 95.2 92.9 0.194 32′38″

EfficientNetV2 Tan and Le, (2021)
(with TL)

97.7 95.3 92.9 0.180 9′12″

Proposed method (without TL) 98.6 97.8 95.2 0.106 34′47″

Proposed method 99.3 98.2 95.6 0.086 9′22″
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methodology, three classical and convincing CNNmodels are added
to the comparison experiments, including ResNet50, GoogleNet,
and EfficientNet. Again, these network models are loaded with
weights pre-trained on ImageNet. Again, these network models
are loaded with weights pre-trained on ImageNet. The TL
strategy similar to the proposed method is used to shorten the
training cycle, training is performed on randomly assigned image
data to compare the performance strengths and weaknesses of each
network. The accuracy of the proposed method on the citrus fruit
dataset is shown in Figure 7. The proposed model performs
extremely well on the citrus fruit dataset, as can be seen from the
figure, the loss function and accuracy converge at 25 training
sessions, one of the surprising things is that the accuracy is
above 99% and the losses converge to 0%. We have repeated the
experiments many times by using different epochs (including
epoch = 30, 40 and 50). The results show that the model’s
performance has reached convergence at epoch = 25, and the

accuracy of the subsequent rounds always fluctuates, so this
paper concludes that the model can obtain good performance at
epoch = 25. Table 3 shows the average accuracy of each model after
5 training experiments.

It can be seen that the proposed model outperforms the
comparison methods on the citrus fruit dataset. In particular,
despite the increase in training time compared to the baseline
EfficientNetV2. However, it shows a large improvement in
accuracy and a decrease in training loss compared to the
EfficientNetV2. This means that the combination of Inception
module and EfficientNetV2 can enhance the feature extraction
ability of EfficientNetV2 to some extent and improve the
performance of the classifier. The main reason for this is that all
other networks are single-layer networks with only a classification
layer, while the proposed model applies the Inception module to the
tail-layer classification, extracting high latitude for the final
classification. In addition, the use of TL significantly reduces the
training cycle of the model. The training time is reduced to 1/3 results
in faster convergence and improved performance. The reason is that
in transfer learning the weights of the first few layers of the model is
froze and the pre-trained parameters are imported. This eliminates
the need to train the model from scratch and greatly reduces the
training period. In summary, the proposed model combines the
advantages of EfficientNetV2 and the Inception module, including
the former excellent basic feature extraction ability and the latter
excellent multi-scale feature extraction ability, which results in such a
perfect performance on the citrus fruit dataset. After five experiments
with 50 epochs of training each, the average test accuracy of 95.6% and
the average loss of 0.01 are obtained. The results of the five predictions
made on the test set are averaged and Figure 8 shows the average
confusion matrix of the test results. It can be seen that all the test
samples were well classified. This shows that the proposed model is
effective in identifying citrus fruit diseases.

4.3 Disease severity diagnosis

To verify the effectiveness of the VGG-U-Net segmentation
model, this paper conducts segmentation experiments on the

FIGURE 8
Confusion matrix for the proposed method.

TABLE 4 Detection results of the three segmentation models.

Model Metrics Category Average value (%)

Canker Black-spot Orange Background

DeeplabV3 Wang and Liu, (2021) IoU 0.56 0.28 0.95 0.97 69.01

PA 0.60 0.30 0.99 0.98 71.46

Precision 0.91 0.83 0.96 0.99 92.31

U-Net de Melo et al., (2022) IoU 0.79 0.51 0.97 0.97 80.85

PA 0.86 0.63 0.99 0.99 86.65

Precision 0.90 0.72 0.98 0.99 89.66

VGG-U-Net Wspanialy and Moussa, (2020) IoU 0.80 0.56 0.97 0.97 82.53

PA 0.89 0.65 0.98 0.99 87.66

Precision 0.89 0.80 0.98 0.99 91.56
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DeeplabV3, U-Net and VGG-U-Net models respectively under the
same segmentation dataset, the hyper-parameters of the
experiments are uniformly set to an initial learning rate of
0.0001, the training number is 100 rounds. If the loss of
validation does not decrease, training will end early to prevent it
from being over-fitted. In addition, to show the segmentation
performance of the model more intuitively, the Mean
Intersection Ratio (MIoU), Mean Pixel Accuracy (MPA) and
Precision are used to evaluate the segmentation performance of
the model species. The more these indicators converge to 1, the
better the segmentation performance. The calculation process for
the evaluation indicators is described as follows:

MIoU � 1
k + 1

∑k
i�0

TP
FN + FP + TP

, (6)

MPA � 1
k + 1

∑k
i�0

TP + TN
FN + FP + TP + TN

, (7)

P � TP
TP + FP

, (8)

where k is the number of validations, TP (true positive) means the
label is true and the prediction is true, FN (false negative) means the
label is false and the prediction is true, FP (false positive) means the
label is true and the prediction is false and TN (true negative) means
the label is false and the prediction is false, P is the Precision.

The test results for all detection models are shown in Table 4.
Among them, VGG-U-Net shows the best performance,
achieving an average pixel accuracy of 87.66%, which is better
than the base U-Net model and has a large performance
improvement compared to DeeplabV3. Therefore, building on
U-Net is the right choice, using VGG to replace the U-Net coding
backbone extraction network can enhance the feature extraction
capability of U-Net, which is more conducive to the segmentation
in the decoding stage and improve the segmentation performance
of the network.

It is worth noting that the segmentation performance of the three
segmentation models for the black spot is much less than that of canker
disease, due to the small size and often scattered distribution of black
spots, which greatly increased the difficulty of detecting segmentation,
whereas the large area and dense distribution of canker disease greatly
helped the performance of the segmentation models.

5 Conclusion

In this paper, a citrus disease detection system is proposed,
which has the function of diagnosing and detecting the severity of
citrus diseases. The disease identification phase focuses on the
model’s high-latitude feature extraction capabilities. The
proposed model revolves around the extraction of multi-scale
information from images, which combines the state-of-the-art
EfficientNetV2 with the classical Inception module. In addition,
TL methods are applied to the model to reduce training cycles
and improve accuracy. Experiment results show that the
proposed model has produced the best performance compared

to the classical CNN. In the disease severity diagnosis stage of the
fruit, three different segmentation models are compared, and
their performance in terms of pixel-level accuracy is evaluated.
Results show that the VGG-U-Net has the highest average
accuracy, proving the effectiveness of replacing the underlying
U-Net with VGG to encode the backbone feature extraction
network. Future work will enhance the performance of the
segmentation network for the detection of small spot targets
and extend this system to other crops.
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