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Most high throughput genomic data analysis pipelines currently rely on over-
representation or gene set enrichment analysis (ORA/GSEA) approaches for
functional analysis. In contrast, topology-based pathway analysis methods,
which offer a more biologically informed perspective by incorporating
interaction and topology information, have remained underutilized and
inaccessible due to various limiting factors. These methods heavily rely on the
quality of pathway topologies and often utilize predefined topologies from
databases without assessing their correctness. To address these issues and
make topology-aware pathway analysis more accessible and flexible, we
introduce the PSF (Pathway Signal Flow) toolkit R package. Our toolkit
integrates pathway curation and topology-based analysis, providing interactive
and command-line tools that facilitate pathway importation, correction, and
modification from diverse sources. This enables users to perform topology-
based pathway signal flow analysis in both interactive and command-line
modes. To showcase the toolkit’s usability, we curated 36 KEGG signaling
pathways and conducted several use-case studies, comparing our method
with ORA and the topology-based signaling pathway impact analysis (SPIA)
method. The results demonstrate that the algorithm can effectively identify
ORA enriched pathways while providing more detailed branch-level
information. Moreover, in contrast to the SPIA method, it offers the advantage
of being cut-off free and less susceptible to the variability caused by selection
thresholds. By combining pathway curation and topology-based analysis, the PSF
toolkit enhances the quality, flexibility, and accessibility of topology-aware
pathway analysis. Researchers can now easily import pathways from various
sources, correct and modify them as needed, and perform detailed topology-
based pathway signal flow analysis. In summary, our PSF toolkit offers an
integrated solution that addresses the limitations of current topology-based
pathway analysis methods. By providing interactive and command-line tools
for pathway curation and topology-based analysis, we empower researchers to
conduct comprehensive pathway analyses across a wide range of applications.
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1 Introduction

Biological signaling pathways are spatially and temporally
distributed series of biomolecular interactions that transduce
information in a directional manner and elicit changes in cellular
physiology (Azeloglu and Iyengar, 2015). Within a cell, pathways
form highly interconnected complex systems, comprising thousands
of nodes (proteins, nucleic acids, metabolites, ions) and hundreds of
thousands of interactions. This interconnectedness allows for cross-
connectivity and cross-talk, ensuring information redundancy,
which is crucial for normal cellular function (Lill et al., 2019).
Perturbations in signaling pathway activities have been
implicated in many complex diseases, including cancers
(McCleary-Wheeler et al., 2012; Akbari Dilmaghani et al., 2021;
Masliantsev et al., 2021). Thus, the pathway-level analysis of multi-
omics data is important for inferring molecular mechanisms
underlying disease development and progression in complex
diseases and developmental biology (Zhao et al., 2008; Arakelyan
et al., 2016; Arakelyan et al., 2017).

Pathway analysis tools can be classified into twomain categories.
The first category includes overrepresentation and gene set
enrichment analysis tools (ORA/GSEA) and their variations,
which treat pathways solely as gene sets (or lists). The advantage
of these approaches is the ability to handle any pathway or
interaction network in a simple and straightforward way.
However, they disregard information about pathway component
interactions and functional outcomes. The second category
comprises tools that leverage pathway topology and protein
interaction information which allow for the analysis of
information flow within a pathway (Bayerlová et al., 2015; Ansari
et al., 2017; Ma et al., 2019). These methods consider both the overall
structure of the pathway or interaction network and the specific
interactions among its components. By combining this information
with the abundance of pathway components measured through
high-throughput approaches such as gene expression, proteomics,
and metabolomics, comprehensive understanding of the system’s
behavior and the molecular mechanisms underlying biological
processes can be attained. Several topology-aware tools are
currently available, such as SPIA and netGSEA (Tarca et al.,
2009; Hellstern et al., 2021). Nonetheless, these tools often utilize
pathway topologies “as-is” and are constrained to a set of built-in
pathways, collected from different sources. Additionally, these tools
commonly report a single pathway state (upregulated or
downregulated), disregarding the fact that the same pathway can
exhibit a diverse pattern of branch activation, leading to different,
and at times opposing, processes (Arakelyan et al., 2016).

High-quality curated pathways serve as a crucial resource for the
accurate performance of topology-aware algorithms. Correcting
pathway topology ensures that the pathway accurately represents
the known interactions and relationships among its components
(Arakelyan and Nersisyan, 2013). It also enhances the
interpretability and relevance of the pathway in the context of
the research question or experimental data, enabling researchers
to focus on the specific interactions that are most relevant to their
analysis or hypothesis (Volkan Çakır et al., 2017). Pathway analysis
methods often rely on the topological information of pathways to
assess their functional significance or identify key components or
regulators. Incorrect or incomplete interactions can lead to biased or

misleading results (Arakelyan and Nersisyan, 2013). Pathways also
may exhibit context-specific variations or modifications under
different experimental conditions or specific disease states.
Correcting pathway topology enables researchers to incorporate
such context-specific information into the analysis (Volkan Çakır
et al., 2017).

To overcome these limitations of existing topology-aware tools,
we developed a pathway curation and activity analysis package for R.
With the PSF (pathway signal flow) toolkit, users can easily modify
and improve existing pathway topologies, build new pathways from
scratch, and analyze them with the branch and node selective
pathway signal flow algorithm to study the activity changes along
individual pathway branches. The package offers a comprehensive
set of curation and editing tools that allow for the seamless
integration of pathways from diverse data sources, and facilitate
their transformation into a biologically and computationally useable
format for topology-aware analysis.

In several use-cases, we demonstrate the utility of our pathway
analysis package.

2 Materials and methods

2.1 General description

The PSF toolkit consists of two interconnected but independent
modules for 1) pathway curation (pathway parsing, creation, and
editing), and 2) pathway activity (pathway signal flow, PSF) analysis.

The toolkit offers both programmatic access in R and a graphical
user interface (GUI) as an R Shiny app (see Figure 1A for an
overview). With the assistance of the curation module, users can
generate analysis-ready pathways with an accurate and context-
relevant topology that correctly represent the information flows in
the pathway. These pathways can subsequently be used for PSF
analysis.

The PSF toolkit package has been tested on three independent
platforms (Windows, macOS, Ubuntu) using the GitHub Actions
automated build and testing system.

2.2 Pathway curation

The PSF toolkit comprises an interactive Shiny application
designed for the curation and editing of pathways from diverse
sources. Pathways can be imported automatically from the KEGG
database via the API or as data frames of nodes and interactions
from other databases. Alternatively, users can build pathways from
scratch using the integrated “visNetwork” editor.

The Shiny app has two visualization modes: overlay of the
pathway graph object on the KEGG pathway image with R
“magick” and interactive visualization with the “visNetwork” R
packages (the complete list of package dependencies is listed in
the GitHub repository of the package https://github.com/
hakobyansiras/psf).

The application offers a range of tools for manipulating pathway
topologies, including the addition, editing, and deletion of pathway
nodes, modification of pathway edges and their attributes, and the
creation of one-to-one and one-to-many edges. Users can search,
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edit, and refine interactions between selected pairs of nodes or
between a given node and all other nodes using an integrated
protein-protein interaction (PPI) search engine (Cerami et al.,
2011; Licata et al., 2020) (Figure 1B). Furthermore, the
application incorporates tools for detecting disconnected nodes,
node duplications, and loops. Visualization modes are also
available to track user modifications and adjust the pathway layout.

Dedicated tools are provided within the application for parsing and
editing KEGG pathways. These tools include a parser for KEGG
pathways, which automatically corrects “protein-compound-protein”
interactions by adding missing interactions, grouping nodes, and
establishing binding directions. The parsing tool is inherited from
KEGGParser (for Matlab/Octave) and CyKEGGParser (for
Cytoscape), which were previously developed by the authors
(Arakelyan and Nersisyan, 2013; Nersisyan et al., 2014). Additional
information regarding the automated corrections for pathways can be
found in the Supplementary Material of the original KEGGParser paper
(Arakelyan and Nersisyan, 2013). The overlay of KEGG pathways on
images facilitates more informative pathway visualization and aids in the
identification and resolution of inconsistencies between the image and
KGML using the editor’s tools.

The detailed description of the pathway curation process is
presented as one of the use cases in the Results section.

After curation users can save edited pathways as a collection of graph
objects (nodes representing pathway entities, edges representing
interactions), use them for further pathway analysis in R, or continue
analysis in the interactive mode. The toolkit also allows pathway graph
modifications programmatically using the “graph” package.

2.3 Pathway signal flow analysis

The PSF algorithm computes the activity state of each node (gene or
gene groups) in a pathway based on the relative gene expression values
and interactions with upstreamnodes (Nersisyan et al., 2017). It has been
used intensively in many studies of chronic and malignant diseases
(Hopp et al., 2015; Arakelyan et al., 2016; Arakelyan et al., 2017).

The algorithm computes the activity values of each node (node
signal) through the branches of the pathway, starting from input
nodes (ligands/receptors) and progressing toward the end of the
pathway branches (terminal/sink nodes). Node signal values are
calculated using the following formula:

Sj � FCj ∑
i∈Inc j( )

piωijS
Kij

j

where Sj represents the node signal, FCj is the fold change value of a
node, Si is the signal of the parent/upstream node, wij is the weight of
interaction between the jth and ith node (with a default value of 1),
and Kij is the impact (1 for activation, −1 for inhibition). The
proportion of the incoming node signal is calculated using the
following formula:

pi � Si
∑k∈Inc j( )Sk

The significance of PSF value change at branch or pathway levels
can be assessed with bootstrapping by reshuffling either sample
labels or gene expression values in the pathway.

FIGURE 1
An overview of the PSF toolkit. (A) PSF toolkit consists of two major modules for pathway curation and pathway activity analysis/visualization. (B)
Pathway editing toolkit and a screenshot of the raw and curated Hippo signaling pathway. Barplots represent the number of shortest paths before and
after curation. (C) The PSF analysis module visualizes pathway activity in terms of a heatmap, topological pathway plots, and a volcano plot for up- and
downregulated PSF values.
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PSF analysis of the pathway can be performed both in the Shiny
app and in the R environment. With a programmatic approach,
users can analyze all the pathways in the collection simultaneously,
while the GUI allows for real-time visual analysis of a single
pathway.

In the Shiny app, the GUI elements enable to select a pathway,
upload expression fold change values, run the analysis, and visualize
the results with heatmaps, volcano plots, and interactive pathway
plots (Figure 1C.). The results are reported in a PDF format and as R
objects.

3 Results

3.1 Curation of KEGG pathways improves
their topology

Most topology-aware pathway analysis tools utilize the KEGG
Pathway database as their primary source of topological networks
(Tarca et al., 2009; Ansari et al., 2017; Hellstern et al., 2021). Several
reasons support the selection of KEGG by these tools. Firstly, KEGG
is the most comprehensive pathway database, providing detailed
topological information, information flow directions, and regulation
types (activation/inhibition). Secondly, compared to complex
networks with many components, KEGG offers an intuitive
separation of pathways and provides clear pathway layouts.
Moreover, it provides rich annotation regarding biological
processes associated with the overall pathway and its branches.

However, the KEGGMarkup Language (KGML) representation
of KEGG pathways suffers from several topology-related flaws,
including non-connected nodes, missing interactions, and
incorrectly annotated interaction types and directions (Arakelyan
and Nersisyan, 2013; Nersisyan et al., 2014). For instance, in the
Hippo signaling pathway, many branches are disconnected from
their final target nodes, rendering it impossible to perform
topological analyses without proper curation (Supplementary
Figure S1B). Despite these issues, topology-aware tools typically
utilize KGML representations without correction, which can lead to
significantly misleading results in topology-aware analysis,
especially for many KEGG pathways. There are numerous editors
and parsing tools available for KEGG pathways in environments like
Cytoscape and R. Some of these tools are outdated and no longer
maintained (Klukas and Schreiber, 2007; Wrzodek et al., 2011).
Others, such as KEGGscape in Cytoscape and KEGGgraph in R
provide pathway parsing and visualization but lack editing and
curation functionalities (Zhang and Wiemann, 2009; Nishida et al.,
2014). Similarly, although the graphite R package enables pathway
import from different databases for topology-aware analysis, it lacks
editing, and curation capabilities, and has limited functionality for
visualization (Sales et al., 2012). In contrast, the PSF toolkit stands
out by encompassing all essential functionalities, including pathway
import, interactive editing, curation, and topology-aware analysis.

Using the curation module of our package, we improved
36 signaling pathways from the KEGG database and conducted
several use-case studies to demonstrate the applicability of our
approach. The manual curation process in the pathway editor
was performed with two steps. It has been observed that KGML
files often contain inconsistencies compared to pathway images,

which serve as the “ground truth” in the KEGG database. In the first
step, networks were recovered and curated based on pathway image
information. Image-based visualization enables quick detection and
resolution of inconsistencies between the image and KGML using
the editor’s tools. Fixes made during this step include recovering
missing interactions in KGML files based on pathway images,
correcting wrong interaction directions, removing extra parts of
pathways that are outside the main network, and adding nodes for
processes and events present only in the pathway images. The
second step of manual curation involved addressing more
complex cases that cannot be resolved solely using the pathway
image. The second part of curation was performed with the help of a
literature review and the use of an integrated PPI database.

We demonstrate here the improvements in Hippo signaling
pathway topology. After automatic error correction during parsing
(18 fixes), additional curations (24 fixes, including fixing the binding
edge direction, and restoring missing edges) were performed
interactively in the toolkit’s GUI (Figure 2; Supplementary Figure
S1). Overall, 188 interaction directions, 553 missing interactions,
and 168 group nodes were fixed in the 36 pathways. This
considerably improved the topological properties of the pathways
particularly the overall connectivity and increased diameter of the
pathways (Table 1). The curated pathways are available in the R
package and can be used for downstream PSF analysis.

3.2 Comparing PSF with SPIA

We compared the performance of PSF and one of the most
popular topology-based pathway analysis methods - SPIA (Tarca
et al., 2009). SPIA is a topology-aware pathway analysis method that
combines evidence from overrepresentation analysis and topological
analysis to estimate the state of the whole pathway (activated/
inhibited). It takes as input a list of significantly differentially
expressed genes and their fold change values.

We conducted a pathway analysis to identify differences
between primary melanoma and benign melanocytic nevi, using
RNA-seq data (GEO accession number GSE112509) (Kunz et al.,
2018). Both algorithms were tested on the same set of 36 KEGG
signaling pathways with the same gene expression values calculated
with the DESeq2 R package (p adjusted < 0.05, for SPIA and cutoff-
free fold change values for PSF). To calculate PSF significance we
used bootstrapping (n = 2000) to check the probability of getting the
same ormore extreme PSF values by chance. The output of SPIAwas
a ranked list of pathways and their states based on the combined
significance of ORA and topology analysis. The output of PSF
included the activity of all pathway branches with calculated
significance. To compare the results of both methods, we
considered the list of significant pathways from SPIA and the list
of pathways that had at least one significantly deregulated branch
according to PSF.

Four pathways were labeled as differentially deregulated both by
SPIA and PSF algorithms. Another four pathways were additionally
detected only by SPIA, and 16 pathways were detected only by the
PSF algorithm. Examination of PSF-detected significant pathways
showed that the majority of deregulated pathways had few or only
one deregulated branch. One such example is the AMPK signaling
pathway where the “Growth arrest” branch showed a 10-fold activity
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drop due to the activation of the AMPK gene through the Leptin
Receptor (Supplementary Figure S2).

Evaluation of branch-level activity has specific advantages over
“total” pathway activity estimated by topology-aware tools such as
SPIA, PADOG, and ROntoools (Tarca et al., 2009; 2012; Ansari
et al., 2017) because depending on downstream signaling different
branches of the same pathway can trigger different processes,
sometimes even with opposite effects (see, e.g., Ras signaling
pathway, Hippo signaling pathway, Jak-Stat signaling pathway).
Thus, one score per pathway might not be sensitive enough to
detect, e.g., a dysregulated branch. For instance, the Chemokine
signaling pathway was reported with SPIA as activated with 0.05*10-

4 p-value. A detailed view however shows that, while a large portion
of the pathway is indeed activated, three terminal nodes, in contrast,
were significantly downregulated because of the inhibitory effect
from the activated AKT3 gene (Supplementary Figure S3).

Upon examining the four pathways that were detected only by
the SPIA method, it was found that the enrichment of the pathways
had the greatest impact, while the topology component was virtually
irrelevant. The differentially expressed genes in those pathways
meeting significance criterion (p <0.05) had only marginal fold
change not impacting the overall activity of pathways. After filtering
out DEGs with low fold change (logFC>|1|) two out of the four
deregulated pathways were removed from the SPIA list. Hence, SPIA

FIGURE 2
Histograms of node parameters for Hippo signaling pathway in raw and curated states. Improvement of the network topology parameters can be
noted in curated pathways. (A) Number of shortest paths between pathway nodes. The shortest path is the minimal number of edges that need to be
traversed to reach from source to the target node. (B) The closeness centrality of nodes measures their average farness from all other nodes. (C) The
Betweenness centrality measures how often a node occurs on all shortest paths between two nodes. (D) The eccentricity centrality shows how
easily accessible a node is from any other node in the network. The images of raw and curated pathways are available in the Supplement.

TABLE 1 The median values of network topology parameters in original and curated KEGG pathwaysa.

Original pathways
(N = 36)

Curated pathways
(N = 36)

Shortest path (the minimal number of edges that need to be traversed to reach from source to the target
node.)

84 180

Betweenness (the frequency of a node occurrence on all shortest paths between two nodes) 0 2.04

Eccentricity centrality (accessibility of a node from any other node in the network) 6 9

Diameter (the length of the shortest path between the most distanced nodes) 7 11

Disconnected nodes (the number of nodes without incoming and outgoing edges) 10.5 0

Sink (terminal) nodes (Nodes without outgoing edges) 20 14.5

aThe table presents network properties which describe connectivity, overall completeness, and quality of pathways. A detailed description of biological network parameters is provided in

(Koutrouli et al., 2020).
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is sensitive to threshold settings with consequences for the
robustness of the results (Ansari et al., 2017).

3.3 Analysis of pathway activity fluctuations
on gene and coding isoform levels in
melanoma

We used the PSF toolkit to analyze the profiles of signaling
pathway activities in melanoma and melanocytic nevi samples at the
gene and protein-coding isoform levels. Our objective was to
identify pathway-level effects arising from alterations in the
content of coding and non-coding isoforms in melanoma. Our
previous studies indicated significant differences in gene- and
coding isoform-level expression in molecular subtypes of benign
melanocytic nevi and primary melanomas (Hakobyan et al., 2021).
Since the overall gene expression may not necessarily represent the
fraction of isoforms that can be translated into functional proteins,
we compared the PSF scores for signaling pathways with total gene
expression values and coding isoform expression values only.

Here, we used RNA-seq data of benign melanocytic nevi and
primary melanomas deposited in the Gene Expression Omnibus
(accession number GSE112509). The RNA-seq raw FASTQ files
were processed with Kallisto (Bray et al., 2016), which performs
isoform-level quantification of gene expression using Genecode
transcript annotation (Release 42) as a reference. Quantified
isoform level data were normalized and further used to calculate
gene isoform fractions as the ratio between the isoform expression
and corresponding gene expression. The total fractions of all
isoforms from one gene must sum up to 1.

CPC2 tool was used to detect non-coding isoforms from their
sequences (Kang et al., 2017).

To filter out the non-coding isoform expression we multiplied the
total fraction of coding isoforms with corresponding gene expression
values. Next, we performed differential expression analysis between
melanoma type 1 and nevi type 1 groups with the DESeq2 R package
for full and coding gene expression data. Then, the calculated fold
change values were used to perform PSF analysis on 36 curated KEGG
signaling pathways. The significance of PSF values was calculated with
bootstrap (2000 steps) to check the probability of getting the same or
more extreme PSF values by chance. Finally, we compared lists of
significantly deregulated pathway sinks between gene and coding
isoform expression level results (Figure 3A).

The comparison of full and coding gene expression PSF values
revealed a general correlation between pathway activities with few
obvious outliers (Figure 3B). The pathways which were significantly
deregulated only on coding gene expression level had isoform
content change in their genes. Particularly, in the cAMP
signaling pathway 9 genes (GRIA1, FXYD1, AKT3, NFATC1,
NPY1R, PPP1CB, CAMK4, CFTR, PIK3CA) had switched
isoforms (e.g., coding isoforms were replaced with noncoding
isoforms while the gene expression remained unchanged in
groups) which were detected with IsoformSwitchAnalyzeR R
package in our previous study (Hakobyan et al., 2021). Another
two pathways (AMPK and JAK-STAT signaling) which were also
significantly deregulated on coding gene expression analysis also
contained isoform switches in 7 genes (TBC1D1, AKT3, RAB2A,
CAB39L, PPP2R5E, CFTR, PIK3CA; AKT3, SOCS6, CCND3,

IL3RA, IL3RA, PIK3CA, GHR). Thus, adjustment of gene
expression data based on coding isoform expression can affect
pathway activity in terms of PSF values.

3.4 Analysis of pathway activity using single-
cell transcriptome data

Here we were interested in whether our PSF algorithm has utility
in single-cell data analysis. The single-cell level transcriptomic
analyses can provide, for example, important insights into tumor
heterogeneity (Wu et al., 2021), microenvironment (Nieto et al.,
2021) as well as organismal development (Shapiro et al., 2013). Here
we used the scRNA-seq dataset from the GTEx database (Eraslan
et al., 2022) to evaluate the activity of 36 curated signaling pathways
and check cell cluster separation on the pathway level. To overcome
sparsity issues in PSF analysis we used the pseudo-bulk approach
(Crowell et al., 2020) and aggregated expression values from the
same tissue types․ From each tissue type 5,000 cells were taken and
summed up for every 50 cells. Then, gene expression fold changes
were computed against the global mean of pseudo-bulk expressions.
Pseudo-bulk transformed expression fold change values were used
to analyze the activity of curated signaling pathways with PSF. A
total of 614 activity values were calculated for 36 signaling pathways.

We used the Seurat R package (Hao et al., 2021) to compare the
sample clustering based on expression and PSF activity values. Both
single-cell expression and PSF activity data were log transformed
and mean-normalized before clustering.

Both gene-level and PSF-level clustering showed a clear
separation of tissues (Figures 4A–C). Despite having very similar
clustering results, the clusters in the PSF-level analysis explicitly
associate with the underlying pathways (Supplementary Table S1).
The functional features associated with the clusters were linked to
the physiology and function of the corresponding tissue types. Thus,
the highest activation of the FoxO signaling pathway was observed
in muscle tissues in agreement with its essential role in muscle
development and function (Xu et al., 2016). On the other hand, heart
cells showed remarkably upregulated activity of the calcium
signaling pathway compared with other tissues, where it is
known to control important cardiac functions (Terrar, 2020).

To compare gene-level and pathway-level results, we
performed an overrepresentation analysis for 36 curated
signaling pathways to identify enriched pathways for cluster-
specific genes. Then, we compared the list of overrepresented
pathways on the gene level with the deregulated pathways
detected by PSF for each cluster (Figure 4D). We noticed that
ORA detected fewer pathways than PSF in many clusters. Results
showed that enriched pathways with the ORA method had on
average 57% deregulated branches according to PSF analysis,
compared to 48% for non-significant pathways (Figure 4E, see
example pathways in Supplementary Figure S4). Thus, the
advantage of PSF in this case can be its ability to detect
branch level changes.

We demonstrated that utilizing PSF analysis in conjunction with
a pseudo-bulking approach effectively reduces the number of
analyzed features by leveraging pathway analysis. This reduction
in features ensures consistent clustering while offering valuable
pathway-branch level information on cluster-specific features.
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4 Discussion

In this paper, we present the “PSF toolkit,” a novel R tool for
topology-aware pathway analysis that integrates pathway
curation and analysis modules. The curation platform offers a
comprehensive set of tools to curate and enhance pathways from
any source. Platform also provides specific tools to enhance

existing KEGG pathways by aligning them with image templates
and accurately representing signal flows from upstream to
downstream nodes. Users can also create pathways from
scratch using the interactive Visnetwork editor or import
them through node and interaction data frames. In addition
to incorporating features from previous curation and pathway
analysis packages, the PSF toolkit includes improved functions

FIGURE 3
Venn diagram of the significantly deregulated sinks between melanoma type 1 and nevi type 1 on full and coding gene expression levels (A) and a
scatterplot of full and coding gene expression PSF values for the comparison between melanoma type 1 and nevi type 1 (B).

FIGURE 4
Single-cell pathway analysis clustering and enrichment. (A) UMAP plot of normalized single-cell gene expression values. (B) UMAP plot of pseudo-
bulk transformed single-cell expression values. (C) UMAP plot of pathway activities calculated with the PSF algorithm from pseudo-bulk transformed
aggregated cell expression values. (D) The proportion of pathways detected by ORA from those detected by the PSF method for each tissue. (E)
Proportions of Deregulated Branches in only PSF detected pathways and pathways detected both with ORA and PSF.
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for report generation, pathway graph manipulation, and
enhanced performance compared to Matlab- and Cytoscape-
based packages (Arakelyan and Nersisyan, 2013; Nersisyan et al.,
2014). Another advantage is its availability in R, which is
currently one of the most popular environments for “omics”
data analysis.

Pathway analysis has become a widely used method for the
functional analysis of high-throughput genomic data (Das et al.,
2020; Maleki et al., 2020). In general, we can classify analysis
methods into two main categories: enrichment-based methods
that utilize gene sets for analysis and topology-based methods
that require more detailed information about biological processes,
such as interactions and their types. Each of these classes has its own
advantages and disadvantages.

The first class of analysis methods, known as enrichment
methods, offers several advantages. Firstly, they leverage a vast
number of gene sets that potentially cover almost all human
genes. Secondly, they offer flexibility in terms of combining genes
in various gene sets depending on the biological context. Lastly,
these methods employ computationally efficient approaches,
making them easily applicable to large datasets. However,
enrichment methods neglect the network properties of biological
processes as they intentionally disregard the relationships between
genes within the gene sets.

The second class of methods explicitly takes into account the
graph-structure of biological pathways and considers
interactions and their types. These methods enable analysis of
signal flow along the pathway from upstream receptors to
downstream effectors. However, there are several limitations
that hinder the widespread use of these methods. The value of
pathway analyses critically depends on the correctness of the
pathway-graph. Hence, the primary limitation is the reliance on
high-quality, manually curated pathways. Currently, available
curated pathway databases with rich topology coverage only
encompass approximately 10,000 human genes, which is less
than half of the complete set. Additionally, these methods can
involve complex analysis approaches that are time-consuming
and computationally expensive. Lastly, interpreting the results
and visualizing the detailed information can pose challenges
with these approaches.

To address some of the limitations associated with topology-
aware analysis methods and advance this direction, we have
developed the PSF toolkit. The toolkit includes an interactive
curation module that tackles data availability issues by allowing
quick improvement and curation of pathways from any source.
Additionally, the visualization module enables result visualization
and facilitates the exploration of disrupted pathways in an
interactive manner.

Since the development of the PSF algorithm, it has been applied
in several studies to assess pathway activity inmalignant and chronic
lung diseases (Arakelyan et al., 2016), autoinflammatory and
autoimmune disorders (Arakelyan et al., 2017), molecular
mechanisms of desiccation tolerance in plants (Mladenov et al.,
2022), telomere length maintenance in colorectal cancers (Nersisyan
et al., 2019), among others. In this study, we expand the application
of the PSF toolkit to the analysis of isoform expression-based and
single-cell pathway activity estimation.

Furthermore, we compared the performance of the PSF
algorithm with the widely used and cited SPIA algorithm
(Tarca et al., 2009). The findings reveal that SPIA tends to
identify pathways as significant when they contain a large
number of differentially expressed genes (DEGs), irrespective
of their topology and interactions. Hence, SPIA is highly
sensitive to the DEG selection cut-off and may yield
inconsistent results in the case of improper selection. In
contrast, our PSF approach offers two advantages over SPIA:
cut-off-free analysis and significance calculation at the pathway
branch level.

In conclusion, our presented R package, the ‘PSF toolkit,’ offers a
comprehensive solution with its pathway signal flow algorithm and
interactive curation and visualization platform. The package caters
to diverse user preferences by providing both programmatic and
GUI access options. Its versatility extends to various applications,
including bulk and single-cell expression data analysis, and other
gene-level -omics data, ultimately broadening the scope of topology-
aware pathway analysis.
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