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Background: The pathogenic genes of colorectal cancer (CRC) have not yet been
fully elucidated, and there is currently a lack of effective therapeutic targets. This study
used bioinformaticsmethods to explore and experimentally validate themost valuable
biomarkers for colorectal cancer and further investigate their potential as targets.

Methods: We analyzed differentially expressed genes (DEGs) based on the Gene
Expression Omnibus (GEO) dataset and screened out hub genes. ROC curve and
univariate Cox analysis of The Cancer Genome Atlas (TCGA) dataset revealed the
most diagnostically and prognostically valuable genes. Immunohistochemistry (IHC)
experiments were then conducted to validate the expression level of these selected
genes in colorectal cancer. Gene set enrichment analysis (GSEA) was performed to
evaluate theenrichedsignalingpathwaysassociatedwith thegene.Using theCIBERSORT
algorithm in R software, we analyzed the immune infiltrating cell abundance in both high
and lowgene expression groups and examined the gene’s correlationwith immune cells
and immunecheckpoints. Additionally,weperformeddrug sensitivity analysis utilizing the
DepMap database, and explored the correlation between gene expression levels and
ferroptosis based on the The Cancer Genome Atlas dataset.

Results: The study identified a total of 159 DEGs, including 7 hub genes: SPP1, MMP1,
CXCL8,CXCL1, TIMP1,MMP3, andCXCL10. Further analysis revealedTIMP1 as themost
valuable diagnostic and prognostic biomarker for colorectal cancer, with IHC
experiments verifying its high expression. Additionally, GSEA results showed that the
high TIMP1 expression groupwas involved inmany cancer signaling pathways. Analysis
of the TCGA database revealed a positive correlation between TIMP1 expression and
infiltration of macrophages (M0, M1, M2) and neutrophils, as well as the expression of
immune checkpoint genes, including CTLA-4 and HAVCR2. Drug sensitivity analysis,
conducted using the DepMap database, revealed that colorectal cancer cell lines
exhibiting elevated levels of TIMP1 expression were more responsive to certain drugs,
such as CC-90003, Pitavastatin, Atuveciclib, and CT7001, compared to those with low
levels of TIMP1. Furthermore, TIMP1 expression was positively correlated with that of
ferroptosis-related genes, such as GPX4 and HSPA5.

Conclusion: TIMP1 can be used as a biomarker for colorectal cancer and is associated
with the immunologicalmicroenvironment, drug sensitivity, and ferroptosis inhibition in
this disease.
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1 Introduction

Colorectal cancer (CRC) is a malignant tumor that poses a
significant threat to human life and health globally. It has one of the
highest incidence and mortality rates among all cancers, ranking
third and second, respectively (Sung et al., 2021). Genes play a
significant role in the development and progression of CRC (Heide
et al., 2022) and are closely linked to cancer pathogenesis, diagnosis,
prognosis, the immune microenvironment, and drug responsiveness
(Searls, 2003; Ardizzone et al., 2021; Wang et al., 2021). Therefore,
correctly identifying effective therapeutic targets for CRC is crucial
in enabling early diagnosis and precise management of the
condition.

Currently, colonoscopy is the gold standard for diagnosing CRC
(Chan and Liang, 2022), but ultimately, its diagnosis still relies on
pathological and immunohistochemical results. Therefore,
identifying sensitive biomarkers (such as mRNA, miRNA, etc.) in
CRC tissue is crucial for the early diagnosis of CRC. Although there
are numerous studies exploring biomarkers for CRC (Luo et al.,
2021; Malla et al., 2022), many of them have not deeply investigated
the clinical significance of genes. Thus, searching for effective
biomarkers for CRC patients and exploring their clinical
significance remains important and urgent.

In recent years, immunotherapy, drug sensitivity, and
ferroptosis analysis have been hotspots in cancer genetics
research. Studies have shown that classifying patients according
to the types of immune-infiltrating cells and immune-related gene
expression may be more helpful for personalized diagnosis and

treatment (Bramsen et al., 2017; Pages et al., 2018). Therefore, exploring
the correlation between genes and immune-infiltrating cells in CRC
patients will provide more appropriate diagnostic and therapeutic
guidance. The results of drug sensitivity analysis will provide patients
with better drug selection options. Ferroptosis-related analysis provides a
basis for studying the pathogenesis of cancer.

In this study, we employed bioinformatics techniques to identify
differentially expressed genes (DEGs) that were highly expressed in
CRC tissues from GEO dataset. We identified 7 hub genes through
protein‒protein interaction (PPI) network analysis. Using ROC
curve and univariate Cox regression analysis, we identified
TIMP1 as the gene with the greatest diagnostic and prognostic
value. We subsequently performed survival analysis and conducted
gene set enrichment analysis (GSEA) to further investigate the role
of TIMP1.We also investigated the relationship between TIMP1 and
several factors, including immune infiltration, immune checkpoints,
drug sensitivity, and ferroptosis. The study workflow is shown in
Figure 1.

2 Materials and methods

2.1 Obtaining and analysing data

To obtain the gene expression matrix for CRC, we retrieved data
from three cohorts (GSE110223, GSE110224, and GSE156355)
available on the Gene Expression Omnibus (GEO) database at
https://www.ncbi.nlm.nih.gov/geo/. These cohorts included 13, 17,

FIGURE 1
Schematic diagram of the study design.
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and 6 CRC tissue samples, respectively, along with their corresponding
adjacent normal tissues. We combined the data from these three cohorts
into a single gene expressionmatrix using R software (version 4.2.1). For
batch correction, we utilized the “ComBat” function from the “sva”
package, implementing the Empirical Bayes algorithm. Additionally, we
performed data normalization using the “normalizeBetweenArrays”
function from the “limma” package, applying the Quantile
normalization algorithm. Subsequently, hierarchical clustering was
conducted using the “hclust” function from the “stats” package in R,
resulting in the generation of a clustering dendrogram. Principal
component analysis (PCA) was performed using the “FactoMineR”
package, employing the eigendecomposition algorithm, followed by
visualization with the “factoextra” package. The PCA plot provided
an initial insight into the spatial distribution of cancer tissue and adjacent
normal tissue samples.

2.2 Screening and analysis of DEGs

We conducted the analysis of differential gene expression using
the “limma” package in R. This involved utilizing the “lmFit”
function for linear modeling and the “eBayes” function for
empirical Bayes statistics. DEGs were identified based on criteria
of |log2FC| ≥ 1.5 and adj. p-value <0.05. To visually represent our
findings, we employed two different packages: “ggplot2” to generate
volcano plots and “pheatmap” to create heatmaps. Enrichment
analyzes for Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways were carried out on the
DEGs using the “clusterProfiler” package. We utilized the
“enrichGO” function for GO analysis and the “enrichKEGG”
function for KEGG analysis, both employing the hypergeometric
distribution test as the statistical method. Significance thresholds
were set at p-value <0.05 and q value <0.05. Subsequently, we
constructed a protein-protein interaction (PPI) network for the
DEGs using the STRING online database (https://cn.string-db.
org/). Within this network, we identified the top 10 genes with
the highest predicted PPI scores. Next, we employed the cytoHubba
plugin in Cytoscape software (version 3.9.1) to rank the top 10 genes
using the degree and MCC algorithms. Finally, we used the online
tool VENNY 2.1, available at https://bioinfogp.cnb.csic.es/tools/
venny/index.html, to create a Venn diagram illustrating the
intersection of genes identified by the three algorithms. The
genes present in this intersection were considered hub genes.

2.3 Identification of key genes for CRC
diagnosis and prognosis in TCGA dataset

To obtain the necessary data, we accessed the TCGA database
(https://cancergenome.nih.gov/) and downloaded gene expression and
clinical information. The samples analyzed in this study were derived
from the TCGA-COAD and TCGA-READ projects, which included a
total of 635 samples. Specifically, there were 584 cancer tissue samples
and 51 normal control tissue samples, with 48 of the cancer tissue
samples being pairedwith corresponding adjacent normal tissue samples.
To evaluate the diagnostic performance of hub genes inCRC,we used the
“pROC” package to generate receiver operating characteristic (ROC)
curves for 48 paired cancer and adjacent normal tissues. Using univariate

Cox analysis, we screened prognostic genes for CRC in the 584 cancer
tissues.We identified TIMP1 as themost valuable gene for diagnosis and
prognosis evaluation, and this finding was corroborated through a
combination of ROC curve and univariate Cox regression analyzes.
We analyzed the difference in TIMP1 expression between the 48 pairs of
cancer and adjacent normal tissues using the Wilcoxon rank-sum test.
Then, we classified the 584 CRC patients into two groups based on their
TIMP1 expression levels, and used Kaplan‒Meier curves to examine the
differences in survival rates between them.

2.4 Immunohistochemical validation of
experimental findings

The CRC tissue microarray (HColA160CS01) used in this study
was acquired from Shanghai Outdo Biotech Co., Ltd. It consisted of
80 CRC tissue samples and their corresponding adjacent
noncancerous tissues, collected from 43 male and 37 female
patients with a mean age of 66 ± 12 years. The ethics committee
of the company (Ethics Code: SHYJS-CP-1701008) approved the
implementation of the experimental protocols. The use of tissue
samples obtained informed consent from the China Human Genetic
Resources Administration Office. Our study was conducted in
accordance with the Declaration of Helsinki (as revised in 2013).
The experimental protocol involved several steps: First, the tissue
chips were subjected to baking, dewaxing, and antigen retrieval
treatment. Second, we added TIMP1 primary antibody (Proteintech
Cat# 16644-1-AP, RRID:AB_2878292, 1:2000) to the chip and incubated
it overnight at 4 °C. Afterwards, the chip was exposed to the secondary
antibody for 45 min at room temperature, followed byDAB staining and
counterstaining with haematoxylin. Finally, we obtained marked images
of the slides using an Aperio ScanScope XT Leica (RRID:SCR_018457).
We calculated the immunohistochemistry (IHC) total score by
multiplying the percentage of positively stained cells with the staining
intensity of these cells. We categorized the percentage of positively
stained cells into five grades: <5% (0), 5%–25% (1+), 26%–50% (2+),
51%–75% (3+), and 76%–100% (4+). Staining intensity was assessed
based on four grades: no staining (0), faint yellow (1+), light brown (2+),
and brown (3+). Two experienced pathologists independently
interpreted the results. Finally, we analyzed the differences in scores
between cancerous and adjacent noncancerous tissue samples by
GraphPad Prism software (v 9.3.0).

2.5 GSEA

In this section, the TCGA cohort of CRC patients was stratified into
two groups based on the median expression level of TIMP1, namely,
high and low expression groups. To identify DEGs exhibiting significant
variations in expression levels between these two defined groups, the
“DESeq2” package was employed. This package utilizes the “DESeq”
function, which leverages the negative binomial distribution algorithm to
detect genes with statistically significant expression changes under the
defined conditions. After identifying theDEGs, we performed aGene Set
Enrichment Analysis using the “GSEA” method from the
“clusterProfiler” package in R. The reference gene set used was c2.
cp.kegg.v7.5.1. entrez.gmt, with filtering criteria set at |NES|≥1,
p-value <0.05, and FDR <0.25.
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2.6 Analysis of the immunological
microenvironment

In this section, we conducted an assessment of immune cell infiltration
in TCGA cancer tissue samples using the CIBERSORT algorithm, which is
based on linear regression. The results of this analysis were visually
represented. Subsequently, we employed the “corrplot” package to
analyze the relationships among immune cells, utilizing the Pearson
correlation coefficient as the statistical measure. To assess differences in
immune infiltrating cells between the high and low TIMP1 expression
groupswithin colorectal cancer tissues, we utilized the “ggboxplot” function
supplemented by the “wilcox.test” method from the “ggpubr” package.
Additionally, we investigated the correlation between TIMP1 expression
and immune infiltrating cells using the “cor.test” function from the “stats”
package, employing Spearman’s correlation coefficient, and considered
statistical significance at a threshold of p < 0.05. Furthermore, we used the
online platform, Assistant for Clinical Bioinformatics, which is available at
https://www.aclbi.com/static/index.html #, to explore the association
between TIMP1 and five commonly used immune checkpoint genes
(CTLA-4, LAG3, HAVCR2, TNFSF4, and CD160) in TCGACRC tissues.
Finally, we generated box plots illustrating the expression disparities of the
five genes between the TIMP1 high and low expression groups within
colorectal cancer tissues using the “ggboxplot” function from the “ggpubr”
package in R. The statistical analysis supporting these plots involved the
application of the Wilcoxon test.

2.7 Drug sensitivity analysis

We retrieved drug response data and gene expression data for
colorectal cancer cell lines from the DepMap database. Based on the
median TIMP1 gene expression values, we categorized the colorectal
cancer cell lines into two groups: the TIMP1 high-expression group and
the TIMP1 low-expression group. We assessed the sensitivity of the cell
lines to drugs using log2FC values, where smaller log2FC values indicate
higher sensitivity to the drugs. To determine if there were differences in
log2FC values in drug response between the two groups, we performed
Mann-Whitney U tests using the “mannwhitneyu” function in Python
(v 3.11.3). During the drug screening process, we ensured the
simultaneous satisfaction of the following conditions: the median
log2FC value for the TIMP1 high-expression group was lower than
that of the low-expression group, the median log2FC value for the high-
expression group was less than −1, and the Mann-Whitney U test
p-value between the two cell line groups was less than 0.05.

2.8 Ferroptosis correlation analysis

We used the Assistant For Clinical Bioinformatics online platform to
analyze the correlation between TIMP1 and five ferroptosis inhibitory
genes (GPX4, SLC7A11, HSPA5, HSPB1, and VDAC2) in TCGA CRC
tissues. Next, we employed the “ggboxplot” function from the “ggpubr”
package in R software to create differential expression boxplots for these
five ferroptosis inhibitory genes. These plots allowed us to examine the
variation in gene expression levels between the high and low
TIMP1 expression groups within colorectal cancer tissues. The
statistical analysis underlying these plots was performed using the
Wilcoxon test. Finally, we generated Kaplan-Meier curves for these

five genes in CRC patients using the GEPIA database (http://gepia.
cancer-pku.cn/) to assess their prognostic value.

2.9 Statistical methods

In this study, we employed various statistical tools and software for
data analysis, including R software (v 4.2.1), Python (v 3.11.3), the
STRING database (https://cn.string-db.org/), Cytoscape (v 3.9.1),
GraphPad Prism software (v 9.3.0), the Assistant For Clinical
Bioinformatics platform (https://www.aclbi.com/static/index.html#/),
and the GEPIA database (http://gepia.cancer-pku.cn/).For statistical
comparisons between two independent datasets, we applied the Wilcox
statistical test. To assess variable correlations, we calculated the Pearson
correlation coefficient. Survival and prognosis analysis were conducted
using the log-rank test and univariable Cox regression analysis. Statistical
significance was defined as p < 0.05, and we denoted significance levels as
*** for p < 0.001, ** for p < 0.01, and * for p < 0.05.

3 Results

3.1 GEO dataset integration and analysis

After combining three gene expression matrices, a total of
36 cancer tissues and 36 adjacent normal tissues were included.
Batch correction and normalization were performed, followed by
cluster analysis and principal component analysis. The results
showed good intragroup sample correlation, with differences
observed between intergroup samples (Figures 2A–C).

3.2 Screening DEGs in the GEO dataset

In this study, 159 DEGs were screened, including 53 upregulated
genes and 106 downregulated genes (Figures 3A, B). Comprehensive
details regarding these DEGs can be found in the supplementary
document attached to this paper. GO analysis (Figure 3C) unveiled
the involvement of DEGs in various vital biological processes, including
the regulation of hormone levels, chemokine-mediated signaling
pathways, and neutrophil migration. They were also enriched in
cellular components such as apical plasma membranes, microvilli and
microvillus membranes, extracellular matrix, and basal plasma
membranes. Furthermore, the DEGs were found to be associated
with molecular functions such as chemokine activity, cytokine activity
and receptor ligand activity. The KEGG analysis indicated that the DEGs
played crucial roles in essential pathways, such as the chemokine
signaling pathway, PPAR signaling pathway, and IL-17 signaling
pathway (Figure 3D). After intersecting the results based on the PPI,
degree, andMCC algorithms, 7 hub genes were identified: SPP1, MMP1,
CXCL8, CXCL1, TIMP1, MMP3, and CXCL10 (Figure 3E).

3.3 Diagnostic and prognostic insights of
TIMP1 in TCGA CRC analysis

The area under the ROC curve (AUC) values for SPP1,
MMP1, CXCL8, CXCL1, TIMP1, MMP3, and CXCL10 were
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0.907, 0.936, 0.895, 0.905, 0.960, 0.947, and 0.788, respectively
(Figure 4A). Notably, TIMP1 exhibited the highest AUC value,
indicating its significant diagnostic value. By applying a
screening threshold of p < 0.05 and conducting univariate
Cox regression analysis, we identified prognostic genes for
CRC, which included TIMP1, CXCL1, MMP1, and MMP3
(Figure 4B). Importantly, TIMP1 showed the strongest
correlation with poor prognosis (HR = 1.451, p = 0.001).
Given TIMP1’s substantial diagnostic and prognostic value,
we conducted a comprehensive investigation into its
expression. We observed elevated expression of TIMP1 in
cancerous tissue samples from the TCGA database compared
to adjacent normal tissue samples (Figure 4C). Furthermore,
high TIMP1 expression was associated with shorter overall
survival time in CRC patients when compared to those with
low TIMP1 expression (Figure 4D).

3.4 Immunohistochemical validation of
TIMP1 expression

We employed IHCmethods to assess TIMP1 expression in 80 pairs
of CRC tissues and adjacent normal tissues. Ultimately, a total of 71 pairs
of tissues were included in the statistical analysis. Our findings revealed a
significant upregulation of TIMP1 in CRC tissues compared to their
normal counterparts, as visually represented in Figures 5A–C. These
results strongly support the potential of TIMP1 as a biomarker for the
diagnosis and prognosis of CRC.

3.5 GSEA

GSEA revealed the pathogenic mechanisms of TIMP1. Our
findings indicate that in CRC patients with high

FIGURE 2
Data processing and initial analysis of merged GSE110223,GSE110224,andGSE156355 datasrts, (A) Cancerous and adjacent non-cancerous tissue
samples after batch correction and normalization, (B) Clustering dendrogram of cancerous and adjacent non-cancerous tissue samples, (C) Principal
component analysis plot of cancerous and adjacent non-cancerous tissue samples.
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TIMP1 expression, the top five enriched pathways identified by
pathway analysis were ecm receptor interaction, cell adhesion
molecules, focal adhesion, cytokine-cytokine receptor
interaction, and olfactory transduction (Figure 6). Notably,
olfactory transduction was a downregulated pathway, while
the remaining pathways were upregulated.

3.6 TIMP1-associated immune landscape in
colorectal cancer

Using CIBERSORT analysis to assess immune infiltration in
CRC tissues from TCGA, we observed variations in the proportions
of 22 immune cell types among CRC tissue samples (Figure 7A). In

FIGURE 3
Visualization of 159 DEGs, (A) The volcano plot of 159 DEGs (orange dots indicate upregulated genes and blue dots indicate downregulated genes),
(B) The heatmap of 159 DEGs (orange indicates high gene expression and blue indicates low gene expression), (C) GO enrichment analysis of 159 DEGs,
(D) KEGG enrichment analysis of 159 DEGs, (E) Identification of hub genes from 159 DEGs using different algorithms.
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the immune cell correlation matrix (Figure 7B), we noted a
significant positive correlation (r = 0.38) between activated
NK cells and resting mast cells, while a notable negative
correlation (r = −0.44) was found between CD8 T cells and
resting memory CD4 T cells. In CRC tissues, higher
TIMP1 expression was associated with increased infiltration of
M0, M1, and M2 macrophages, as well as neutrophils, but
decreased infiltration of monocytes, dendritic cells, memory
CD4 T cells, plasma cells, memory B cells, and naive B cells
compared to those with lower TIMP1 expression (Figure 7C).
Correlation analysis between genes and immune cells indicated a
positive association between TIMP1 and the infiltration of M0,
M1, and M2 macrophages, neutrophils, as well as CD8 T cells
(Figure 7D). Moreover, we observed that TIMP1 expression
showed a favorable correlation with the expression of several
immune checkpoint genes, including CTLA-4, HAVCR2, LAG3,
and TNFSF4 (Figure 7E; Table 1). Differential expression analysis
also revealed an increase in the expression of CTLA-4, HAVCR2,
LAG3, and TNFSF4 in CRC tissues with high TIMP1 expression
(Figure 7F).

FIGURE 4
Diagnostic and prognostic value analysis of TIMP1 in TCGA dataset, (A) ROC curves and AUC values for seven hub genes, (B) Univariate Cox
regression analysis of seven hub genes, (C) Expression of TIMP1 in cancer and adjacent normal tissue in the TCGA dataset, (D) Survival differences
between high and low expression groups of TIMP1 in the TCGA dataset.

FIGURE 5
TIMP1 expression in CRC tissues and adjacent normal tissues, (A)
IHC staining of TIMP1 protein in CRC tissues, (B) IHC staining of
TIMP1 protein in adjacent normal tissues, (C) Semi-quantitative
analysis of TIMP1 protein in CRC tissues and adjacent normal
tissues by IHC experiments.
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3.7 Drug sensitivity analysis

Through an exploration of the DepMap database, we conducted
a comprehensive investigation into the pharmacological sensitivity
of colorectal cancer cell lines, stratified based on the varying
expression levels of the TIMP1 gene. Our rigorous inquiry
revealed a compelling discovery: colorectal cancer cell lines with
elevated TIMP1 expression exhibited significantly increased
responsiveness to a selection of ten distinct pharmacological
agents (log2FC < −1). In contrast, their counterparts in the
TIMP1 downregulated cohort showed comparatively reduced
susceptibility to the same spectrum of therapeutic compounds.
Importantly, the difference in pharmacological sensitivity
between these two distinct clusters demonstrated statistical
significance (p < 0.05). This curated collection of ten
pharmacological agents includes CCT196969, SBI-115, APY-29,
BAY-2402234, pitavastatin, tolonium, CC-90003, atuveciclib,
CT7001, and inarigivir (Figure 8).

3.8 The association between TIMP1 and
ferroptosis

We conducted an analysis of the relationship between
TIMP1 and common ferroptosis-related genes in CRC tissues
from TCGA. Our results demonstrated a positive correlation
between TIMP1 expression and the expression of GPX4, HSPA5,
and HSPB1 (Figure 9A; Table 2). Differential expression analysis
further revealed increased expression of GPX4, HSPA5, and
HSPB1 in CRC tissues with high TIMP1 expression, as depicted
in Figure 9B. When analyzing the expression levels of genes related
to ferroptosis (Figure 9C), it was observed that high

GPX4 expression in CRC patients was significantly associated
with a poorer survival outcome compared to low expression (p =
0.026). Although the survival analysis of HSPB1 did not
demonstrate a statistically significant difference (p = 0.093), it
suggested a trend toward a poorer prognosis. We utilized the
online tools Assistant For Clinical Bioinformatics and the GEPIA
database to perform the aforementioned analyses.

4 Discussion

CRC development and progression are influenced by gene
expression levels (Chen et al., 2019), suggesting that certain genes
may serve as effective diagnostic and therapeutic targets. The pivotal
role of TIMP1 in colorectal cancer has been confirmed, as indicated
by Beibei Ma et al., who demonstrated its promotion of right-sided
CRC cell proliferation and invasion through the activation of the
FAK and Akt signaling pathways (Ma et al., 2022). However, for a
comprehensive understanding of the unique significance of
TIMP1 in colorectal cancer development, systematic
bioinformatics analysis is required to delve deeper into its role in
the cancer progression. In this study, we conducted differential gene
expression analysis on three GEO datasets and confirmed SPP1,
MMP1, CXCL8, CXCL1, TIMP1, MMP3, and CXCL10 as core
regulatory genes in colorectal cancer through a protein-protein
interaction network (Yu et al., 2019). While previous
bioinformatics studies typically analyze these regulatory genes as
a collective entity, our research adopted a distinct approach,
conducting a detailed comparative analysis of these seven genes.
ROC curve analysis revealed that TIMP1 exhibited greater precision
in distinguishing colorectal cancer tumor tissues from adjacent
normal tissues. Additionally, univariate Cox analysis results

FIGURE 6
Single-Gene GSEA analysis of TIMP1.
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indicated that TIMP1’s prognostic capability significantly surpassed
that of other genes. Consequently, we conclude that TIMP1 holds
the highest potential value in the diagnosis and prognosis of
colorectal cancer. Our study employed rigorous and systematic
screening methods to enhance the credibility of TIMP1’s critical
role in colorectal cancer diagnosis and prognosis.

TIMP1 belongs to the family of tissue inhibitors of
metalloproteinases (MMPs). Previous studies have demonstrated
that extracellular vesicles expressing high levels of TIMP1 can
promote distant metastasis in CRC by inducing extracellular
matrix (ECM) remodeling (Song et al., 2016; Rao et al., 2022).
However, there has been limited research focusing on the other
biological functions of TIMP1. In this study, we conducted GSEA of
DEGs between CRC tissues with high TIMP1 expression and those
with low TIMP1 expression. Our research revealed that TIMP1-
associated genes were not only enriched in ECM remodeling but also
in cell adhesion molecules (CAMs), focal adhesion, and cytokine-
cytokine receptor interactions. While existing studies indirectly
suggest that these biological functions are associated with cancer
proliferation and metastasis (Araujo et al., 2022; Sowparani et al.,
2022; Zhang et al., 2022), they do not specifically address their
relationship with TIMP1. Our innovative study deepens the
understanding of the functional connections between TIMP1 and
the mechanisms underlying cancer pathogenesis.

FIGURE 7
The analysis of the immune microenvironment in CRC tissues from TCGA database, (A) Relative proportions of 22 immune cell subtypes in
584 samples analyzed by CIBERSORT algorithm, (B) Correlation matrix of immune cell infiltration levels in CRC tissue samples, (C) Variations in the
22 subtypes of immune cells in CRC tissues with high and low expression of TIMP1, (D) Correlation between TIMP1 expression levels and relative
proportions of 11 immune cell types in CRC tissues, (E) Association between TIMP1 expression and five commonly expressed immune checkpoint-
related genes in CRC using TCGA dataset, (F) Differential expression of five immune checkpoint-related genes in CRC tissues with high and low
expression of TIMP1.

TABLE 1 Association between TIMP1 expression and immune checkpoint-
related genes.

Gene Checkpoint-releted genes Cor P.Value Pstar

TIMP1 CD160 −0.06 0.11

TIMP1 CTLA4 0.24 6.92 × 10−10 **

TIMP1 HAVCR2 0.45 0 **

TIMP1 LAG3 0.29 4.30 × 10−13 **

TIMP1 TNFSF4 0.47 2.08 × 10−35 **
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Recent research has indicated that different types of cancers
exhibit distinct patterns of immune cell infiltration, which is closely
associated with patients’ chances of receiving immunotherapy (Bai
et al., 2021). Furthermore, immune cell infiltration is closely linked
to genetics (Liu et al., 2021). Therefore, we employed the
CIBERSORT algorithm to investigate the correlation between
TIMP1 and immune cell infiltration in CRC patients. Our
findings reveal that in CRC tissues with high TIMP1 expression,
there is a significant increase in the infiltration of macrophages and
neutrophils, suggesting a potentially pivotal role for TIMP1 in
immune microenvironment modulation. Based on our
discoveries, macrophages can be categorized into M1 and
M2 types, where M1 macrophages secrete anti-tumor factors
(Jarosz-Biej et al., 2018; Han et al., 2022), while
M2 macrophages’ factors may facilitate the progression of
colorectal cancer (Zhu et al., 2022). Specifically, in CRC tissues
with high TIMP1 expression, there is a higher proportion of
M2 macrophage infiltration, implying that TIMP1 may promote
the development of colorectal cancer by increasing M2 macrophage
infiltration. This study represents the first attempt to stratify
immune cell infiltration in CRC patients based on
TIMP1 expression levels. Additionally, immune checkpoint
blockade is a current focal point in cancer research, as the
abnormal activation of immune checkpoint molecules can enable
tumor cells to evade immune attacks (Kanani et al., 2021). Prior
research did not provide direct evidence of the association between
TIMP1 and abnormally activated immune checkpoint molecules.
However, our study is the first to confirm a significant positive
correlation between TIMP1 expression and various immune
checkpoint markers, such as CTLA-4, HAVCR2, LAG3, and
TNFSF4. This finding suggests that TIMP1 may play a crucial
role in immune regulation.

Considering the significant potential of TIMP1 in the diagnosis and
prognosis of colorectal cancer, it is crucial to determine whether it can
serve as a viable drug target. However, the current research on TIMP1’s
drug potential remains insufficient. Therefore, we utilized the DepMap

database to predict which drugs might be more effective in treating
colorectal cancer patients with high TIMP1 expression. Our research
suggests potential inhibitory effects of CC-90003 and Pitavastatin on
colorectal cancer cells. CC-90003, a covalent ERK1/2 inhibitor, disrupts
signaling pathways and impacts cell growth and survival, particularly in
KRAS-mutant cells (Aronchik et al., 2019), indicating its therapeutic
potential in colorectal cancer. Pitavastatin has demonstrated an impact on
colorectal cancer behavior by enhancing apoptosis and inhibiting
autophagy (Tilija Pun et al., 2022). In addition, Atuveciclib, a selective
PTEFb/CDK9 inhibitor, and CT7001, a selective CDK7 inhibitor, are
emerging as potential cancer treatment options, as they have entered
clinical trials (Lucking et al., 2017; Sava et al., 2020).While their effects on
colorectal cancer cells are not-well documented in the current literature,
their underlying mechanisms make them promising candidates for
therapy. Furthermore, CCT196969, SBI-115, and BAY 2402234 have
demonstrated inhibition of melanoma, pancreatic cancer, and myeloid
malignancies (Christian et al., 2019; Lei et al., 2022; Reigstad et al., 2022).
However, their efficacy against colorectal cancer cells requires further
validation due to the diverse behavior of different cancer types. Notably,
the roles of Inarigivir, APY-29, and tolonium in cancer therapy remain
unexplored in existing literature, necessitating more research to explore
their potential applications. There is currently no evidence to suggest a
direct association between the mentioned drug mechanisms and TIMP1.
However, our innovative research suggests a potential synergistic
interaction between TIMP1 and these mechanisms.

Recent cancer research has placed significant focus on
ferroptosis, a programmed cell death pathway, which plays a
pivotal role in inhibiting tumor growth. Previous studies have
indicated that the loss of TIMP1 reduces GPX4 levels, leading to
an increase in sorafenib-induced ferroptosis (Wang et al., 2023).
Despite these findings, direct evidence linking TIMP1 to other
common ferroptosis-related genes has been lacking. Therefore,
our study analyzed the expression correlation between
TIMP1 and five common ferroptosis-related genes. The research
outcomes demonstrate a positive correlation between TIMP1 and
GPX4, HSPA5, and HSPB1. GPX4 is a protein associated with poor

FIGURE 8
Drug sensitivity differences between CRC cell lines with high and low expression of TIMP1.
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prognosis, potentially inhibiting ferroptosis in colon cancer cells
through specific signaling pathways and interacting synergistically
with HSPA5 (Yang et al., 2021; Wang et al., 2022). These findings
suggest that the high expression of TIMP1 may interact with

GPX4 and HSPA5, making colorectal cancer cells more resistant
to ferroptosis. The specific role of HSPB1 in ferroptosis in CRC cells
remains unclear, but studies have suggested that the expression of
HSPB1 can inhibit ferroptosis in other cancer cells (Sun et al., 2015).
While our research has not delved deeply into ferroptosis, these
results provide a more comprehensive analysis. Importantly, the
association between TIMP1 and ferroptosis-related genes further
supports TIMP1 as a potential target for cancer treatment.

In summary, the innovation of our study lies in the rigorous
application of bioinformatics analysis methods, which enabled the
identification of the TIMP1 gene with the greatest potential within
colorectal cancer tissues. We further investigated the relationship
between TIMP1 gene expression levels and immune
microenvironment, drug sensitivity, and iron death. Our research in
these areas demonstrates a high degree of innovation in the study of
TIMP1. Nevertheless, we must acknowledge that our study has certain

FIGURE 9
Association between TIMP1 expression and ferroptosis-related genes, (A) Association between TIMP1 expression and five commonly expressed
ferroptosis-related genes in CRC using TCGA dataset, (B) Differential expression of five ferroptosis-related genes in CRC tissues with high and low
expression of TIMP1, (C) Kaplan-Meier curves for GPX4,HSPA5,HSPB1,SLC7A11, and VDAC2.

TABLE 2 Association between TIMP1 expression and ferroptosis-related genes.

Gene Ferroptosis-releted genes Cor P.Value Pstar

TIMP1 GPX4 0.163 4.38 × 10−5 **

TIMP1 HSPA5 0.153 1.30 × 10−4 **

TIMP1 HSPB1 0.33 3.79 × 10−17 **

TIMP1 SLC7A11 −0.008 0.83 *

TIMP1 VDAC2 −0.098 0.1 **
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limitations. First, we sourced data for our analysis from public
databases, which implies that we were unable to control for the
geographic origins and sample types of our data sources.
Consequently, the applicability of our research findings may
be somewhat limited. Second, in our investigations of immune
checkpoints and ferroptosis, we have only provided preliminary
indications of a possible association between TIMP1 and these
processes. Moreover, further comprehensive investigation is
needed to elucidate the precise working mechanisms of
TIMP1. Finally, drawing from the existing literature, we
constructed the PPI network using the DEGs within this
context. We acknowledge that changes in RNA expression do
not always directly correlate with protein abundance due to post-
transcriptional and translational regulations. However, despite
being influenced by these regulatory complexities, these
variations can still offer valuable insights into potential
biological processes and pathways to a certain extent. Further
validation and improvement of these findings will necessitate
additional experiments and more comprehensive empirical
research.

5 Conclusion

In this study, we employed rigorous and scientifically sound
methods for data analysis and experimental validation to confirm the
significance of TIMP1 in CRC. Furthermore, we explored the
association between TIMP1 and key factors such as immune
infiltration, immune checkpoints, drug sensitivity, and ferroptosis.
Our study reveals that TIMP1 plays a central role in modulating the
CRC immune microenvironment by promoting the infiltration of
diverse macrophage subpopulations and neutrophils and
collaborates with immune checkpoints to regulate patients’
immune responses. Moreover, our results indicate that high
TIMP1 expression is associated with sensitivity to ten different
drugs and can inhibit CRC cell ferroptosis through the
transcriptional activation of genes including GPX4 and HSPA5.
Overall, these findings highlight TIMP1 as a valuable diagnostic
and prognostic marker for CRC, with a diverse range of biological
functions. While TIMP1 may not be a novel biomarker for CRC, our
study contributes to a more comprehensive understanding of its
biological roles.
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