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The availability of high-dimensional genomic data and advancements in genome-
based prediction models (GP) have revolutionized and contributed to accelerated
genetic gains in soybean breeding programs. GP-based sparse testing is a
promising concept that allows increasing the testing capacity of genotypes in
environments, of genotypes or environments at a fixed cost, or a substantial
reduction of costs at a fixed testing capacity. This study represents the first attempt
to implement GP-based sparse testing in soybeans by evaluating different training
set compositions going from non-overlapped RILs until almost the other extreme
of having same set of genotypes observed across environments for different
training set sizes. A total of 1,755 recombinant inbred lines (RILs) tested in nine
environments were used in this study. RILs were derived from 39 bi-parental
populations of the Soybean Nested Association Mapping (NAM) project. The
predictive abilities of various models and training set sizes and compositions
were investigated. Training compositions included a range of ratios of overlapping
(O-RILs) and non-overlapping (NO-RILs) RILs across environments, as well as a
methodology tomaximize orminimize the genetic diversity in a fixed-size sample.
Reducing the training set size compromised predictive ability in most training set
compositions. Overall, maximizing the genetic diversity within the training set and
the inclusion of O-RILs increased prediction accuracy given a fixed training set
size; however, the most complex model was less affected by these factors. More
testing environments in the early stages of the breeding pipeline can provide a
more comprehensive assessment of genotype stability and adaptation which are
fundamental for the precise selection of superior genotypes adapted to a wide
range of environments.
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1 Introduction

Soybean [Glycine max (L.) Merr.] delivers the highest amount of protein per hectare than
any crop and accounts for over 60% of total global oilseed production (United States
Department of Agriculture, 2022a). It is the largest and most concentrated segment of global
agricultural trade and one of the most essential crops to the world’s food security (Gale et al.,
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2019). Soybean production has nearly doubled over the last
two decades (182,830 to 363,860 MT) (United States Department
of Agriculture, 2022b). The genetic improvement of soybean
cultivars, as well as advancements in farming technology and
agronomic practices, have significantly contributed to this
substantial increase (Specht et al., 1999; Rowntree et al., 2013;
Koester et al., 2014; Rincker et al., 2014; Canella Vieira and
Chen, 2021). A typical soybean breeding pipeline consists of
several years of multi-environment field trials to select and
advance high-yielding breeding lines (Canella Vieira and Chen,
2021; Yoosefzadeh-Najafabadi and Rajcan, 2022). The availability
of high-dimensional genomic data (Song et al., 2013; 2020) and the
advancements in genome-based prediction models (GP) have
revolutionized and contributed to accelerated genetic gains as
well as higher testing efficiency in soybean breeding programs
(Jarquin et al., 2014a; Jarquin et al., 2014b; Persa et al., 2020;
Widener et al., 2021; Canella Vieira et al., 2022).

The concept of GP revolves around using the information of all
molecular markers—regardless of estimated effect size of
significance—to develop prediction models of the genetic merit
for the phenotype of interest in unobserved genotypes
(Meuwissen et al., 2001). Thus, GP allows the identification and
selection of desirable genotypes earlier in the breeding pipeline,
which not only reduce cost, time, and space but enhance genetic gain
by shortening the length of the breeding cycle and increasing
selection intensity (Jarquin et al., 2014a; Crossa et al., 2017;
Canella Vieira and Chen, 2021; Wartha and Lorenz, 2021;
Canella Vieira et al., 2022). However, the presence of the
genotype-by-environment G×E interaction, a change in the
response patterns from one environment to another, complicates
the selection of improved cultivars (Crossa et al., 2011). For this
reason, it is necessary to establish multi-environment trials (METs)
to evaluate the performance of genotypes under a wide range of
weather conditions (environmental stimuli) allowing the selection of
stable materials or materials with local adaptation only (Jarquin
et al., 2020a). As expected, the high phenotyping cost does not
permit the evaluation of all candidate genotypes in all of the
environments of interest but a fraction of these combinations of
genotypes-in-environments (Jarquin et al., 2020b). To overcome
these disadvantages (i.e., G×E and the high phenotyping costs), the
implementation of the reaction norm model (Jarquin et al., 2014a)
leverages the borrowing of information of genotypes across
environments helping to increase the predictability of unobserved
combinations of genotypes-in-environments.

In addition, GP including G×E model parameters can
substantially improve field testing design and efficiency, as well
as resource allocation (Jarquin et al., 2020b; Montesinos Lopez
et al., 2023a). For instance, GP can reduce the costs and space
associated with field testing by using sparse testing designs in
which only a subset of the genotypes are tested at each location
(Jarquin et al., 2020b). Sparse testing allows the prediction of non-
observed genotype-in-environment combinations reducing the
costs at a fixed evaluation capacity (less expensive to make
accurate inferences on the original set of genotypes-in-
environment combinations) or increasing the overall evaluation
capacity at fixed costs (inferences on more genotypes and
environment combinations based on the original budget)
(Jarquin et al., 2020b).

Using two maize (Zea mays L.) data sets from the International
Maize and Wheat Improvement Center (CIMMYT)’s breeding
program in eastern Africa, Jarquin et al. (2020b) were the first to
demonstrate that GP models could substantially reduce the testing
footprint of breeding programs using sparse testing designs. Additional
studies of GP-based sparse testing designs have been reported in wheat
(Triticum L.) (Crespo-Herrera et al., 2021; He et al., 2021; Atanda et al.,
2022; Montesinos Lopez et al., 2023a; Montesinos Lopez et al., 2023b),
maize (Montesinos Lopez et al., 2023b), groundnut (Arachis hypogaea
L.) (Montesinos Lopez et al., 2023a), and rice (Oryza sativa L.) (He et al.,
2021; Montesinos Lopez et al., 2023b). To date, no applications of GP-
based sparse testing have been reported in soybean. Therefore, the
objective of this study is to investigate the potential of reducing the field
testing footprint (less natural resources such as land and water
associated with the in fields evaluation of RILs) in soybean breeding
programs based on sparse testing designs, as well as the prediction
accuracy derived from different GPmodels including the main effect of
the molecular markers via covariance structures (M1), a multiplicative
reaction norm model (M2) to account for the genotype-by-
environment G×E interaction, and an extended reaction norm
model also including the family structure (M3) in interaction with
environmental stimuli (Persa et al., 2020). Two different methods for
model calibration were considered. The first one, is initially based on
RILs randomly selected then varying sample sizes and training
composition (between non-overlapping [NO-RILs] and overlapping
[O-RILs] genotypes across environments) for a fixed testing set size.
While the second one, only varies the training set size since it is based on
common sets of genotypes observed across environments and selected
under a genetic criteria/algorithm, where the goal is to select a core
sample of RILs that maximizes/minimizes the genomic diversity on a
sample of fixed size. The objectives of implementing this second
selection method were to assess the impacts in predictive ability
using different levels of genomic diversity of the RILs when
calibrating models, and evaluate the stability of these selected RILs
across environments. The impacts in predictive ability using these
selection methods were evaluated using a soybean population of
1,755 genotypes evaluated in nine environments (all genotypes in all
environments).

2 Materials and methods

2.1 SoyNAM dataset

Phenotypic and genomic data from the Soybean Nested
Association Mapping (SoyNAM) experiment (https://www.soybase.
org/SoyNAM/) were used in this study. Briefly, the SoyNAM data is
comprised of 5,600 recombinant inbred lines (RILs) derived from 40 bi-
parental populations (140 RILs per population) corresponding to
40 founders belonging to three different genetic backgrounds [G1:
17 high-yielding lines, G2: 15 diverse ancestries, and G3: eight exotic
plant introductions (PI)] crossed with a common hub parent (IA3023)
(Diers et al., 2018). The common parent and founder lines, the RILs and
check cultivars were grown in two-row field plots (0.76 m spacing; ca.
4 m long) and phenotyped for nine agronomic traits including grain
yield (kg ha-1), plant height (cm), seed protein and oil (% dry weight),
days to maturity (number of days from planting when 95% of the plant
reach physiological maturity), seed size (100 seeds weight in grams),
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fiber content (percentage in the grain), lodging (score from 1–5), and
shattering (score from 1 to 5). Initially, the RILs from each family were
split in four sets of 35 and each set was augmented with the two parents
of the family and three check cultivars selected for adaptation to the field
environment; however, if there was not enough seed available for a RIL,
the plot was completed with a check variety. RILs were genotyped using
the Illumina Infinium BARCSoySNP6K BeadChip (Song et al., 2020).
After filteringmolecular markers with more than 20% ofmissing values
and minor allele frequency smaller than 0.03, a subset of 4,100 single
nucleotide polymorphisms (SNPs) was available for data analysis.

Balanced multi-environment field experiments where all genotypes
are observed in all testing environments are essential to assess the
efficacy and advantages of the sparse testing design. For this,
environments with less than 1,500 overlapping RILs across all
testing environments were discarded. After applying this criterion to
the phenotypic data, a total of 1,775 RILs derived from 39 bi-parental
families (16 G1, 15 G2, and eight G3) remained for analyses (all RILs
tested in all nine environments). The nine environments considered in
this study were located across five States (Iowa, Illinois, Indiana, Kansas,
and Nebraska) in 2012 and 2013. These included Iowa 2012 (IA_2012),
Iowa 2013 (IA_2013), Illinois 2012 (IL_2012), Illinois 2013 (IL_2013),
Indiana 2012 (IN_2012), Indiana 2013 (IN_2013), Kansas 2012 (KS_
2012), Kansas 2013 (KS_2013), and Nebraska 2012 (NE_2012).

2.2 Training set selection and composition
methods

Two different selection methods were considered to compose
calibration sets. The first method (S1) is based on randomly selecting

(for each replicate) sets of 195 RILs (1,755 divided by nine) and
assigning non-overlapped to each one of the nine environments
(total of five replicates). In this case, the 1,755 phenotypic
observations measured across nine environments correspond to
roughly 11% of all the total potential RILs-in-environment
combinations (1,755 × nine environments = 15,795). The
objective is to predict the remaining 1,560 non-observed RILs
(1,755–195) in each environment for a total of 14,040 (1,560 ×
nine environments) missing combinations across all environments.
In addition, different training set sizes were considered by
systematically reducing the training set size by groups of 10 RILs
from 195 to 95 RILs within each environment. For instance, by
reducing the initial training set size (195) by 10 RILs, the training set
size across environments was reduced to 1,665 (1,755–90). By
reducing the training set by 100 RILs, the training set size across
environments was reduced to 855 (1,755–900). The different within
environments training set sizes varied from 195 to 95 RILs (or
equivalently from 1,755 to 855 across environments).

In addition, for each of the training set sizes (195, 185, 175, 165,
155, 145, 135, 125, 115, 105, and 95), different training compositions
consisting of non-overlapping (NO-RILs) and overlapping (O-RILs)
genotypes across environments were considered under the
S1 selection method (Table 1). To compose these, the starting
point were the original sets of 195 NO-RILs that were assigned
to each environment. Then, within each environment, 10 RILs were
masked as non-observed reducing the total number to 185 NO-RILs.
For the within environments training set size of 195 NO-RILs, after
masking 10 RILs as non-observed the total number of NO-RILs is
reduced to 185. Out of the 90 RILs masked as non-observed (10 non-
observed RILs × nine environments), 10 were randomly selected as

TABLE 1 Summary of different training set sizes and compositions for selection method S1.

RILs Training set composition (non-overlapping RILs - overlapping RILs)

195 195-
0

185-
10

175-
20

165-
30

155-
40

145-
50

135-
60

125-
70

115-
80

105-
90

95-
100

85-
110

75-
120

65-
130

55-
140

45-
150

35-
160

25-
170

15-
180

5-
190

185 - 185-
0

175-
10

165-
20

155-
30

145-
40

135-
50

125-
60

115-
70

105-
80

95-
90

85-
100

75-
110

65-
120

55-
130

45-
140

35-
150

25-
160

15-
170

5-
180

175 - - 175-
0

165-
10

155-
20

145-
30

135-
40

125-
50

115-
60

105-
70

95-
80

85-
90

75-
100

65-
110

55-
120

45-
130

35-
140

25-
150

15-
160

5-
170

165 - - - 165-
0

155-
10

145-
20

135-
30

125-
40

115-
50

105-
60

95-
70

85-
80

75-
90

65-
100

55-
110

45-
120

35-
130

25-
140

15-
150

5-
160

155 - - - - 155-
0

145-
10

135-
20

125-
30

115-
40

105-
50

95-
60

85-
70

75-
80

65-
90

55-
100

45-
110

35-
120

25-
130

15-
140

5-
150

145 - - - - - 145-
0

135-
10

125-
20

115-
30

105-
40

95-
50

85-
60

75-
70

65-
80

55-
90

45-
100

35-
110

25-
120

15-
130

5-
140

135 - - - - - - 135-
0

125-
10

115-
20

105-
30

95-
40

85-
50

75-
60

65-
70

55-
80

45-
90

35-
100

25-
110

15-
120

5-
130

125 - - - - - - - 125-
0

115-
10

105-
20

95-
30

85-
40

75-
50

65-
60

55-
70

45-
80

35-
90

25-
100

15-
110

5-
120

115 - - - - - - - - 115-
0

105-
10

95-
20

85-
30

75-
40

65-
50

55-
60

45-
70

35-
80

25-
90

15-
100

5-
110

105 - - - - - - - - - 105-
0

95-
10

85-
20

75-
30

65-
40

55-
50

45-
60

35-
70

25-
80

15-
90

5-
100

95 - - - - - - - - - - 95-0 85-
10

75-
20

65-
30

55-
40

45-
50

35-
60

25-
70

15-
80

5-
90
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O-RILs to be observed across all environments. The total number of
195 RILs was consistently observed within each environment such
that 185 were NO-RILs and 10 were O-RILs (Table 1). Thus, the
total number of unique tested RILs across environments was
reduced from 1,755 to 1,675 (185 NO-RILs × nine environments
+10 O-RILs) and the number of NO-RILs across environments was
reduced to 1,665 (185 NO-RILs × nine environments). The removal
of 10 NO-RILs within environments and redistribution as 10 O-RILs

across environments were conducted systematically until reaching
the five NO-RILs and 190 O-RILs composition within environments
(Figure 1). In such composition, the total number of testing plots
remained at 1,755 (195 RILs × nine environments), but the total
number of unique RILs across environments was reduced to 235
(five NO-RILs × nine environments +190 O-RILs), and the number
of NO-RILs across environments was reduced to 45 (five NO-RILs ×
nine environments) (Figure 1). The removal of 10 NO-RILs within
environments and redistribution as 10 O-RILs across environments
was conducted systematically in each training set size ranging from
195 to 95 RILs per environment (Table 1).

The secondmethod (S2) implemented to select RILs and compose
training sets is an alternative to the ramdommethod and it is based on
the genetic diversity of the RILs using genomic information. It focuses
mainly on the maximization/minimization of the genetic diversity.
For this, the Super Saturated Design (SSD) method was implement to
select samples of fixed size (selected from a large pool of genotypes)
increasing (SSD.max) or decreasing (SSD.min) the genetic diversity in
the sample (Virdi et al., 2023). Here, the initial fixed training set size
for model calibration consisted of 195 O-RILs across environments.
Since the selection of RILs does not involve a randomprocess, for each
case (maximize/minimize genetic diversity) only one sample was
obtained. Repeating the selection algorithm using a random
sample of 195 RILs as starting point would return nearly identical
samples (>98%). Briefly, the genomic information of the 1,755 RILs
was randomly split into two independent sets, one of size 195 (X0)
and the other of size 1,560 (X1). The first setX0 was used to store the
selected RILs that met the criteria of maximizing/minimizing the
genetic diversity of the sample while the RILs inX1 were candidates to
be selected to compose the sample of size 195.

Systematically, for each iteration, each RIL (one at a time) from the
selected set of 195 RILs (X0) (i � 1, 2, .., 195) is replaced by each one of
the 1,560 RILs (j = 1,2, . . . , 1,560) from the X1 set. Then, E(S2) is
computed, where S � X0

′X0 is a matrix of genetic similarities between
pairs of markers for a given group of individuals,X0 is the SNPs matrix
of dimension 195 × 4,100. TheE(S2) is defined as the sumof the squared
values of the off-diagonal elements of S2. Equivalently, maximizing/
minimizing the E(S2) can be accomplished by respectively increasing/
decreasing the trace (sum of the values in the diagonal) of S2. Thus, for
one iteration, the total number of times that the E(S2) is computed is
304,200 (195 ×1,560) and the objective is to identify the lth (j = 1, 2, . . . ,
1,560) RIL in the X1 set that maximizes or minimizes (according to the
desired sample) theE(S2) after discarding themth (i = 1, 2, . . . , 195) RIL
of the X0 set. Thus, out of the 304,200 combinations, only one satisfies
the condition of maximizing/minimizing the most the E(S2). These two
RILs are exchanged from one set to the other (i.e., substitute the lth RIL in
X0 by the mth RIL in X1). This procedure is repeated until
Emin(S2(k)l,m )≤Emin(S2(k+1)l,m ) for the kth iteration (k � 1, 2, . . .) when
the objective is to maximize the genetic diversity in the sample or
Emax(S2(k)l,m )≥Emax(S2(k+1)l,m ) to minimize it.

2.3 Genomic prediction models

2.3.1 M1: E + G; environment and genomic main
effects

Consider that yij represents the yield performance of the ith

genotype at the jth environment, and it is composed of the sum of a

FIGURE 1
Graphical representation of three different training set sizes,
compositions and genetic diversity based on the number of unique
RILs used for model calibration. The horizontal gray lines correspond
to NO-RILs (A across/W within environments) while the
horizontal blue lines represent O-RILs; values in the diagonal provide
information about the percentage of unique RILs (UNIQUE A) across
environments. (A) corresponds to the selection of 195 RILs per
environment for a total of 1,775 phenotypic observations. (B, C)
correspond to intermediate and a reduced training set sizes with
145 and 95 RILs per environment with different compositions.
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common effect (μ) plus an environmental random effect (Ej, j = 1,2,
. . . , J), a genetic random effect corresponding to the ith RIL (Li, j =
1,2, . . . , I), a genomic random effect (gi, i = 1,2, . . . , I), and a random
error term (ϵij) capturing the unexplained variability by the model
components. This linear predictor can be written as follows:

yij � μ + Ej + Li + gi + ϵij (1)
where Ej ~ N(0, σ2E) and σ2E represents the corresponding variance
component; g � gi{ } ~ N(0,Gσ2g),G � XX′/p,X is the centered and
standardized (by columns) matrix of SNPs, σ2g is the additive genetic
variance; and ϵij ~ N(0, σ2) with σ2 as the residual variance. The
entries of G describe the genomic similarities between pairs of
individuals allowing the borrowing of information between tested
and untested genotypes.

2.3.2 M2: E + G + GE; environment and genomic
main effects plus genotype-by-environment (GE)
interaction

The previous M1 returns a singular genomic effect for each
genotype observed in different environments. Thus, the resulting
predicted genomic effect might not be accurate when considering all
tested environments. To allow specific genomic effects at each
environment, a model incorporating the genotype-by-
environment GE interaction was considered. The reaction norm
model conceptually allows the inclusion of the interaction between
each molecular marker and each environmental factor in a
convenient way via covariance structures (Jarquin et al., 2014a).
Let gE � {gEij} be the vector of the interaction scores between ith

genotype and the jth environment. The previous interaction effect
can be modeled as a random effect following a multivariate normal
distribution centered on zero and a covariance structure given by
ZgGZ′

g+ZEZ′
E where Zg and ZE represent the incidence matrices

that connect phenotypic records with genotypes and environments,
respectively. Here, “+” is the Hadamard product (cell-by-cell)
between two matrices (covariances structures). Adding the
previous model term to M1, the resulting linear predictor is as
follows:

yij � μ + Ej + Li + gi + gEij + ϵij (2)

where gE � {gEij} ~ N(0, ZgGZ′
g+ZEZ′

Eσ
2
gE) with σ2gE representing

the associated variance component.

2.3.3 M3: E + G + GE + FE; Environment and Genomic main
effects plus genotype-by-environment and family-by-
environment interactions

Persa et al. (2020) proposed a model to leverage the information
of individuals belonging to the same families but observed in different
environments by including the family-by-environment FE interaction
model term. Consider Fk (k � 1, 2, . . . , m), as the random model
term representing the effect of the kth family such that Fk ~ N(0, σ2F).
This model term allows the borrowing of information between
genotypes belonging to the same family under the premise that
genotypes from the same family may perform alike. Here, the
predicted effect of the family membership is common for
individuals of the same family but observed in different
environments. For this reason, similarly to model M2, the
interaction between this model term and the environments

FE � {FEkj} was considered to allow specific values for each family
at each environment besides the main effect of the family
membership. The resulting model after adding the main effect of
the family F and the interaction FE to model M2 is as follows:

yij � μ + Ej + Li + Fk + gi + gEij + FEkj + ϵij (3)

where FE � {FEkj} ~ N(0, ZFZ′
F+ZEZ′

Eσ
2
FE), σ2FE is the

corresponding variance component, and ZF is the incidence
matrix that connects phenotypes with families.

2.4 Assessment of model efficiency

Predictive ability was measured on a trial basis, thus the Pearson
correlation coefficient between predicted and observed values was
computed within environments. The overall predictive ability was
computed as the average Pearson’s correlation coefficient across the
nine environments. As mentioned before, despite the training set
size or its composition (NO-RILs and O-RILs), the testing set size
(prediction set) was the same for all cases.Within each environment,
between 95 and 195 RILs were used as the training set for a constant
prediction set size of 1,560 RILs.

Since the RILs belong to families with different genetic
backgrounds (G1, G2, and G3), the Pearson’s correlation
coefficient was also calculated considering only the RILs within
each one of the different groups at each environment. In this case, in
each environment, the Pearson’s correlation coefficient between
predicted and observed values was computed three times, one for
each genetic background group. The objective of considering the
different groups of families when computing the correlations was to
assess the effects on predictive ability when blocking for population
structure although that was not the main goal of this research.

3 Results

3.1 Phenotypic data and population
structure

Phenotypic information on grain yield was available for
1,755 genotypes observed in nine environments (all genotypes in all
environments) for a total of 15,795 records available for analysis. No
statistically significant differences were observed for yield across the
seven different initial samples of size 195 RILs selected with the S1 (five
replications based on random selections) or S2 (two for maximizing/
minimizing the genetic diversity) selection methods. However, the
sampling method minimizing genetic diversity resulted in higher
average yield (3,722.5 kg ha-1) compared to the average of all other
sampling methods of (3,563.2 kg ha-1) and a significantly lower
coefficient of variation among samples (Supplementary Figure S1).

To assess the stability across environments of RILs selected with
the different sampling methods, the Pearson’s correlation coefficient
between environments was computed for each sample considering
the largest sample size (195 RILs) observed across all nine
environments. The total number of correlation values among the
nine environments was 36 (9 × 8

2 ). The SSD.max sample showed the
highest (0.292) median Pearson’s correlation coefficient with a larger
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dispersion between the 50% and 75% quantiles while the SSD.min
returned the lowest median correlation (0.123) (Supplementary
Figure S2).

A total of 4,100 SNPs were included in the analysis after filtering
the original set of 5,400 SNPs. Among the 1,755 RILs, no clear
association patterns regarding population structure were observed

FIGURE 2
Population structure of 1,755 RILs derived from 39 families sharing a common hub parent (IA3023). The families belong to three different groups of
ancestry G1(elite), G2 (diverse), and G3 (exotic background). The right panel indicates the selected genotypes using the super saturated design (SSD)
method to maximize (red color) or minimize (blue color) the genetic diversity based on genomic information.

FIGURE 3
Mean (five replicates) average (across nine environments) of the within environments correlation between predicted and observed values for
different sample sizes and composition for model training and three prediction models including the main effect of the environment (E), RIL (L), marker
SNPs (G), and the interaction between marker SNPs and environments (GE); and between families and environments (FE). (M1: E + L + G; M2: E + L + G +
GE; and M3: E + L + G + GE + FE).
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across different genetic background groups (G1: high-yielding lines,
G2: diverse ancestries, and G3: exotic PIs) (left panel in Figure 2). On
the other hand, the SSD.min samples were substantially more
clustered than the SSD.max samples when compared to the
distribution of all RILs (right panel in Figure 2). This indicates
that the SSD methodology can effectively select a group of
individuals to either maximize or minimize genetic diversity
given a fixed sample size.

3.2 Predictive ability across multiple samples

3.2.1 Across ancestry groups
Figure 3 depicts the mean (five replicates randomly selected)

average correlation between predicted and observed values across
the nine environments for different training set sample sizes and
compositions consisting of NO-RILs and O-RILs, and three
prediction models (M1: E + L + G [gray color]; M2: E + L + G
+GE [blue color]; andM3: E + L + G +GE + FE [orange color]). The
solid thick line represents the mean average correlation
corresponding to the largest training set size (195 RILs) while the
thin dashed lines correspond to the reduced training set sizes
(185–95). The starting point on the left side of the lines
represents the mean average for the scenarios where all the
genotypes were observed only once across environments (195,
185, . . . , 95), while the other extreme of the lines (right side)
corresponds to the case where most of the genotypes (e.g., 190 out
195; 170 out 175, . . . , 90 out of 95) are common across
environments. Hence, the number of common genotypes
increases as it moves laterally (left to right) across Figure 3.

The highest mean average correlation was obtained with model
M3 (~0.57), which was roughly 33% and 90% higher than M2
(~0.40) and M1 (~0.30), respectively (Figure 3). A slight
improvement in predictive ability was observed by increasing the
number of O-RILs by 10, reaching a plateau with the addition of
more O-RILs, followed by a slight reduction in the average
correlation towards the end (right side). Models M2 and
M3 were less influenced by increasing the number of common
genotypes across environments as compared to model M1
(Figure 3). In addition, as expected, the reduction of the training
set size resulted in a reduction of the mean average correlation in all
three models, being more pronounced in model M3. However,
M3 always returned the best results for the same combinations
between the training set size and calibration composition compared
to M1 and M2 (Figure 3).

Considering the largest training set size (195 RILs), the training
composition did not have a significant impact on the model
performance, particularly in model M3 which performance was
stable across all training compositions. Consequently, model
M3 has advantages since high predictive ability does not require
testing a large set of common RILs across environments which
could be challenging due to constraints on the land and seed
availability, especially in the earlier stages of the soybean breeding
pipeline.

3.2.2 Within ancestry groups
Since the RILs were derived from families with different groups

of ancestry (G1, G2, and G3), the effects of ancestry groups on the

predictive ability were assessed by computing the correlation
between predicted and observed values of similar families within
each environment. For this, a post-stratification of the vector of
predicted values of size 1,560 in the three different groups was
conducted. Then, the within environments predictive ability for each
group of families were computed despite the training set
composition.

Similar to Figures 3, 4 depict the mean average correlation across
environments and replicate computing the correlation between
predicted and observed values only among the families that
belong to the same group of ancestry (e.g., G1, G2, and G3). As

FIGURE 4
Mean (five replicates) average (across nine environments) of the
within environments correlation between predicted and observed
values for different genetic backgrounds [(A)G1: 17 high-yielding lines,
(B) G2: 15 diverse ancestries, and (C) G3: eight exotic plant
introductions (PI)], sample sizes and composition for model training
and three prediction models (M1: E + L + G; M2: E + L + G + GE; and
M3: E + L + G + GE + FE).

Frontiers in Genetics frontiersin.org07

Persa et al. 10.3389/fgene.2023.1269255

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1269255


expected, different patterns were observed for the different groups of
families. The group of RILs derived from elite parents (G1) was
highly affected by the reduction of the training sample size
(Figure 4). However, these results significantly improved when
the number of O-RILs increased. Using the largest training set
size, the best results were obtained with the model that includes the
interaction between families and environments (M3). Also, the
predictive ability was not affected by the different training set
compositions in this case. In the group of RILs derived from
diverse ancestry (G2), a less pronounced decay in predictive
ability was observed when the training set size was decreased
(Figure 4). The best results were also obtained with the most
complex model M3. For the group of RILs derived from exotic
ancestry (G3), the results using the most complex model were not
affected by the training set size and composition (Figure 4). In this
scenario, even the smaller training set size returned comparable
results to the largest training set size.

3.2.3 Within families for each ancestry group
A more detailed dissection of the model’s predictive ability at

the group/family (G1/families 1–17; G2/families 18–31; and G3/
families 32–39) level is displayed in Supplementary Figure S3
(G1), Supplementary Figure S4 (G2), and Supplementary Figure
S5 (G3) for the different models (M1-M3), training set sizes and
composition between overlapped and not overlapped RILs. For
each family the within environment correlation between
predicted and observed values was computed. Then, the
average across environments was obtained for each one of the
five replicates and the mean was calculated. This procedure was
repeated for all the different training set size and compositions
and the results were grouped (mean) for each group of families
(G1, G2, and G3).

Different patterns were observed for each one of the ancestry
groups. For the G1 group (Supplementary Figure S3), the mean
average within families correlation varied between 0.05 and 0.114.
Considering the largest training set size, the models M2 and
M3 performed very similarly across the different training
compositions (blue and orange thick lines) always outperforming
M1. However, reducing the training set size, the M3 model loses
predictive ability compared to M2. With respect to the families in
G2, the mean average within familie correlation ranged from 0.06 to
0.145. When considering the largest training set size, the M3 model
slightly outperformed M2 model, specifically with a low number of
overlapping RILs. While with reduced training set sizes and
compotions not clear pattern were observed. Regarding the
families in G3, the correlations varied between 0.55 and 0.195. In
this case, the M3 model returned the best results for almost all
training compostions when considering the largest training set size.
Also, the model’s predictive ability was not significantly affected by
reducing the training set sizes but for the training composition when
increasing the number of overlapped RILs across environments.
Although for each group of families different patterns were
observed, in general, the model M3 returned comparable results
to the other models (M1 and M2) for most of the training set sizes
and compositions. In many of these cases, the M3 model
outperformed M1 and M2 specially when considering larger
training set sizes and a low number of overlapping RILs across
environments.

3.2.4 Maximized (SSD.max) and minimized
(SSD.min) genetic diversity

Besides the method that randomly selects RILs to compose the
training set, the SSD algorithm that chooses RILs maximizing/
minimizing the genetic diversity (SSD.max and SSD.min,
respectively) for a fixed sample size that was also considered.
Supplementary Figure S6 shows the progression of E(S2) for
maximizing (SSD.max left panel) and minimizing (SSD.min right
panel) the genetic diversity contained in a sample of size 195 RILs.
A total of 183 iterations were required in SSD.max to meet the stopping
criteria when the E(S2) of the (k+1)th iteration is larger than the
previous one. On the other hand, a total of 182 iterations were needed to
meet the stopping criteria in SSD.min. The corresponding E(S2) values
that maximize/minimize the genomic diversity were 896 and 5,613.

Given the highest prediction accuracies were always obtainedwith
model M3 for all training set sizes, the predictive ability comparison
between the random samples and those obtained using the SSD
method was based on this model only. Figure 5 depicts the scatter
plot between the across environments average predictive ability
corresponding to the five random samples (considering only the
sets of common genotypes) and the SSD selection method across
ancestry groups (panel A) and within ancestry groups (G1-panel B;
G2-panel C; andG3-panel D). The colored circles indicate the samples
that are being compared: orange color for contrasting SSD
maximizing genetic diversity vs. random sample; and pink color
for SSD minimizing genetic diversity vs. random sample. The
numbers within the circles indicate the training set size, and the
diagonal line represents the 1:1 ratio between both methods. Values
above the diagonal line indicate that the random method is superior
and vice versa. In general, across groups of ancestry, equivalent results
between the random and SSD.max were observed for all sample sizes.
On the other hand, the random sample method outperformed
SSD.min in all groups of ancestry and sample sizes (Figure 5).

4 Discussion

The implementation of GP has revolutionized commercial and
public soybean breeding programs by allowing plant breeders to
predict the phenotype of interest in unobserved genotypes (Jarquin
et al., 2014a; Jarquin et al., 2014b; Persa et al., 2020; Widener et al.,
2021; Canella Vieira et al., 2022). The first report on GP in soybean
was based on a standard G-BLUP model including only additive
effects and an extended version of the G-BLUP model including
additive-by-additive effects (Jarquin et al., 2014b). Ma et al. (2016)
used ridge regression best linear unbiased prediction (rrBLUP)
(Endelman, 2011) with fivefold cross-validations to explore
strategies of marker preselection. Prediction accuracy based on
pre-selected markers slightly increased compared with random or
equidistant marker sampling (Ma et al., 2016). Xavier et al. (2016)
showed that the training population size was themost impactful factor
in the prediction accuracy when investigating the impacts of training
population size, genotyping density, and different prediction models.
Persa et al. (2020) expanded the reaction norm model proposed by
Jarquin et al. (2014a) by incorporating the interaction between the
family’s membership of the genotypes and the environment under the
premise that the differential responses of families to environmental
stimuli could be used for enhancing the selection process in target
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environments. These authors showed significant improvements in
predictive ability by incorporating the family-by-environment
interaction in the models compared to the conventional reaction
norm model (Persa et al., 2020). However, they also pointed out that
this model requires to observe, at least partially, the individuals of the
family to predict otherwise no improvements in predictive ability are
expected when predicting a yet to observe family. Thus, this model is
benefited only when some individuals of the target family are
observed. In this case, the family term here has a closely related to
pedigree information. In addition, Habier et al. (2007) and (2013),
showed that the addition of a model term modeling the differences
between groups of indiviuals (families, pedigree, etc.) besides the
genomic information, does a better job capturing relationship

information rather than just relationships alone. In this way, the
family term enables the genomic information to focusing on only
capturing LD information rather than trying to capture or explain at
the same time LD and the relationships.

Canella Vieira et al. (2022) investigated the potential of
incorporating soil texture information and its interaction with
molecular markers via covariance structures for enhancing
predictive ability across breeding scenarios. The obtained results
were more stable when predicting trait performance in novel
environments compared to the conventional reaction norm model.

The expression of a phenotype is a function of the genotype, the
environment, and the interaction between the genotype and
environment (G×E) across different environments (de Leon et al.,

FIGURE 5
Predictive abilities between random and SSD methods considering sets of common genotypes across environments using model M3 across
ancestry groups (A), and within ancestry groups (G1: (B), G2: (C), and G3: (D). The numbers within the circles indicate the sample size of the training set.
The orange circles contrast the results obtained with the sample that maximizes the genetic diversity (SSD.max) vs. the random samples. The pink circles
contrast the results obtained with the sample that minimizes the genetic diversity (SSD.min) vs. the random samples.
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2016). Grain yield is a highly complex and quantitative trait
regulated by numerous large and small-effect genes, of which its
expression largely depent on the genotype interaction with various
components of the environment. Genomic prediction-based sparse
testing is a promising concept to substantially increase the number
of tested genotypes and environments while maintaining fixed
requirements for land, seed availability, and costs (Jarquin et al.,
2020b; Montesinos Lopez et al., 2023a). Hence, GP-based sparse
testing enables a more comprehensive assessment of genotype
stability and adaptation in the early stages of the breeding
pipeline, which likely could result in a more accurate selection of
superior genotypes widely adapted to various environments.

In soybean breeding, this is particularly important in the early
stages of yield trials (i.e., preliminary yield trials) where seed availability
and the excessive number of testing genotypes are major constraints
(Canella Vieira and Chen, 2021). In the public sector, preliminary yield
trials often consist of thousands (~1,000 to 3,000) of genotypes tested
across several replicated environments (three to seven environments,
two to three replications) resulting on average 20,000 preliminary yield
plots (2,000 genotypes, five environments, two replications). As shown
in this research (1,755 genotypes, nine environments, a total of
15,795 phenotypic records), GP-based sparse testing can sustain
high accuracies at various training compositions which could reduce
the testing footprint by as much as 90% (Figure 1). Given the cost of
approximately $15 for a yield phenotype (plot), this methodology has
the potential to reduce the total cost of preliminary trials (depending on
the size of the program) by as much as $210,600 ($236,925–26,325;
1,755 vs 15,795) with the largest training set size (195) while about
$224,100 ($236,925-$12,825; 855 vs 15,795) for the smallest one (95)
while maintaining the number of genotypes and environments fixed.
On the other hand, the number of tested RILs and/or environments can
increase by 5- to 10-fold while maintaining the costs fixed. Considering
the premise of same phenotyping cost across environments (fixed cost
of $15 per phenotypic record), with the initial budget dedicated to test
all the RILs in all of the environments ($236,925) the number of RILs or
the number of environments can be increased by 9 folds or considering
combinations of these.

In this study, different predictionmodels, aswell asmultiple training
set sizes and compositions (ratio of NO-RILs and O-RILs across
environments, SSD.max and SSD.min), were investigated. The most
comprehensive model, including the interaction between families and
the environment (M3), yielded the highest prediction accuracies
independent of training set sizes and composition. The ability to
borrow information between genotypes derived from the same
families likely contributed to the superior performance of
M3 because half of the cross was already observed a considerable
number of times in other crosses and environments (Jarquin et al.,
2020a). In GP-based sparse testing where most genotypes are untested
within and across environments, borrowing information from tested
individuals within the same family but observed in different
environments has been shown to improve predictive ability by as
much as 48% compared to models including the interaction of
molecular markers and environments only or reaction norm model
(Persa et al., 2020). Across all three models, reducing the training set size
negatively impacted prediction accuracies. However, prediction accuracy
was rapidly recovered by the addition of O-RILs. This indicates that the
training set composition is critical to a successful GP-based sparse testing
implementationwhen the training set is reduced. This observation is also

important in advanced yield trials where the number of testing genotypes
is significantly reduced as compared to preliminary trials (roughly 90%
fewer genotypes), and the number of testing environments is
significantly increased (Canella Vieira and Chen, 2021). Specifically,
the advanced yield trials stage offers more flexibility in maximizing
training set sizes and composition (increasing O-RILs) since seed
availability should not be a major constraint.

The results and trends in predictive ability obtainedwithmodelsM1
(main effects only) and M2 (reaction norm considering the interaction
between markers and environments) were similar to those obtained by
Jarquin et al., 2020b; Crespo-Herrera et al., 2021 analyzing maize and
wheat data, respectively. However, these authors did not considermodels
including the interaction between family and environments. On the
other hand, the results of model M3 (also including the interaction
between family and environment) were similar to those obtained by
Persa et al., 2020 analyzing information of the SoyNAM experiment
comprising 1,358 RILs observed in 18 environments (not all RILs
observed in all environments) but considering a conventional fivefold
cross-validation predicting tested genotypes in observed environments
(CV2) and untested genotypes in observed environments (CV1). In
addition, Xavier and Habier (2022), using the SoyNAM population
conducted an study to evaluate the effects in predictive ability of models
similar to M1 and M2 when considering simulated data for the case
where RILs are observed only once across environments for different
heritabilities. The results obtained for these authors were higher
compared with the results here presented probably due to the fact
they considered simulated data as response as opposed to real data and a
different cross-validation scheme.

In this study, in addition to the ratio of NO-RILs and O-RILs, the
selection of RILs to compose the training set based on maximizing
(SSD.max) and minimizing (SSD.min) genetic diversity was also
investigated. The Super Saturated Design (SSD) methodology was
implemented to identify the set of 195 RILs that either decreased or
increased E(S2) (SSD.max and SSD.min, respectively). The method
successfully created two fixed-size sample groups with contrasting
genetic diversity. This was further observed in the population
structure of each group, where SSD.max samples showed wider
distribution and minimal clustering as compared to the SSD.min
samples (right panel in Figure 2). Interestingly, the SSD.max samples’
prediction accuracy outperformed the SSD.min samples in all
scenarios (Figure 5). Superior prediction accuracy in the SSD.max
samples could be explained by the higher availability of diverse alleles
associated with stress resilience, and therefore, resulted in higher
stability across environments. A narrower genetic diversity, although
may prioritize high-yielding alleles, can be more susceptible to
environmental stressors. This was also observed in the higher
phenotypic correlation of the SSD.max samples across all
environments compared to SSD.min samples (Supplementary
Figure S2).

Also, in general the results of the SSD.max sample slightly under
performed the results of the random samples for most of the sample
sizes of common RILs across environments and across ancestry
groups, except for the case when the sample size was fixed in
115 common RILs (Figure 5A). Considering the different
ancestry groups, mixed results were obtained for G1, while for
G2 better results were obtained with the SSD.max sample, and
for G3 the random samples were superior. In all of the cases, the
SSD.min returned the worse results. Seems like the G1 group of
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families (high yielding) is very susceptible to the presence of
genotype-by-environment interactions thus reduced sample sizes
with a high propotion of non-overlapped genotypes significantly
reduced predictive ability. On the other hand, in G2, the reduction of
the training set sizes is the only factor that reduces predictive ability,
and the results are more stable across the different training sets
compositions. Finally, for G3, neither the sample size nor the
training set composition seems to affect the predictive ability
since similar results were obtained across these.

Additionally, higher genetic diversity (here represented by G3)
yielded stable prediction accuracies across various training set sizes
and compositions. Like the SSD.max observation, this could be
attributed to the higher availability of diverse stress resilient-alleles
and therefore require a smaller number of samples, as well as
reduced O-RILs to achieve maximum prediction accuracy. These
observations are fundamental to the establishment of a successful
GP-based sparse testing design and should be further explored
across populations with various genetic backgrounds, including
high-yielding bi-parental populations.

Similarly to the analysis of the different genetic backgrounds, a
more detailed analysis can be done by considering the model’s
predictive ability at the family level. As expected, a significant
reduction in predictive ability was obtained (Supplementary
Figures S4–S6); however, there was not a unique model always
outperforming the other two. In general, model M3 slightly
outperformed the other two models, specially when considering
the largest training set size and with a lower number of overlapping
genotypes. Also, it was superior when only considering the families
from G3. Arguably the results obtained when computing the
correlation across families might be inflated; however, the
selection of the superior cultivars are not made within families
but across these. In addition, considering the three models, there was
not a unique model systematically outperforming the others. The
lack of a unique model significanly outperforming the within
families predictive ability is due to the fact that no relationship is
factored in when ranking individuals within families (Habier et al.,
2013). All the models have the same ability to model LD. In our case,
at the family level, the most complex model M3 showed slight
improvements in predictive ability by including the family term as
main effect and in interaction with environments. This could help
breeders to better screening RILs across families and environments
while reducing phenotyping cost via sparse testing designs.

5 Conclusion

Genomic prediction-based sparse testing design is a promising
approach to further maximize the applications of high-dimensional
genomic data and predictive models toward improving cultivar
development. The increase of testing environments in the early
stages of the breeding pipeline can provide a more comprehensive
assessment of genotype stability and adaptation which are fundamental
for the precise selection of superior genotypes widely adapted to various
environments. Various training set sizes and compositions, as well as
prediction models, have been investigated. Overall, the training set size
and the inclusion of O-RILs appear to be the main factors impacting
prediction accuracy given a fixed training set size while the genetic
diversity seems to be a secondary factor, except when it was minimized

returning the worse results. Additional studies investigating the real-
world effectiveness of prediction accuracy based on genotype ranking
and advancement breeding decisions can help determine the ideal
protocols for GP-based sparse testing in soybean. In summary, GP-
based sparse testing can either improve/increase testing capacity
(represented as the number of genotypes and environments) at a
fixed cost or substantially decrease the cost of a breeding pipeline at
a fixed testing capacity.
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