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The increasing demand for food is the result of an increasing population. It is
crucial to enhance crop yield for sustainable production. Recently, microRNAs
(miRNAs) have gained importance because of their involvement in crop
productivity by regulating gene transcription in numerous biological processes,
such as growth, development and abiotic and biotic stresses. miRNAs are small,
non-coding RNA involved in numerous other biological functions in a plant that
range from genomic integrity, metabolism, growth, and development to
environmental stress response, which collectively influence the agronomic
traits of the crop species. Additionally, miRNA families associated with various
agronomic properties are conserved across diverse plant species. The miRNA
adaptive responses enhance the plants to survive environmental stresses, such as
drought, salinity, cold, and heat conditions, as well as biotic stresses, such as
pathogens and insect pests. Thus, understanding the detailed mechanism of the
potential response of miRNAs during stress response is necessary to promote the
agronomic traits of crops. In this review, we updated the details of the functional
aspects of miRNAs as potential regulators of various stress-related responses in
agronomic plants.
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Introduction

MicroRNAs (miRNAs) are small, non-coding, single-stranded RNAs, which are
18–24 nucleotides in length. miRNAs play a crucial role in numerous biological
processes in plants (Bartel and Bartel, 2003) and animals (Stefani and Slack, 2008). It
has been shown that miRNAs are responsible for morphogenesis, growth and development,
hormone secretion, signal transduction, and environmental stress responses (Liu et al.,
2017), and the post-transcriptional regulation of genes is closely associated with agronomic
traits (Zheng and Qu, 2015). miRNAs represent approximately 1%–2% of the total genes of
an individual plant (Zhang et al., 2008). High-throughput sequencing is an efficient
technique for identifying plant miRNAs (Zhu et al., 2010). Several reports have stated
that changes in the external environment of plants could alter the miRNA profile, which
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regulates various stress responses in plants (Lu et al., 2011; Yang
et al., 2013; Bej and Basak, 2014). Recently, miRNA identification
has emerged as an important target. Deep sequencing technologies
have been used to identify and understand the species-specific
functions of miRNAs and their target genes (Amanda et al.,
2013). The miRNA database (miRBase) v.21. maintained
7,385 plant miRNAs. Among these, 337 miRNAs were from
Arabidopsis, 713 from rice, 321 from maize, and 241 and
61 from sorghum and barley, respectively. In plant species,
sixteen miRNA families with a central function in stress response
have been reported (Chen et al., 2016). Additionally, MYB domain
protein transcription factors (TFs), a major TF family present in
plants, control the miRNA-regulated aspects of plant growth,
metabolism, and stress response. miRNAs provide an adaptive
mechanism to plants for survival under environmental stress,
such as drought, salinity, cold, heat, and pathogenic conditions.
Moreover, the potential mechanism of miRNAs in the stress
response is necessary to increase the yield of agronomically
important crop varieties (Djami-Tchatchou et al., 2017; Zhang
et al., 2022). In this regard, this review features the biogenesis
and mechanism of regulation in miRNAs and various functional

aspects of miRNAs in governing the environmental stress responses
in economically viable agronomic plants. This review presents
updated information on the functional characteristics of miRNAs
as potential regulators of stress-related responses in agronomic
plants.

Biogenesis and processing of miRNAs

The miRNA genes are mainly situated in the intergenic region
(IGR) but are also found in the sense or antisense orientation within
the introns. RNA polymerase II transcribes the miRNA genes in the
nucleus to generate pre-miRNAs. The pre-miRNA consists of long
hairpin structures with nucleotide lengths ranging from 70 to
hundreds of bases. The pre-miRNA undergoes a sequence of
processes leading to the formation of a solitary hairpin structure,
which is then cleaved by Dicer-like (DCL) enzymes to generate a
mature miRNA (Axtell et al., 2011). First, DCL1 is linked to
chromatin regions of the MIR gene (Fang et al., 2015). Secondly,
many regulatory proteins regulating miRNA transcription (such as
CDC5, NOT2, and ELP2) have been found to interact with

FIGURE 1
The regulation of microRNA (miRNA) biosynthesis and its functional mechanisms in plants. miRNAs are initially transcribed as primary miRNAs (pri-
miRNAs) by the enzymeDNA-dependent RNA Polymerase II (Pol II). Subsequently, these pri-miRNAs undergo processing to formprecursormiRNAs (pre-
miRNAs) by the action of a protein complex known as D-body. After undergoing processing, the miRNAs in their double-stranded form are subjected to
methylation by the enzyme HEN1. Subsequently, they are transported from the nucleus to the cytoplasm with the assistance of HST. The mature
miRNA, that is, produced can downregulate gene expression by integrating into AGO1, which subsequently associates with other proteins to assemble
the RNA-induced silencing complex (RISC). There are two distinct mechanisms through which RISC (RNA-induced silencing complex) exerts its effects:
transcriptional cleavage and translation suppression.
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processing machinery proteins (Wang et al., 2019). Plant miRNAs
perfectly or near-perfectly match their mRNA targets and mediate
the silencing or direct cleavage of complementary target mRNAs
(Jones et al., 2006). To recognize the target mRNA, the miRNA is
transported to the cytosome by HASTY (HST) and combined with
RNA-induced silencing complex (RISC) recognizing the target
mRNA and leading to the cleavage or repression of translation
(Park et al., 2005). In addition, some miRNAs are located in host
intron genes known as mitrons. Mitrons are widely distributed in
animals; however, only a few have been identified in rice and
Arabidopsis (Meng and Shao, 2012). However, the precursor of
mitrons is located in the intron of an unknown protein-coding gene.
The regulation of microRNA biosynthesis and its functional
mechanisms in plants are shown in Figure 1.

MiRNA conservation and gene
regulation

miRNA families are grouped into conserved and non-conserved
miRNAs based on their evolutionary conservation and
diversification. Researchers have identified conserved and novel
miRNA sequences from plant tissues, such as leaves, stems,
calluses, and flowers, using deep sequencing techniques. Several
studies have demonstrated the conservation of miRNAs across
several plant taxa, including gymnosperms, dicots, eudicots, and
mosses (Cuperus et al., 2011; Sun, 2012). Evolutionarily conserved
miRNAs were highly expressed. In contrast, non-conserved
miRNAs are expressed at low levels under specific conditions and
exist in limited species (Taylor et al., 2014). The significance of
miRNAs in plants was first identified from conserved miRNA
sequences, such as miR319 and miR172, which are involved in
the morphogenesis of both leaves and flowers (Palatnik et al., 2003).
miRNAs, such as miR156, miR160, miR165, miR166, miR167,
miR319, miR390, miR395, and miR408, are conserved among
terrestrial plants and non-flowering moss (Taylor et al., 2014).
Moreover, miR156 to miR408 are conserved miRNAs that are
common between gymnosperms and angiosperms (Cuperus
et al., 2011; Taylor et al., 2014). Bonnet et al. (2004) analyzed the
conservation of miRNAs between the genomes of Arabidopsis and
Oryza sativa and they identified 91 potential miRNAs, among those
58 miRNAs were relatively matched.

Non-conserved miRNAs are unique in specific species that
possess immense targets, such as active enzymes and proteins
involved in adaptation to diverse conditions. For example,
miR2275 in rice, miR173 in Arabidopsis, and miR482 in tomato
are non-conserved miRNAs (Shivaprasad et al., 2012). Micro RNA
regulates gene expression through different mechanisms. The
miRNA specifically recognizes the target mRNA gene which
possesses complementarities to the miRNA followed by the
activation or inhibition of target genes (Sun, 2012). Typically,
miRNAs bind to the 3′- untranslated region (3′-UTR) of target
mRNAs, followed by destabilizing and translational silencing of the
mRNA, which leads to the inhibition of protein production.
Moreover, miRNAs have specific functions in the cytoplasm and
the nucleus. In the cytoplasm, the miRNA-induced silencing
complex (miRISC) regulates the fate of miRNAs by inhibiting
translation or promoting mRNA degradation. However, in the

nucleus, miRNA regulation is independent of RISC. Before the
export of miRNAs to the cytoplasm, they bind with some target
mRNAs in a pre-silenced state (Cannell et al., 2008). Budak and
Akpinar (2015) reported that “Intergenic” and “intronic” miRNAs
are the two different types of miRNAs. Intronic miRNAs are
processed from the introns of their host transcripts, whereas
intergenic miRNAs are situated between two protein-coding
genes and are produced as separate units by DNA-dependent
RNA Polymerase II (Pol II).

The canonical biogenesis pathway is the major pathway for
miRNA processing and consists of an RNA binding protein,
DiGeorge Syndrome Critical Region 8 (DGCR8), and a
ribonuclease III enzyme Drosha, which transcribes pri-miRNAs
from their genes and then processes them into premiRNAs. Plant
MIRs, such as glycine-rich RNA-binding protein 7 (GRP7), STA1,
and ILP1/NTR1, undergo splicing and alternative splicing, which
can impede pri-miRNA processing. GRP7 is a hnRNP-like glycine-
rich RNA-binding protein that enhances primiRNA splicing in vivo
(Köster et al., 2014). The AGO protein serves as both an effector and
a crucial factor in maintaining miRNA stability. The proteins
HESO1, URT1, SDN1, and ATRM2 have been observed to
interact with AGO1 and are involved in the regulation of AGO1-
bound miRNAs or unmethylated miRNA/miRNA duplexes, as
reported by Chen et al. (2018) and Wang et al. (2018).

Plants must maintain intracellular miRNA homeostasis in order
to adapt to environmental and developmental changes. MicroRNA
stability control, in addition to miRNA synthesis, is important for
the regulation of miRNA homeostasis. MicroRNAs have significant
regulatory functions in organisms through their ability to target
certain messenger RNAs (mRNAs) for cleavage or translational
repression. They exert influence over a wide range of biological
processes, including leaf, root, and flower development, as well as
grain filling (Bian et al., 2012). During the initial stages of grain
development, there is a notable upregulation of miRNAs that target
genes associated with cell differentiation, auxin-activated signalling,
and transcription. This upregulation potentially contributes to the
regulation of grain size. Subsequently, in the middle and later stages
of development, miRNAs are found in abundance and target genes
involved in carbohydrate and nitrogen metabolism, transport, and
kinase activity. This abundance of miRNAs may play a role in grain-
filling processes (Hou et al., 2020).

Functional roles of miRNAs in
agronomic plants

Rice

Rice (O. sativa L) is the most significant crop which feeds about
two billion people worldwide. Moreover, the degree of rice
production influences the country’s economic status.
Environmental factors, including salinity, drought, temperature,
and nutrient starvation affect the yield of rice crops. The
recognition of miRNAs in rice has been rapidly improved by
advances in sequencing technologies (Jeong et al., 2011; Yang
et al., 2014). miRBase v.21 maintains 592 miRNA sequences that
generate 713 mature miRNAs identified in rice (Kozomara and
Griffiths, 2014). In rice, miRNAs can determine the yield, quality,
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and biotic and abiotic stress tolerance (Figure 2). Furthermore,
miRNAs, small interfering RNAs (siRNAs) are also involved in
stress responses (Bostock, 2005) and rice trait improvement (Ding
et al., 2011; Yan et al., 2011; Wei et al., 2014). Salinity is a crucial
abiotic stress that contributes to a 5% loss of crops worldwide (Gupta
and Huang, 2014), affecting plant growth through irregular cell
division, defective metabolism, and necrosis, which leads to cell
death (Ayala and Alcaraz, 2010). The root is the primary organ that
responds to soil-related stressors. However, post-stress conditions
were reflected in the leaves. Primarily, miRNAs from leaf tissues are
usually used to recognize the genome related to salinity stress in rice
(Walia et al., 2005; Kumar et al., 2013). osa-miR169g and osa-
miR169o were upregulated in rice during salinity stress. Further,
osa-miR396c (Ding et al., 2009), and osa-miR393a (Gao et al., 2011;
Ganie et al., 2016), osa-miR166 (Ding et al., 2009) are salinity-
responsive miRNAs which were identified in rice (Table 1).

Other miRNAs such as miR156, miR157 and miR172, targeted
SPB-like proteins (SPLs) and APETELA 2 (AP2), respectively, and
also controlled salinity tolerance. miR393 is also involved in the
drought response in rice, which is overexpressed under drought
conditions and reduces both drought and salt tolerance in rice (Xia
et al., 2012). miR169 helps control plant growth during salinity stress
by altering the elongation of plant cells and carbohydrate
metabolism by targeting the nuclear factor Y subunit (NF-Y)
(Zhao et al., 2009). MiR164 regulates miRNA-mediated cleavage
of NAC domain-containing protein TFs (NAC TFs).

miR159 regulates MYB TFs responsible for flowering of rice
plants under saline stress. However, the overexpression of MYBs
leads to delayed flowering. Moreover, some salt-responsive miRNAs
are responsible for protein turnover. For example, the genes
responsible for the ubiquitin-proteasome pathway F box, Cullin-
1, are an interesting new gene (RING) finger, and 4-coumarate-CoA
ligase 1 protein takes part in the response to salinity stress
(Sadanandomet et al., 2012; Singh et al., 2015). Mondal et al.
(2015) reported that osa-miR164e repression by salt treatment
results in elevated expression of ubiquitin-specific protease (UBP)
which is important for salinity tolerance in O. coarctata. However,
Gao et al. (2011) reported that osa-miR393a expression decreased
under salt treatment, resulting in increased sensitivity to saline. In
rice, miR393a is negatively regulated by salinity tolerance. Auxin
response factor (ARF) belongs to the auxin signalling pathway
family, which negatively regulates the growth and development of
rice plants. Oco-miR044-3p targets the K+ antiporter gene, which is
responsible for the conservation of Na+ and K+ homeostasis in O.
coarctica. The oco-miR044-3p is also an important gene regulator of
the survival of rice plants under saline conditions. Moreover, the
sulfate transporter gene was predicted to be responsible for salinity
tolerance in O. coractata. In rice seedlings, miR169, miR319a.2,
miR408-5p, miR397, miR528, miR827, and miR1425 have been
found to be involved in hydrogen peroxide-mediated responses
(Bonnet et al., 2004) (Table 1). Some miRNAs were associated
with direct stress responses and downstream signalling processes

FIGURE 2
Functional roles of microRNAs (miRNAs) in abiotic and biotic stress response in agronomically important plants.
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TABLE 1 Functional aspects of miRNA and their target genes in biotic and abiotic stress response in agronomic plants.

Plants miRNA –Up-regulation Functions Target genes References

Rice (Oryza sativa) miR159, miR169, miR171, miR319,
miR395, miR474, miR845, miR851,
miR854, miR896, miR901, miR903,
miR1026 and miR1125

Drought response MYB, HAP2, SCL, MYB, APS, TCP,
SO2 transporter

Zhou et al. (2010)

miR169g, miR171a and miR393 Induced in response to
dehydration

CBF/DREB Jian et al. (2016); Li
et al. (2010)

miR169, miR397, miR528, miR827,
miR1425, miR319a.2 and miR408-5p

H2O2-responsive

miR156k, miR166m, miR166k,
miR167a/b/c, miR168b, miR169e,
miR169f, miR169h, miR171a, miR
1884b, miR319a/b, miR444, miR535,
miR1320, miR1435, miR 1850, miR
1868, and miR1876

Cold stress Cd-responsive miRNAs encode TFs Lv et al. (2010)

miR319a/b Cold tolerance DREB1A/B/C, DREB2A, TPP1/2 Yang et al. (2014)

miR528, and miR827 H2O2-oxidative stress Protein with F-box and SPX domain Li et al. (2010)

miR2118 Photoperiod-sensitive male
sterility

PMS1T Ta et al. (2016)

miR168 Flower and yield improvement AGO1 Wang et al. (2021)

OsmiR535 Leaf senescence alteration OsSPL19 Yue et al. (2020)

Oryza glaberrima and Oryza
barthii

osa-miR528 and osa-miR408 Cd concentration of Cd in panicle
node and grain

OsMYB5P, OsbZIP18, OsERF141,
OsSnRK1, and OsAAE3

Liu et al. (2020)

Barley (Hordeum vulgare miR166a, miR166′b, miR166c Vascular differentiation,
development of leaf and root
formation

HD -Zip protein 8 Yadav et al. (2021)

miR397a Plant and flowering development laccase precursor protein;
transporter family protein

Huang et al. (2020)

miR164 Lateral root and shoot
development

ARF TF Deng et al. (2015)

Sorghum (Sorghum bicolor
(L.) Moench)

microRNAs include miR156a, miR156b,
miR156c-f, miR156g-h, miR529, novel-
sbi-miR-119, novel-sbi-miR-383, novel-
sbi-miR-329, and a novel-sbi-miR-350

Response to drought stress SBP gene Katiyar et al. (2015)

miR529 Protease and ubiquitin-related genes

miR398 Cu/Zn SOD, selenium-binding
protein, and cytochrome C

Pennisetum glaucum (L.) R.
Br. (Pearl millet)

miR155 Response to drought stress Cu-Zn superoxide dismutase,
eIF-4A

Chakraborty et al.
(2020)

miR399, KN1 NCED1, LOV, aspartate
aminotransferase

Setariaitalica (L.) P. Beauv.
(Foxtail millet)

miR160 Response to drought stress WRKY and ARF

miR165 Carboxylesterase WRKY, ARF, NDR1/HIN1

Maize (Zea mays L.) miR164, and miR160 Regulation of ABA metabolism MYB, NAC, and ARF Liu et al. (2019)

miR393 Enhancing water potential and
Aux/IAA protein degradation

TIR1 Seeve et al. (2019)

miR172a, and miR160f-5p Precondition of aerobic
respiration

ERTF RAP2-7, ISOFORM X2, and
ARF8

Azahar et al. (2020)

miR162, miR168, miR395 and miR474 Salinity stress SBP protein domain 6 Ding et al. (2009)

miR166 Enhancing the pollination HD zip transcription factor Mica et al. (2006)

(Continued on following page)
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(Figure 2). For example, oco-miR020-3p, oco-miR026-3p, and oso-
miR396c target downstream signalling pathway genes, such as
phosphoinositide 3-kinase and leucine-rich repeat family proteins
(Mondal et al., 2015).

Other miRNAs, such as miR167, miR319, miR812q, and miR1425,
which are known as cold-stress-responsive miRNAs, regulate target
genes during cold conditions (Jeong et al., 2011). On the other hand,
osmiR397 is a high-temperature stress-responsive miRNA that regulates
L-ascorbate oxidase expression in rice during heat stress (Sailaja et al.,
2014). Duringmicrobial infection in rice, there is a fluctuation inmiRNA
expression, indicating that miRNAs are also involved in plant responses
to pathogens. Magnaporthe oryzae is the causative agent of rice blast
disease in O. sativa. Zhang et al. (2018) compared the expression of
miR319 in mock- and Magnaporthe oryzae-treated rice plants. They
found that M. oryzae strain Guy11 induces the expression of miR319,
which represses the target gene osTCP21. Moreover, osa-miR398b
overexpression increases resistance to blast disease (Yang et al., 2012).
A recent report states that there is a synergistic effect between nutrient
supply and bacterial infection in O. sativa. For example, limiting the
nitrogen source improves resistance to bacterial blight disease caused by
Xanthomonas oryzae (Tran et al., 2018).

Wheat

Wheat (Triticum aestivum L.) is an extensively cultivated crop
plant consumed by humans worldwide, providing 25% of the
calories per day. The miRBase v. 21 maintained 116 miRNA
sequences belonging to 30 miRNA families in wheat. Wei et al.
(2009) identified 58 wheat miRNAs (from leaves, stems, roots, and
spikes) by sequencing, which belong to 43 miRNA families.

Moreover, 32 miRNAs and their respective target genes were
identified in wheat seedlings through degradome library
construction by Li et al. (2012). Recently, 323 novel miRNAs and
their respective target genes were identified in wheat, which are
involved in grain development (Li et al., 2015). Similar to other crop
plants, microRNAs have significant functions in the regulation of
genes related to responses to biotic and abiotic stresses. A
comprehensive analysis revealed the presence of 153 microRNAs
(miRNAs) in wheat, which exhibit associations with both biotic and
abiotic stress responses (Figure 2).

Fungal infection with Blumeria graminis f. sp. triticum (Bgt) in
wheat results in the downregulation of miRNAs, such as miR156,
miR159, miR164, miR171, and miR396, and the upregulation of
miRNAs, such as miR393, miR444, and miR827 (Sun et al., 2014).
Fusarium culmorum is a fungal pathogen that mostly affects small-
grain cereals, such as wheat and barley, and is recognised as a
significant contributor to biotic stress in these crops. According to
Xin et al. (2010), the expression levels of three microRNAs, namely,
gma-miR5783, gma-miR171, and ath-miR2933, are significantly
upregulated in response to Fusarium culmorum infection. These
microRNAs play a crucial role in providing protection against the
fungal infection. Plant cells are subject to significant harm due to
many environmental conditions, including salinity, heavy metals,
UV radiation, and drought. This damage occurs as a result of the
buildup of superoxide radicals, hydrogen peroxide, and hydroxyl
radicals. The involvement of miR398 in the plant’s abiotic stress
response has been observed in wheat. The two Cu-Zn SOD genes
(CSD), cytosolic CSD1 and plastidic CSD2 were upregulated in
miR398 expression. Under stress conditions, CSD1 and
CSD2 mRNAs accumulate and downregulate the expression of
miR398 (Inal et al., 2014).

TABLE 1 (Continued) Functional aspects of miRNA and their target genes in biotic and abiotic stress response in agronomic plants.

Plants miRNA –Up-regulation Functions Target genes References

miR169 Seed development CCAAT- binding factor, HAP-2-
like protein

Mica et al. (2006)

microRNAs such as miR437, miR854,
iR1128, miR1132, miR1133, miR1320,
miR1435, miR1436, miR1439, miR
1884, and miR2102

Regulation of metabolic pathways Maize transposon-related repeats Liu et al. (2014)

Wheat (Triticum turgidum L.) miR399b, miR393c, and ttu-novel-61 Enchaining the nitrogen stress
during the grain filling

PHO2, AFB2, CCAAT-TF Zuluaga et al. (2017)

miR1139 Pi starvation enchantment TaMIR1139 Liu et al. (2018)

miR 1867, miR896, miR398, miR528,
miR474, miR1450, miR396, miR 1881,
miR894, and miR156

Drought- resistant wild emmer DUF1242, plantacyanin, copper
superoxide dismutase, POD, protein
phosphatase PP2A-4 &
SQUAMOSA promoter binding
protein-like (SPL)

Kantar et al. (2011)

miR393, miR444and miR827 Powdery mildew disease Auxin signalling pathway genes Xin et al. (2010)

m0868_3p, m0874_3p, and m0220_3p Embryogenic callus formation Zinc finger MYB and SPL proteins Chu et al. (2016)

miR396a, miR444c.1,172a, miR393,
miR167d, miR167c) and tasiRNA

Cold stress ARF Tang et al. (2012)

miR156, miR159, miR160, miR166,
miR168, miR169, miR393 and miR827

Heat stress ARF10, ARF16, and ARF17,
ARF3 and ARF4

Xin et al. (2010)

miR156 Juvenile-to-adult transition BP-box transcription factors Wang et al. (2017)
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Among environmental stresses, drought is considered the
dominant abiotic stress, which occurs due to a shortage of rainfall
or efficient evaporation of water from the soil. The expression of
miR169g, miR171a, and miR393 was identified in response to
dehydration, whereas miR169 accumulation was found to regulate
the expression of C-repeat/dehydration-responsive element binding
factor (CBF/DREB) TFs (Inal et al., 2014). Similar results were
obtained for emmer wheat (T. turgidum ssp. dicoccoides), during
drought conditions, 13 miRNAs like such as miR156, miR166,
miR171, miR396, miR398, miR474, miR528, miR894, miR896,
miR1432, miR1450, miR 1881, and miR 1867, were differentially
regulated (Sunkar and Zhu, 2004). Under cold stress, upregulation
of miR408, miR169, miR396, miR172, miR393, miR397, miR165/166,
and other miRNAs such as miR156, miR157, miR159, miR164,
miR319, miR394, and miR398 has been identified in Triticum
turgidum ssp. durum (Kantar et al., 2011). In addition, microRNAs
such as miR156, miR159, miR164, miR167a, miR171, and miR395 also
exhibit differential expression patterns during ultraviolet-BUV-B
(280–320 nm) stress in wheat (Zhang et al., 2009). Wheat is
susceptible to stripe rust when grown in cool environments
(Table 1). miRNAs such as miR167, miR171, miR444, miRl129, and
miRl138 develop resistance against stripe rust (Gupta and Huang,
2014). Recently, abiotic stress response miRNAs, such as Ta-
miR1122, Ta-miR1117, Ta-miR1113, and Ta-miR113 were identified
in wheat (Figure 2) (Li et al., 2015).

Maize

Maize (Zea mays L.) is the world’s second most cultivated crop
variety after rice. Maize is primarily used as a food source by both
humans and animals. In addition to being a food source, it is a major
constituent of ethanol production. Maize is considered a model
plant to study plant development and evolution, as well as to
understand the regulatory functions of miRNAs (Wang et al.,
2013). In maize, the secondary structure of the precursor was
predicted based on the phylogenetic conservation of
21 nucleotides miRNA (Bothast and Schlicher, 2005). Moreover,
the expression of different miRNAs varies with variations in the
developmental stages of maize. After pollination for 10 days,
miR169 expression was lower in kernels (Ambros et al., 2003).
miRNAs, such as miRNA156, miR160, and miR169, are expressed
during maize development in seedlings (Djami-Tchatchou et al.,
2017). However, miR167 is expressed in both developing kernels and
seedlings. miR156 targets TC294022 and TC280157, which encode
the proteins involved in early flower development (Wang et al.,
2015). The expression of miRNAs is genotype-specific, which has
been proven by the analysis of miRNAs from the same tissues of
different genotypes. For example, a higher level of
miR166 expression was observed in the kernels of the inbred line
H99 than in the B73 and B733H99 F1 hybrids. However, similar
miR167 expression levels have been observed in both seedlings and
kernels in inbred lines, such as H99 and B73 (Thiebaut et al., 2012).
In maize, Sheng et al. (2015) have identified 29 miRNAs using high-
throughput sequencing of 23 miRNAs as potential targets (Figure 2).

Like other plants, in maize, miRNAs are crucial in abiotic and
biotic stress responses (Ding et al., 2011) such as low nitrate (Qin
et al., 2011), phosphorous (Xu et al., 2011) and salt stress (Zhang

et al., 2012). Drought is the primary factor limiting the growth and
productivity of maize. Recently, high-throughput sequencing and
bioinformatics tools have been used to identify novel miRNAs and
their respective targets in maize (Thiebaut et al., 2014) (Table 1).
Sheng et al. (2015) reported 124 conserved and 68 novel miRNAs
that are related to drought stress responsiveness in maize. miR396,
miR167 and miR169 are the key regulators of abiotic stresses in
maize, which target Nzma- MIR396d, zma-MIR167h and small-
MIR169a respectively (Sheng et al., 2015). The overexpression of
miR172 targets the gene Glossy15, which is necessary for the
expression of juvenile epidermal traits that affect flowering time
in maize (Liu et al., 2014). miR395 regulates sulfur assimilation and
translocation by controlling mRNA levels of ATP sulfurylase and
low-affinity sulfur transporters (Lauter et al., 2005). Similarly,
miRNAs such as miR398 and miR408 are copper-regulated
miRNA (Cu-miRNA). Furthermore, miR397 and miR528 are also
categorized under Cu-miRNA based on their function in the
regulation of the protein to participate in copper homeostasis
(Kawashima et al., 2011).

Cotton

Cotton (Gossypium hirsutum L) is a fiber-producing crop, that
is, considered to be the most economically significant crop variety
(Zhang et al., 2014). Cotton plants are considered model plants for
cell wall and cellulose biosynthesis studies. The genusGossypium is a
broad family comprising approximately 50 species that originated
mainly in Australia and Latin America. Among them, only four
species, cotton (G. hirsutum), island cotton (G. barbadense), African
cotton (G. herbaceum), and Asiatic cotton (G. arboreum), are
domesticated species that produce beneficial spinnable fibers, and
the development of cotton fiber cells is composed of four stages:
initiation, elongation, secondary cell wall synthesis, and maturation
(Haigler et al., 2012). miRNAs play a crucial role in the development
of cotton fibers. miR160d accumulates in fibers and fiber-bearing
ovules. It targets ARF10, and its expression is higher during fiber
initiation and development (Figure 2).

miR167b targets another auxin response factor, ARF8 (Wang
et al., 2013). Among the different developmental stages of cotton
fibers, the expression of miR167b was higher during the elongation
stage. The target gene of miR447a is HSC70, which is involved in
fiber development. Moreover, the expression of some miRNAs
varies at each stage of fiber development. For example, miR394a
shows diverse expression patterns at every stage of fiber
development. The high expression level of miR394a was
specifically responsible for rapid fiber elongation (Table 1;
Figure 2). Squamosa promoter-binding-like protein 9 (SPL9) is
crucial for floral organ trichome formation, fiber initiation, and
elongation, and is targeted by miR156 (Wang et al., 2017). Cellulose
synthase A catalytic subunit 8 (CESA8) and subunit 9 (CESA9) are
targeted by miRn38, miRn65, and miRn68. The expression of these
miRNAs differed in various tissues and was expressed at lower levels
during elongation of the fiber and biosynthesis of the secondary wall.
The transition from vegetative to reproductive growth is regulated
by miR172 and miR156 (Gou et al., 2011). For example,
miR156 downregulation enhances the expression of SPL9, which
leads to miR172 upregulation. Certain miRNAs are co-regulated
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during fiber initiation and development. For example, miR156b was
expressed at a lower level during fiber initiation and at a higher-level
during elongation, whereas miR172e was upregulated during fiber
initiation and at a lower level during elongation (Figure 2).

Wang (2014) identified 73miRNAs that belong to 49 families from
Asiatic cotton. Most miRNAs are involved in plant growth,
development, and environmental stress responses. For example,
miR172 is involved in floral development (Wang et al., 2015) and
miR399 is responsible for environmental stress (Toetia and Tang, 2015).
Hence, it can be easily grown on dry land with few cultivation practices.
The miRNAs responsible for the regulation of the salt stress response in
cotton have also been reported. For example, miRNVL5 regulates the
expression of salt-tolerant genes,G. hirsutum cysteine/histidine-rich C1
(GhCHR) domain family protein, in cotton under salt stress and is
considered a positive regulator of plant salt stress tolerance. Evidence
has shown that Asiatic cotton is resistant to several pests, such as
bollworms, aphids, leafhoppers, and microbes, such as fungal and viral
infections (Yin et al., 2017). Asiatic cotton is inherently tolerant to
abiotic stresses such as drought and salinity (Akhtar et al., 2010).
miR2948 targets genes encoding sucrose synthase and glucose-
methanol-choline oxidoreductase, which are responsible for fiber
initiation and elongation (Liu et al., 2006). miR2950 targets
gibberellin 3-hydroxylase 1, which controls fiber cell development. It
also targets tubby bipartite transcription factor (TUB), which is highly
expressed in elongating fiber cells (Ruan et al., 2003; Tahir et al., 2011).
However, Wang et al. (2017) reported that a lower level of TUB
expression in fiber elongation showed that the plant metabolic
process influences the expression of TUB. The expression of
miR2950a was poor in immature ovules and higher in the fiber
elongation stage. The only miRNA expressed in different fiber
development stages is miR447a which targets numerous genes and
transcription factors such as actin 7 (ACT7), annexin D2 (Ann2),
bHLH093, CPC, GL3, MYB16, MYB88 and TUB1 (Table 1; Figure 2).

Coffee

Coffee (Coffea arabica) and Coffea canephora L.) is a commercial
non-alcoholic beverage crop that contains several beneficialmetabolites,
such as caffeine, polyphenols, chlorogenic acid, and caffeic acid
(Mlotshwa et al., 2006). The genus Coffea consists of 100 species;
however, C. arabica and C. canephora are the two most economically
significant and extensively cultivated coffee species. It has been
suggested that coffee consumption diminishes the risk of Parkinson’s
disease, Alzheimer’s disease, heart disease, type 2 diabetes mellitus, gout,
and liver cirrhosis (Cheng et al., 2011). Moreover, coffee development
and production are also affected by diverse environmental conditions,
such as drought, salinity, heat, and fungal infection of coffee leaves (Del
Terra et al., 2013). MicroRNA studies provide necessary information
regarding the development and function of target genes in coffee plants.
However, the prediction of target genes of miRNAs has been
functionally annotated, depending on the molecular function,
biological component, and process. Compared to other plant species,
studies on the functional role of miRNAs in coffee are lacking. To date,
miRNAs have not been deposited in miRBasev.21 for the genus Coffea.

The two distinct sources expressed sequence tags (EST) and
genome survey sequences (GSS), contain information on the
complete plant genome of coffee (Vidala et al., 2010). NCBI has

deposited 17, 4275 ESTs and 3757 GSS of C. arabica (Lima et al.,
2013). ESTs and GSS provide crucial information for predicting
novel miRNAs and their corresponding genes in C. arabica, which is
considered to be of economic importance. Recently, 20 feasible
miRNAs from 13 miRNA families (car-miR393, carmiR393b, car-
miR393d, car-miR393b-3p, car-miR390a, car-miR390b, car-
miR390d-3p, car-miR390e, car-miR482d, car-miR2118e,
carmiR397b, car-miR533, car-miR854d, car-miR426, car-
miR1879, carmiR5809, car-miR414, car-miR1134, car-miR1110,
and car-miR5122) were successfully identified in C. arabica by
ESTs and GSSs (Akter et al., 2014) (Table 1; Figure 2).
miR393 has been identified in coffee, which targets the genes that
encode transport inhibitors, such as proteins, DNA-binding
proteins, TFs, and GRR1-proteins, which are involved in chitin,
cold, salt, and water deprivation stress responses, respectively
(Dezulian et al., 2006) (Figure 2).

Interestingly, car-miR397b targets the gene encoding for laccase 2
(LAC2) which is involved in Copper (Cu) homeostasis and lignin
metabolism. Under heat stress, increasedmonolignol accumulation was
reported in the leaves of C. arabica (Del Terra et al., 2013). In coffee, a
single miRNA can have multiple target genes. For example, car-
miR1134 targets mRNA responsible for oxygen binding, water
channel activity, and metal ion binding. Similarly, the
miR393 family targets auxin signalling genes, such as transport
inhibitor response 1 (TIR1), AFB2, auxin signalling F-box3 (AFB3),
and glucose repression-resistant (GRR1) - protein 1. CarmiR2118e and
car-miR482d target mRNA encoding polygalacturonase, which is
responsible for carbohydrate metabolism. Biotic factors also affect
the development and economic traits of coffee. For example, coffee
leaf rust is a primary disease of coffee plants caused by the fungus,
Hemileia vastatrix (Del Terra et al., 2013; Rebijith et al., 2013). However,
car-miR428d and car-miR2118e are responsible for the defense
mechanisms in coffee. Car-miR428d and car-miR2118e target the
gene coding for the disease-resistant protein, which contains
nucleotide-binding ARC (Devi et al., 2016). In their study, Loss-
Morais et al. (2014) revealed that miR8697 exhibits a wide range of
anticipated targets, including nucleoside diphosphate kinase group I
(NDPK-I)-like, NADH dehydrogenase, ubiquitin domain of GABA-
receptor-associated protein, and drought-induced 19 proteins (Di19).
miR8558 belongs to the miR482 family, which possesses target genes
responsible for plant innate immune receptors, such as nucleotide-
binding site-leucine-rich repeats (Zhu et al., 2013).

Tea

Tea [Camellia sinensis (L) Kuntze] is the world’s most important
non-alcoholic beverage crop and is primarily grown in China, India,
and Southern Asia. Tea contains numerous bioactive secondary
metabolites such as polyphenols, caffeine, and theanine (Ramkumar
et al., 2012). These compounds possess various health benefits, including
anti-cancer, anti-microbial, and immune-regulatory effects, and can
reduce the risk of cardiovascular and neurological diseases
(Samynathan et al., 2023). The miRNA content in tea varied
depending on the tea variety and processing time. For example, csn-
miR164 content varied among distinct varieties of commercial green tea
whereas, the content of miR329 varied according to tea processing (Hou
et al., 2017). Sun et al. (2014) predicted the targets of 97 miRNAs which
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regulated 216 genes in tea plants. Among these, 19miRNAs belonging to
16miRNA families targeted 26 genes responsible for post-transcriptional
expression regulation.MultiplemiRNA families regulate common targets
in other plant species. For example, in 1005 different tea cultivars it is
predicted that csn-miR160a regulates two ARF genes such as ARF8 and
ARF6which were homologous toARF18 inO. sativa (Po-Pu et al., 2007)
and Arabidopsis thaliana (Liu et al., 2006). The levels of miRNA
expression were found to be much greater in the initial leaves
compared to the mature leaves. This observation suggests that these
particular miRNAs have a significant impact on the process of catechin
production. There is a strong correlation between csn-miR4380a and
dihydroflavonol 4-reductase (DFR) expression in tea plants. In particular,
csn-miR160a, csnmiR167a, and csn-miR396a played major roles in the
development of tea leaves, as well as in the regulation of catechin
biosynthesis (Figure 2). In contrast, miR2911 is involved in caffeine
metabolism in tea (Sun et al., 2014).

In tea, miRNAs such as novel-miR1, csn-miR426 and csn-miR482
are playing an essential role in disease resistance (Jeyaraj et al., 2020).
Jeyaraj et al. (2017) identified miRNAs that are responsible for insect
defense in tea plants, andmiRNAs such as csn-miR156, csn-miR172, and
csn-miR319 are also associated with biotic stress responses in tea. Zhu
et al. (2013) have identified 14 new miRNAs that target a total of
51 mRNAs, which are responsible for oxidation-reduction, stress
responses and transportation. In addition, a total of 130 conserved
miRNAs and 512 unique miRNAs have been identified, which play
crucial roles in several biological processes such as transcription, signal
transduction, stress response, and plant development and maintenance.
The infestation of a herbivore (Ectropis oblique) in tea plants leads to the
expression of over 150 miRNAs (Jeyaraj et al., 2017).

Drought is a major environmental stress in tea and decreases tea
production by 14%–33% (Chen et al., 2022). In addition to drought,
cold stress is an important factor that affects the productivity of tea
manufacturing (Li et al., 2020). Guo et al. (2017) reported that
conserved miRNAs, such as miR156, miR166a, and miR398, are
responsible for drought stress resistance in tea plants. Zhang et al.
(2017) identified 18 conserved and 14 novel miRNAs in tea plants in
response to cold stress, using a microarray technique. Moreover,
they observed that 31 miRNAs were upregulated and 43 miRNAs
were downregulated in cold-tolerant plants, and 46 miRNAs were
upregulated and 45 miRNAs were downregulated in cold-sensitive
tea plants (Zhang et al., 2014) (Table 1; Figure 2).

Legumes and oil crops

Cereals and oil crops are economically viable crops cultivated in
numerous countries worldwide. In their study, Sha et al. (2012)
employed high-throughput short RNA sequencing and whole-
genome mining techniques to detect potential microRNAs in
Glycine max under conditions of phosphorus (P) deficiency. The
researchers made the observation that the roots exhibited notable
alterations in the expression of 27 established, 16 universally
conserved, and 12 newly discovered miRNAs when subjected to
phosphorus shortage. Similarly, the shoots also exhibited significant
disparities in the expression levels of 34 established, 14 conserved,
and 7 distinct microRNAs in response to phosphorus (P) deficiency.
In their study, Turner et al. (2012) documented the presence of four
previously unidentified microRNAs, namely, gma-new-miR4416a,

gma-new-miR4416b, gma-new-mi13587, and gma-new-miR50841,
which exhibited significant levels of expression in G. max. In their
study, Ho et al. (2017) successfully identified several miRNAs,
including miR156, miR160, miR166, miR167, miR168, miR172,
miR396, miR528, and miR535, within the floral meristems of oil
palm. These miRNAs probably work in tandem with their mRNA
targets to regulate the development of early floral organs.

Gupta et al. (2017) revealed that ARF10, ARF16, and ARF17 gene
expression improved significantly during early embryogenesis in the
miR160 floral organs in carpels (foc)mutant of soybean. ThemicroRNA
miR167 demonstrates a prominent activity throughout the later stages of
embryogenesis, specifically targeting the genes ARF6 and ARF8. The
investigation of the chickpea transcriptome unveiled the presence of
hitherto unidentified miRNAs, namely, Car-novmiR61, Car-novmiR1,
and Car-novmiR218. These miRNAs have been implicated in the
regulation of seed size and weight, as reported by Garg et al. (2017).
Ding et al. (2018) conducted a study to examine the oil levels, specifically
linoleic acid (42%) and linolenic acids (39%), in the sea buckthorn plant.
Through deep sequencing, the researchers identified a total of
137 known miRNAs from 27 families, as well as 264 previously
unidentified miRNAs. The present investigation suggests that many
miRNAs, namely, miR164d-ARF2, miR168b-Δ9D, novelmiRNA-108-
ACC, novelmiRNA-23-GPD1, novelmiRNA-58-DGAT1, and
novelmiRNA-191-DGAT2, may play a role in the control of seed
size and lipid production in sea buckthorn.

Zhao et al. (2020) explored the molecular and functional
regulation of miRNAs during walnut (Juglans regia) seed
development. A total of sixteen modules involved in the
regulation of miRNA-mRNA interactions have been identified,
specifically encompassing jre-miRn105, jre-miRn434, jre-
miR477d, and jre-miR156a. These modules have been found to
be related with the processes of fatty acid generation and oil
production. Jiang et al. (2018) investigated the miRNA profiling
in the male sterile lines of Brassica napus and they identified 44 new
conserved miRNAs, 27 unique miRNAs, and 46 known miRNAs.
Moreover, MiR159 was selected as a candidate for analysis of its role
in male sterility and reproductive development from the
differentially expressed miRNAs. In their study, Khemka et al.
(2021) reported differential expression of the miR156 family in
two chickpea cultivars. Specifically, they observed an antagonistic
expression pattern at the target of the SPL genes. Salgado et al.
(2022) investigated the preliminary response of an oil palm (Elaeis
guineensis Jacq.) crop to 2 weeks of water scarcity. Among the
81 miRNAs observed in this study, 29 were specific to the oil
palm, and egu-miR28ds and egu-miR29ds were newly identified.
Furthermore, it was observed that a total of 62 miRNAs exhibited
differential expression under conditions of drought stress. Among
these, five miRNAs (miR396e, miR159b, miR529b, egu-miR19sds,
and egu-miR29ds) were found to be upregulated, while the other
57 miRNAs displayed downregulation. Notably, the upregulated
miRNAs includedmiR396e, miR159b, miR529b, egu-miR19sds, and
egu-miR29ds. In the context of water stress in oil palms, several
transcription factors (TFs) including MYBs, homeodomain-
containing (HOXs), and nuclear factor-Y (NF-Ys) have been
recognised as potential target genes for microRNAs.

miRNAs such as miR159.2, miR393, and miR2118 in Phaseolus
vulgariswere greatly induced under ABA administration, while the other
miRNAs, namely, miRS1, miR1514, and miR2119, showed a slight
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TABLE 2 microRNAs (miRNAs) targets and their functions in cereals and other crops.

Plants miRNA—Upregulation Functions Target genes References

Barley (Hordeum vulgare) miR160 Auxin-mediated genes
regulation

Auxin response factor (ARF) Tombuloglu (2019)

miR171 Regulation of seed germination Scarecrow transcription
factors (TFs)

Dou et al. (2021)

miR166a, miR166′b, miR166c Vascular differentiation,
development of leaf and root
formation

HD-Zip protein 8 Yadav et al. (2021)

miR397a Plant and flowering development laccase precursor protein;
transporter family protein

Huang et al. (2020)

Sorghum (Sorghum
bicolor (L.) Moench)

miR156a, miR156b, miR156c-f, miR156g-
h, miR529, novel-sbi-miR-119, novel-sbi-
miR-383, novel-sbi-miR-329, & a novel-
sbi-miR-350

Stress in response to the drought Squamosa promoter binding
protein (SBP) gene

Katiyar et al. (2015)

miR529 Stress in response to the drought Protease and ubiquitin-related
genes

miR398 Stress in response to the drought Cu/Zn SOD, selenium-binding
protein, and cytochrome C

Pennisetum glaucum (L.)
R. Br. (Pearl millet)

miR155 Stress in response to the drought Cu-Zn superoxide dismutase,
eIF-4A

Chakraborty et al. (2020)

miR399, KN1 NCED1, LOV, aspartate
aminotransferase

Setaria italica (L.) P.
Beauv. (Foxtail millet)

miR160 Stress in response to the drought WRKY and ARF

miR165 Carboxylesterase WRKY, ARF, NDR1/HIN1

Glycine max L.) 777 miRNAs Metabolism of phosphorus and
stress response to biological
regulation

ERF, ARF, MYB, and NAC Liu et al. (2020)

Glycine max L.) miR169 Reduce the stress response
transcript

AtNFYA1 and AtNFYA5 Yu et al. (2019)

Camellia oleifera ath-miR858b– Seed oil biosynthesis MYB82/MYB3/MYB44 Wu et al. (2021)

csi-miR166e- Formation and accumulation of
oleic acid

5p–S-ACP-DES6

Brassica napus bna-miR165a-5p wax biosynthesis BnaA06g40560D (CYP96A2) Liu et al. (2019)

Pear (Pyrus communis L.) Pyr-miR171 Improvement of shoot
development

PyrSCL6 and PyrSCL22 Jiang et al. (2018)

Cotton (Gossypium
herbaceum L.)

miR414c Improvement of primary root
growth and biomass

Iron SOD gene (GhFSD1) Wang et al. (2019)

miR156 Stress response SBP/SPL TFs Wang et al. (2015)

miR395 Salt and drought stresses APS1 Wang et al. (2013)

Ricinus communis L miR398 The control of cellular growth Cu–Zn/SOD Çelik and Akdas (2019)

Pear Pyr-miR171 Enhancement of shoot
development

PyrSCL6 and PyrSCL22 Jiang et al. (2018)

Ricinus communis L miR398 The control of cellular growth Cu–Zn/SOD Çelik and Akdas (2019)

Coffee (Coffea arabica
and Coffea canephora)

miR167 Development and stress response Auxin response factor Chaves et al. (2015)

miR171 Development and metabolism GRAS family TFs

miR159e Stress response and development Medium chain reductase/
dehydrogenases

Loss-Morais et al. (2014);
Chaves et al. (2015)

(Continued on following page)
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response toABA (Arenas-Huertero et al., 2009). The newmiRNAs found
in common beans, along with different legumes, have a role in the
regulation of processes unique to legumes, such as adaptability to various
environmental signals. According to Wang et al. (2013), pea plants
presumably possess miRNAs miR319, miR393, miR397, andmi402, and
their expression levels were increased in response to cold treatment. The
study conducted by Li et al. (2010) aimed to assess the gene expression
levels of six distinct families of novelmiRNAs and their role in the process
of soybean nodule formation. The results of their study indicate that
miR482, miR1512, and miR1515 potentially have different and
significant functions in the process of soybean nodulation. In their
study, Yan et al. (2011) examined the functional implications of four
microRNAs (miRNAs), namely, Gma-miR2606b, miR1514,
TAG2382310, and Gma-miR4416. These miRNAs were shown to
exhibit unique characteristics in relation to legumes, with Gma-
miR2606b and miR1514 being peculiar to this plant family.
Additionally, TAG2382310 and Gma-miR4416 were identified as
miRNAs that are specifically associated with soybeans. Based on the
findings of Kozomara et al. (2019), it has been shown that
miRBasev.21 provides access to a total of 10 mature miRNAs for
common bean (P. vulgaris), 790 for Magnaporthe truncatula, 756 for
soybean, 365 for L. japonicus, and 790 for soybean. A comprehensive
count of miRNAs has been conducted for many plant species, including
P. vulgaris, M. truncatula, soybeans, L. japonicus, and soybeans. The
miRBasev.21 database has shown a total of 790, 756, 365, 790, and
10miRNAs for each individual species. Table 2 depictedmiRNAs targets
and their functions in cereals and other crops.

Regulation of seed miRNA

Seed growth and germination are two important developmental
stages in the plant life cycle. As in most flowering plants, seed
germination and maturation are isolated by a time of quiescence,
referred to as dormancy. miRNAs effectively regulate gene
expression during seed growth and germination (Das et al.,
2015). MicroRNAs and other small RNAs are known to exert
significant influence on the processes of seed germination and
dormancy. miRNAs are active in both sustaining and breaking
dormancy to facilitate the development of the embryo to the
seedling level via seed germination (Zhang et al., 2017). In plants,
the differentially expressed miRNAs miR417, miR164, miR158,
miR160, miR156, miR167, miR395, miR159, miR165/166,
miR402, and miR172 are known to monitor all seed germination

and dormancy activators and repressors (Das et al., 2015).
MiR164 was primarily expressed at the development and post-
germination stages of seeds; miR396, miR172, and miR393 were
expressed selectively in the embryo 5 days after germination (Bai
et al., 2017). It is anticipated that a diverse range of microRNAs
present in somatic embryos of Norway spruce contribute to the
establishment and maintenance of epigenetic memory associated
with seed development (Yakovlev and Fossdal, 2017). In maize seed
embryos, 12 miRNA families were identified, including miR159,
miR397, miR319, miR167, miR393, miR394, miR172, miR169,
miR156, miR168, miR164, and miR166, which have been shown
to be differentially downregulated, whereas miR398, miR408,
miR528, and miR529, have been upregulated during the seed
germination stage (Li et al., 2013). Gu et al. (2013) investigated
two developmental stages of maize endosperm through small RNA
libraries and found that 18 new miRNAs involved in endosperm
production have been discovered and classified into 11 families. A
comprehensive investigation of miRNAs was conducted on wheat
tissues, encompassing the entire genome. This search resulted in the
identification of 323 previously unreported miRNAs, which can be
classified into 276 distinct families. Additionally, the target genes
associated with these miRNAs were also determined. According to
Sun et al. (2014), an increased abundance of these miRNAs was seen
in grains, suggesting their significant involvement in the process of
grain synthesis. Miura et al. (2010) conducted a study on rice plants
and found that miR156 has a suppressive effect on the gene
OsSPL14. This gene plays a crucial role in regulating the growth
of both vegetative and reproductive organs, as well as determining
the optimal architecture of the plant. Specifically, the suppression of
OsSPL14 by miR156 leads to an increase in tiller production, a
reduction in plant height, and an enhancement in culm diameter,
panicle branches, and grain number. In rice, miR398 undergoes
some modifications to improve grain number, panicle length, and
grain size (Zhang et al., 2017). Additionally, miR164b is highly
expressed in rice and shows a good architecture of the plant body
with lengthy panicles, high grain number, and good yield (Jiang
et al., 2018). In a subsequent investigation, Zhao et al. (2019) found a
correlation between the expression of miR1432 in rice and its impact
on grain size and yield. Additionally, the researchers observed that
OsACOT has a role in the production of fatty acid chains. According
to Zhang et al. (2013), the augmentation of rice yield was achieved
through the upregulation of OsmiR397, a microRNA, which led to
enhancements in grain size and the promotion of panicle branching
in rice.

TABLE 2 (Continued) microRNAs (miRNAs) targets and their functions in cereals and other crops.

Plants miRNA—Upregulation Functions Target genes References

Tea (Camellia sinensis.
(L). Kuntze)

csn-miR162a, csn- miR394a Growth and development ARF5, NAC89, PAL, MYB75, and
WRKY

Jeyaraj et al. (2017)

csn-miR169e, csn-miR399b_1ss21GA,
csn-miR408-p3_2ss18GT19GT, csn-
miR477g-p5, and PC-5p-80764_22

Abiotic and biotic stresses
response

csn-miR828a, csn-miR858b, csn-
miR858a, csn-miR6300, csn-miR164a,
and csn-miR169)

The positive regulator of the
response to abiotic and biotic
stress

MYB, NAC, and NF-YA Jeyaraj et al. (2019)

novel-miR1, csn- miR426 and csn-miR482 Disease resistant WRKY TF, LRR protein kinase,
Ser/Thr-kinase, and LRR receptor

Guo et al. (2017)
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The use of miRNA-based genetic engineering in Camellia could
facilitate molecular breeding of new ornamental varieties with desirable
floral forms. In Camellia, Yin et al. (2016) investigated the functional
effects of carpel-specific miRNA–target pairs for the annotation of fruit
development and the miRNA160–ARF were correlated with carpel
formation. Yin et al. (2016) exploited high-throughput small RNA
sequencing they identified 175 mature and precursor sequence
miRNAs that are closely related to organs developed by Camellia
azalea. In this study, miRNA167, miRNA156, and miRNA159 were
identified to be involved in floral organ growth. Differential miRNA
expression patterns were observed in C. meiocarpa and C. oleifera across
varying environmental conditions, notably in the context of desiccated
seeds. This observation implies that miRNAs might exert a significant
influence on lipid metabolism throughout the process of natural seed
desiccation. In their study, Feng et al. (2017) conducted an investigation
utilising GO and KEGG role annotation. Their findings revealed that a
total of 23 miRNAs were identified as regulators of lipid metabolism,
specifically involved in the regulation of fatty acid biosynthesis,
accumulation, and catabolism during the natural drying process of
seeds. These miRNAs were discovered to affect a total of 131 target
genes. In the study conducted by Jeyaraj et al. (2019), it was observed that
infection of tea plants (C. sinensis L. var. shuchazao) with Colletotrichum
gloeosporioides resulted in the downregulation of three specific
microRNAs (csn-miR5368-p5 2ss15TC18CT, PC-3p-106557 16, and
PC-3p-70583 26). These microRNAs were found to target the Ser/
Thr protein kinase. Additionally, the LRR receptor-like Ser/Thr
protein kinase was targeted by csn-miR156a-p3 1ss10TA, leading to
its downregulation. Wu et al. (2020) identified twenty-three miRNA-
mRNA regulatory modules associated with seed size regulation in
Camellia oleifera. Among these modules, a negative regulatory
module involving hpe-miR162a L-2- ARF19 was shown to be
involved in the early stages of seed growth.

Summary and future perspectives

MicroRNAs (miRNAs) are known to exert significant influence on
the regulation of genes associatedwith several aspects of plant growth and
development.Moreover, miRNAs participate in the environmental stress
response, which influences agronomic traits in crop varieties. Maize and
sorghum are evolutionarily related to rice, and maize miRNA genes are
orthologs of the rice genome compared to sorghum. Crop production is
primarily affected by salinity, which is considered a significant abiotic
stressor (Yadav et al., 2021). The miRNAs responsible for the regulation
of salinity stress establish an adaptive mechanism for plants to that
particular environment. Ding et al. (2009) reported that there are
98 miRNAs belonging to 27 families exhibited differential expression
inmaize roots treated with salt stress. In the context of salt stress inmaize
roots, it was shown thatmiR156,miR164,miR167, andmiR396 exhibited
downregulation, while miR162, miR168, and miR395 displayed
upregulation. The miR482/miR2118 superfamily plays a role in the
activation of defence mechanisms in different plant species through
the regulation of NBS-leucine-rich repeat (NBS-LRR) genes (Arenas-
Huertero et al., 2009). MiRNAs are potential gene regulators in plants.
According to Jiang et al. (2018), miR164b exhibited a significant
upregulation in rice plants, resulting in a well-developed plant
structure characterised by elongated panicles, increased grain count,
and enhanced overall yield. Jeyaraj et al. (2020) identified tea

miRNAs like csn-miR156, csn-miR172 and csn-miR319 are insect
defense-related tea plants miRNAs are also associated with biotic
stress responses in tea. In their study, Wu et al. (2020) identified a
total of twenty-three miRNA-mRNA regulatory modules that play a
crucial role in the regulation of seed size in C. oleifera.

Numerous studies have demonstrated significant roles of
miRNAs in the regulation of plant genomes. Understanding their
functions and interactions with target genes provides valuable
insights into improving stress tolerance in agronomic plants,
which is crucial for sustainable agriculture and food security in a
changing climate. The functions of miRNAs in the regulation of
both abiotic and biotic stress responses in agronomic plants are
summarized in this review, which is an excellent method for
enhancing the growth and development of agronomic plants. The
development of transgenic plants that express miRNA with the
desired characteristics is ideal for improving the agronomic traits of
the plant species. However, many agronomically important crops do
not have complete or comprehensive miRNA profiling, which
necessitates the development of complete miRNA profiling under
normal and different a/biotic stresses. The provided information
would be valuable for examining the potential functions of miRNAs
in the context of plant development and their ability to withstand
stress. In addition, the application of functional genomics
methodologies will prove valuable in the elucidation of the
specific roles attributed to individual microRNAs. Previous
research on miRNA-mediated regulation of abiotic and biotic
stress responses in agronomic crops has made remarkable
progress, offering promising avenues for crop improvement.
However, addressing the existing research gaps and challenges
and embracing emerging technologies and interdisciplinary
approaches will be essential to harness the full potential of
miRNAs for sustainable and resilient agriculture in the face of
increasing environmental stressors.
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