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Background: Recent evidence has shown that the long non-coding RNA (lncRNA)
rPvt1 is elevated in septic myocardial tissues and that its knockdown attenuates
sepsis-inducedmyocardial injury. However, the mechanism underlying the role of
rPvt1 in septic myocardial dysfunction has not been elucidated.

Methods: In this study, we performed transcriptomic, proteomic, andmetabolomic
assays and conducted an integrated multi-omics analysis to explore the
association between rPvt1 and lipopolysaccharide (Lipopolysaccharide)-
induced H9C2 cardiomyocyte injury. LncRNA rPvt1 silencing was achieved
using a lentiviral transduction system.

Results: Compared to those with the negative control, rPvt1 knockdown led to
large changes in the transcriptome, proteome, and metabolome. Specifically,
2,385 differentially expressed genes (DEGs), 272 differentially abundant proteins
and 75 differentially expressed metabolites (DEMs) were identified through each
omics analysis, respectively. Gene Ontology functional annotation, Kyoto
Encyclopedia of Genes and Genomes, Nr, eukaryotic orthologous groups, and
Clusters of Orthologous Groups of Proteins pathway analyses were performed on
these differentially expressed/abundant factors. The results suggested that
mitochondrial energy metabolism might be closely related to the mechanism
through which Pvt1 functions.

Conclusion: These genes, proteins, metabolites, and their related dysregulated
pathways could thus be promising targets for studies investigating the rPvt1-
regluatory mechanisms involved in septic myocardial dysfunction, which is
important for formulating novel strategies for the prevention, diagnosis and
treatment of septic myocardial injury.
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Introduction

Sepsis is a systemic inflammatory syndrome initiated by a bacterial
infection, leading to multiple organ dysfunction, especially in the
cardiovascular system (L’Heureux et al., 2020; Joffre et al., 2020). The
clinical risk of cardiovascular events in survivors of severe sepsis is
relatively high (Yende et al., 2014). Myocardial dysfunction caused by
sepsis is characterized by decreased systolic contractility and impaired
diastolic function and is an important contributor to septic shock (Walley,
2018). Although numerous studies have investigated septic myocardial
dysfunction, its underlying mechanisms remain largely unknown.

Lipopolysaccharide (LPS) is a major component of the outer
membrane of most Gram-negative bacteria (Giordano et al., 2020).
Further, it is a common endotoxin that activates epithelial,
endothelial, and mononuclear macrophages via signal transduction
systems (White and Demchenko, 2014). Studies have shown that LPS
causes septic myocardial injury by promoting myocardial cell
inflammation, injury, and apoptosis (Li et al., 2019; Li et al., 2021).
Accordingly, LPS-induced myocardial cell injury comprises a
common cellular model for simulating septic cardiac dysfunction
in vitro (Haileselassie et al., 2019; Li et al., 2022).

Recently, long noncoding RNAs (lncRNAs) have been investigated
in studies of septic myocardial dysfunction because of their epigenetic
regulatory functions (Piccoli et al., 2015; Liu and Chong, 2021).
LncRNAs comprise a group of non-protein-coding transcripts
containing more than 200 nucleotides, and they account for 80%–
90% of the human genome and play pivotal roles in epigenetic
regulation (Hombach and Kretz, 2016; García-Padilla et al., 2022).
The functions of several lncRNAs (Sun et al., 2020; Xing et al., 2020; Ni
et al., 2021) in septic cardiomyopathy have been previously discussed.
Among them, the lncRNA Pvt1 has attracted our attention, as it is a
novel oncogene inmultiple cancers (Chen et al., 2019; Zhou et al., 2020).
In several injurious diseases, lncRNA Pvt1 can promote oxidative stress,
inflammation, and cell damage (Liu et al., 2021; Guo et al., 2021). Guo
et al. demonstrated that lncRNA Pvt1 was elevated in the heart tissue of
LPS induced sepsis mice, and Pvt1 aggravates LPS-induced myocardial
injury by promoting M1 polarization (Luo et al., 2021). Also, lncRNA
Pvt1 was markedly upregulated in myocardial ischemia-reperfusion
tissues as well as hypoxia/reoxygenation-induced H9C2 cells, and its
knockdown ameliorates the myocardial damage (Li et al., 2021).
Intriguingly, in our previous work, we also identified that the Rattus
norvegicus lncRNA Pvt1 (named as lncRNA rPvt1, gene ID:
ENSRNOG00000062170; transcript ID: ENSRNOT00000092896)
was among the significantly upregulated lncRNAs in the left
ventricular tissues of rats suffered septic shock, and knockdown of
rPvt1 influenced LPS-induced cardiomyocyte apoptosis (Zhang et al.,
2019). These findings imply that Pvt1 may be a potential target for
septic cardiac dysfunction. However, the mechanism underlying the
function of rPvt1 has not been clarified.

With the development and application of high-throughput
technology, increasing biomedical studies have adopted integrated
multi-omics results to investigate disease pathogenesis and
therapeutic mechanisms. Owing to this, researchers can obtain
information from omics data at different molecular levels, such
as the genome, transcriptome, proteome, epigenome, metabolome,
liposome, and microbiome (Sun and Hu, 2016; Kang et al., 2022).
The integration of multi-omics analysis has thus revolutionized
biology, providing a deep and advanced understanding of

biological processes and molecular mechanisms. In this study, we
established an LPS-induced cardiomyocyte injury model and treated
the cells with a lentiviral vector system to knock down lncRNA
rPvt1 expression. Subsequently, we conducted transcriptomic,
proteomic, and metabolomic analyses to investigate potential
lncRNA rPvt1 associations during this process.

Materials and methods

Construction of lentiviral particles

Lentivirus-producing cassettes were purchased from Beijing
Syngentech Co., Ltd. (Beijing, China), and lentivirus preparation
was also performed by this company. Briefly, a short hairpin RNA
(shRNA) targeting the CCTATGAGGTGATGATAAA sequence of
Pvt1 was constructed and inserted into the lentiviral expression vector
pLV-hU6-NC shRNA01-hef1a-mNeongreen-P2A-Puro. The
sequence of the negative control shRNA was AAACGTGACACG
TTCGGAGAACGAATTCTCCGAACGTGTCACGTTT. For the
production of lentiviral particles, HEK293FT cells were pre-seeded
and co-transfected with a lentivirus packaging vector, transfer
plasmid, and the constructed lentiviral expression vector.
Transfected cells were cultured for 48 h to produce lentiviral particles.

Cell culture, lentivirus infection, and cell
treatment

Rat H9C2 cardiomyocytes were obtained from the Shanghai
Institute of Biochemistry and Cell Biology (Shanghai, China). Cells
were cultured in Dulbecco’s modified Eagle’s medium (Gibco,
Grand Island, NY, United States) containing 10% fetal bovine
serum (Hyclone, Logan, UT, United States) at 37°C in a
humidified incubator with 95% air and 5% CO2. After reaching
80% confluence, the cells were infected with lentiviral particles at an
MOI of 30 and cultured for 96 h. The cells were then treated with
10 μg/mL of LPS that derived from Escherichia coliO55:B5 (LPS 055:
B5, L2880, Sigma) for 24 h (Lei et al., 2018; Li et al., 2019).

Reference-based transcriptomic analysis

Total RNA was quantified using the Qubit™ RNA detection kit
(Thermo Fisher Scientific, Waltham, MA, United States).
Sequencing libraries were constructed according to the protocols
of the Hieff NGS™MaxUp Dual-mode mRNA Library Prep Kit for
Illumina® (Yeasen Biotechnology Co., Ltd. Shanghai, China). Briefly,
RNA was enriched with oligo (dT) magnetic beads and fragmented
using the Frag/Prime buffer. The fragmented RNA was transcribed
into cDNA, then the cDNA was then purified using Hieff NGS DNA
Selection Beads (Yeasen). Purified cDNAwas end-repaired, followed
by the addition of a poly(A) sequence and ligation into the adapters.
Fragments of the desired size were selected through agarose gel
electrophoresis. The constructed libraries were sequenced on an
Illumina HiSeq™ platform (Illumina, San Diego, CA, United States).

Raw image files generated using the Illumina HiSeq™ platform
were converted into raw reads using CASAVA base calling. Raw
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reads were cleaned using the Trimmomatic software. Adapters and
reads with low quality (>5% uncertain bases) were filtered out, and
clean reads were obtained. HISAT2 software was used to map clean
reads to the reference genome. To quantify the gene expression
levels, transcripts per million (TPM) values were calculated using
StringTie. The correlation between the samples was determined
based on Pearson’s correlation analysis. Differentially expressed
genes (DEGs) were identified using the DESeq R package. The
threshold for significant differential expression was a q < 0.05 and
log2|fold-change|>1. DEGs were functionally annotated based on a
comparison with entries in the Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomics (KEGG), and Nr
eukaryotic orthologous groups (KOG) databases.

All images were obtained using R language. The TPM density
curve, principal component analysis (PCA) diagram, and histograms
of GO, KEGG, and KOG enrichment results were plotted using
ggplot2. The Venn diagram was plotted using plotrix. Heatmaps of
Pearson’s correlation and differential expression were plotted using
pheatmap. GO and KEGG networks were plotted using Cytoscape.

Four-dimensional label-free quantitative
proteomic analysis

Total protein in the cells was quantified using a BCA kit
(Beyotime Institute of Biotechnology, Shanghai, China) according

FIGURE 1
Transcriptomic sequencing analysis of lncRNA Pvt1 associations in LPS-treated H9C2 cardiomyocytes. Rat H9C2 cardiomyocytes were infected
with NC-shRNA harboring or rPvt1-shRNA harboring lentiviral particles for 96 h then treated with 10 μg/mL of LPS for 24 h. Transcriptomic sequencing
were established with three duplicated cell samples in each group. (A) TPM density distribution diagram of each sample. The x-axis represents the
log2TPM of genes, and the y-axis represents the probability density. (B) Venn diagram of the identified genes in all sampless. (C) Heatmap of the
Pearson’s correlations in terms of gene expression levels between samples. (D) PCA analysis based on the gene expression profile. (E) Heatmap of DEGs
between NC-LPS group and rPVT1_KD-LPS group. Significantly upregulated and downregulated genes are colored in red and blue, respectively.
Abbreviations: DEGs, differentially expressed genes; KD, knockdown; LPS, lipopolysaccharide; NC, negative control; PCA, principal component analysis;
rPvt1, Rattus norvegicus lncRNA Pvt1; shRNA, short-harpin RNA; TPM, transcripts per million.
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to the manufacturer’s instructions. The protein was digested with
trypsin into peptides, which were dissolved in solvent A (0.1%
formic acid, 2% acetonitrile in water) and loaded onto a
homemade reversed-phase analytical column. Peptides were
separated using a gradient of solvent B (0.1% formic acid in 90%
acetonitrile). The separated peptides were subjected to a capillary
source followed by timsTOF Pro (Bruker Daltonics) mass
spectrometry in parallel accumulation serial fragmentation mode.
The applied electrospray voltage was 1.60 kV, the m/z scan range
was 100–1,700 m/z, and the dynamic exclusion was set to 30 s.

Original MS/MS data were processed using the MaxQuant search
engine. Tandem mass spectra were searched against the
Rattusnorvegicus_10116_PR_20210721 database concatenated with
the reverse decoy and contaminant databases. The enzyme digestion
mode was set to trypsin/P, the number of missing cuts was set to two,
and the minimum length of the peptide was set to seven amino acid

residues. The maximum number of peptide modifications was set to
five. Themass error tolerance for primary parent ions was set to 20 ppm
for all of the first and main searches and the secondary fragment ions.
The FDR was adjusted to <1%. The threshold for significant differential
abundance was a p < 0.05 and fold-change>1.5 or <1/1.5. The
differentially abundant proteins (DAPs) were functionally annotated
based on a comparison with entries in the GO, KEGG, and clusters of
orthologous groups of protein (COG) databases. In addition, a
protein–protein interaction (PPI) network was constructed using the
Search Tool for the Retrieval of Interacting Genes database.

All images were obtained using the R language. The protein
distribution chart, PCA diagram, and histograms of GO, KEGG, and
COG enrichment results were plotted using ggplot2. The heatmap
for differential abundance was plotted using pheatmap. A pie chart
of the subcellular localization was plotted using the R function Pie.
The PPI network was plotted using Cytoscape software.

FIGURE 2
GO, KEGG and KOG analysis of differentially expressed genes DEGs based on transcriptomic data. GO (A), KEGG (B), and KOG (C) functional
classification annotations. The x-axis represents the GO/KEGG/KOG category, and the y-axis represents the number of genes. Abbreviations: DEGs,
differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomics; KOG, Nr eukaryotic orthologous groups.
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Widely targeted metabolomic analysis

Cell samples were mixed with a methanol–water (4:1, v/v)
solution containing an internal standard and vortexed. The
samples were subjected to three freeze–thaw cycles and
centrifuged to collect the supernatant. Cellular metabolites were
analyzed using an ultra-performance liquid chromatography
(UPLC)-electrospray ionization (ESI)-tandem mass spectrometry
(MS/MS) system.

Based on a self-generated database (Metware Database),
metabolite information of the samples, including the Q1 precise
molecular mass, secondary fragmentation, retention time, and
isotope peak, was matched to the database for qualitative
analysis. Quantitative metabolite analyses were conducted using
the multiple reaction monitoring mode with the triple
quadrupole (QQQ) mass spectrometer.

Metabolite data were analyzed using Analyst 1.6.3 software.
Based on the results of orthogonal partial least squares-
discriminant analysis, variable importance in projection (VIP)
was analyzed using multivariate analysis. The threshold for
significant differentially expressed metabolites (DEMs) was
VIP≥1 and log2|fold-change|>1. The correlation among the
DEMs was calculated using Pearson’s analysis, and the
enrichment of DEMs was annotated based on a comparison
with entries in the KEGG database.

Energy-targeted metabolomic analysis

Energy-targeted metabolomics involves 68 important
metabolites, including amino acids, carbohydrates, coenzymes,
vitamins, nucleotides, organic acids and their derivatives,
phosphate sugars, and phosphoric acids. Standards for these
metabolites were used for accurate quantification. Energy-
targeted metabolomic analysis was conducted using a UPLC-ESI-
MS/MS system. Metabolite data analysis was conducted using
MultiQuant 3.0.3 software. The threshold for significant
differential energy metabolites was VIP≥1 and a fold-
change>1.5 or <1/1.5. The DEMs were functionally annotated
based on a comparison with entries in the KEGG databases.

All images of the metabolomic study were acquired using R
language. A Pearson’s correlation heatmap was plotted using
corrplot. Z-score charts and KEGG enrichment histograms were
plotted using ggplot2 software.

Correlation analysis between transcriptomic
and proteomic data

The RNA information obtained from the transcriptomic
analysis and protein information obtained from the proteomic
analysis were matched and integrated. The DEGs and DAPs were
mapped based on standard NCBI Gene Symbols, and overlapping
genes were identified using a Venn diagram. Transcriptomic and
proteomic GO/KEGG association analyses were performed to
compare the similarities of altered genes at both the RNA and
protein levels. Histograms of the GO and KEGG enrichment results
were plotted using the R package ggplot2.

Correlation analysis between proteomic and
metabolomic data

The protein information obtained from the proteomic analysis
and metabolite information obtained from the metabolomic analysis
were matched and integrated. The DAPs and DEMs in the
comparison group were subjected to correlation analysis and
mapped simultaneously to the KEGG database. All images were
obtained using R language. A Pearson’s correlation heatmap was
plotted using corrplot. A nine-quadrant diagram was plotted using
dplyr. A loading plot diagram of DAPs and DEMs was constructed
using OmicsPLS. The DAP–DEM network was plotted using
Cytoscape software, and the KEGG histogram was plotted using
ggplot2.

Correlation analysis between transcriptomic
and metabolomic data

The RNA information obtained from the transcriptomic
analysis and metabolite information obtained from the
metabolomic analysis were matched and integrated. The DEGs
and DEMs in the comparison group were subjected to expression
correlation analysis and mapped simultaneously to the KEGG
database. All images were obtained using R language. A
Pearson’s correlation heatmap was plotted using corrplot. A
nine-quadrant diagram was plotted using dplyr. A loading plot
diagram of DEGs and DEMs was constructed using OmicsPLS.
The KEGG histogram was plotted using ggplot2 software, and
canonical correlation analysis (CCA) diagrams were plotted using
mixOmics.

Results

Transcriptomic sequencing analysis of
lncRNA rPvt1 associations in LPS-treated
H9C2 cardiomyocytes

In the transcriptomic sequencing analysis, gene expression was
calculated by counting the sequences (reads) in the genomic or gene
exon regions. In this study, TPM values were used to calculate gene
expression. By comparing the density distribution curves of each
sample, we observed that the relative densities of most genes were
consistent among the samples (Figure 1A). The Venn diagram
showed that 13,559 genes were shared among all six samples
(Figure 1B). In order to study the distribution and
reproducibility of data between samples, correlation analysis and
PCA analysis were carried out (Figures 1C, D). The results showed
that the coefficients for the overall correlations between samples
were all over 0.8, indicating a close gene expression pattern in both
the groups and replicates. Accordingly, we identified 2,385 DEGs
(2094 with upregulated and 291 with downregulated expression)
based on significant changes in expression between the Lv-shNC-
infected (NC-LPS) and Lv-shPvt1-infected (rPvt1_KD-LPS) groups
(Figure 1E).

Next, the functional distribution characteristics of the DEGs
based on the GO, KEGG, and KOG annotations were obtained. In
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the GO annotation, each of the top 20 terms with significance from
molecular function (MF), cellular component (CC), and biological
process (BP) categories were presented using a histogram, and
columns were sorted by the number of the enriched DEGs in
that term (Figure 2A). The predominant two terms of each
category were ‘binding’ and ‘protein binding’ in MF,
‘intracellular’ and ‘intracellular part’ in CC, and ‘cellular
component organization of biogenesis’ and ‘regulation and
metabolic process’ in BP. In the KEGG annotation, the
predominant two terms were ‘PI3K-Akt signaling pathway’ and
‘endocytosis’ (Figure 2B). In the KOG annotation, the predominant
two terms were ‘general function prediction only’ and ‘signal
transduction mechanisms’ (Figure 2C). In addition, DEGs were
subjected to KEGG and KOG network analyses. The main KEGG
terms associated with the most dysregulated DEGs contained ‘focal
adhesion’, ‘TNF signaling pathway’ and ‘PI3K-Akt signaling
pathway’ (Supplementary Figure S1A). The KOG network
contained main terms of ‘signal transduction mechanisms’,
‘transcription’ and ‘posttranslational modification, protein
turnover, chaperones’ (Supplementary Figure S1B). According to
the enrichment results, we found that lncRNA rPvt1 is associated
with transcription, protein modification, signal transduction and
other cellular behaviors, and links with PI3K/AKT pathway
transduction.

Quantitative proteomic analysis of lncRNA
rPvt1 associations in LPS-treated
H9C2 cardiomyocytes

As results of transcriptomic sequencing revealed lncRNA rPvt1 links
with protein function, therefore, we investigated the proteome changes of
rPvt1 silencing in LPS-treated H9C2 cardiomyocytes using a 4D label-
free proteomic quantitative technique. PCA of all protein abundance
revealed that the detected samples could be approximately divided into
two categories (Figure 3A), suggesting the technical reproducibility of
our data. In total, 5,281 proteins were identified, of which 4,305 were
quantified. Among theDAPs, levels of 94were 178were upregulated and
downregulated, respectively, in the rPvt1-silenced H9C2 cells after LPS
treatment. The distribution of DAPs with different fold-changes is
displayed as a column diagram (Figure 3B), and the overall
abundance of DAPs is shown as a heatmap (Figure 3C). DAPs were
determined to be mainly located in the nucleus, cytoplasm,
mitochondria, plasma membrane, and extracellular space
(Supplementary Figure S2A).

The functional distribution characteristics of the DAPs were
allocated based on the GO, KEGG, and COG databases. Similar to
transcriptomic analysis, each of the top 20 terms from MF, CC, and
BP categories were selected and ranked by the enriched DAP number
(Figure 4A). The main two terms in MF were ‘DNA binding’ and

FIGURE 3
Quantitative proteomic analysis of lncRNA Pvt1 associations in lipopolysaccharide (LPS)-treated H9C2 cardiomyocytes. Rat H9C2 cardiomyocytes
were infected with NC-shRNA harboring or rPvt1-shRNA harboring lentiviral particles for 96 h then treated with 10 μg/mL of LPS for 24 h. Quantitative
proteomic analysis was established with three duplicated cell samples in each group. (A) PCA based on the protein abundance profile of each sample. (B)
Distribution of the DAPs. Q1 (0<ratio<0.5), Q2 (0.5<ratio<0.667), Q3 (1.5<ratio<2), and Q4 (ratio>2); p < 0.05. (C) Heatmap of DAPs comparing NC-
LPS and rPVT1_KD-LPS samples. Significantly upregulated and downregulated proteins are colored in red and blue, respectively. Abbreviations: DAPs,
differentially abundant proteins; KD, knockdown; LPS, lipopolysaccharide; NC, negative control; PCA, principal component analysis; rPvt1, Rattus
norvegicus lncRNA Pvt1; shRNA, short-harpin RNA.
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‘transcription regulator activity’, in CC were ‘ribonucleoprotein
complex’ and ‘nucleolus’, and in BP were ‘nucleic acid metabolic
process’ and ‘RNA metabolic process’. Regarding the KEGG
annotation, 12 significant terms were displayed, including the main
terms ‘vascular smooth muscle contraction’ and ‘mRNA surveillane
pathway’ (Figure 4B). In the COG annotation, the top 20 terms in
categories of cellular processes and signaling, information storage and
processing, metabolism, and poorly characterized were displayed, and
the two predominant terms were ‘transcription’ and ‘signal
transduction mechanisms’ (Figure 4C). In addition, a PPI network
of the DAPs was generated based on a combined_score≥0.7
(Supplementary Figure S2B), which consisted of 126 nodes and
256 edges. LOC679683 (degree = 20), Mrpl16 (degree = 20),
Mrps11 (degree = 20), Aatf (degree = 18), and Mrps17 (degree =
18) were the five hub central proteins identified in the PPI network.

Notably, Mrpl16, Mrps11 and Mrps17 are genes that encode
mitochondrial ribosomal proteins (Cheong et al., 2020). From our
point of view, lncRNA rPvt1 may be associated with transcription,
nucleic acid metabolism and mitochondrial functions.

Widely-targeted metabolomic analysis and
energy-targeted metabolomic analysis of
lncRNA rPvt1 associations in LPS-treated
H9C2 cardiomyocytes

Cell metabolism is an orderly series of chemical reactions that
occur within cells. These reaction processes allow organisms to grow
and reproduce, maintain their structure, and respond to the external
environment. In this work, we conducted widely-targeted

FIGURE 4
GO, KEGG and COG analysis of DAPs based on proteomic data. GO (A), KEGG (B), and COG (C) functional classification annotations. The x-axis
represents the GO/KEGG/KOG category, and the y-axis represents the number of proteins. Abbreviations: DEGs, differentially expressed genes; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomics; COG, clusters of orthologous groups.
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metabolomic analysis to investigate the cellular metabolites in LPS-
treated H9C2 cardiomyocytes that regulated by lncRNA rPvt1. In
total, 1,866 metabolites were analyzed, and 75 significant DEMs
were identified after rPvt1 knockdown, of which levels of 59 were
downregulated and 16 were upregulated. The Z-score plot showed

that metabolism markedly differed between the two groups
(Figure 5A). Hierarchical clustering of Pearson correlations
showed correlations between DEMs. Most metabolites were
positively correlated (Supplementary Figure S3). The altered
metabolites were then subjected to KEGG database analyses.

FIGURE 5
Widely targeted metabolomic analysis of lncRNA Pvt1 associations in LPS-treated H9C2 cardiomyocytes. Rat H9C2 cardiomyocytes were infected
with NC-shRNA harboring or rPvt1-shRNA harboring lentiviral particles for 96 h then treated with 10 μg/mL of LPS for 24 h.Widely targetedmetabolomic
analysis was established with three duplicated cell samples in each group. (A) Z-score plot of the 75 DEMs. Each dot is a metabolite in each sample. Green
dots represent metabolites in the NC-LPS group, and red dots represent metabolites in the rPVT1_KD-LPS group. (B) Enriched DEM-associated
signaling pathways based on the KEGG database. Abbreviations: DEMs, differentially expressed metabolites; KD, knockdown; LPS, lipopolysaccharide;
NC, negative control; rPvt1, Rattus norvegicus lncRNA Pvt1; shRNA, short-harpin RNA; KEGG, Kyoto Encyclopedia of Genes and Genomics.

Frontiers in Genetics frontiersin.org08

Zhang et al. 10.3389/fgene.2023.1278830

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1278830


These DEMs were mainly enriched in ‘systemic lupus
erythematosus’, ‘glycine, serine and threonine metabolism’, and
‘vitamin digestion and absorption’ (Figure 5B). Amino acids and
vitamins are important energy sources and nutrients within cells.
These results suggested that rPvt1 may be involved in energy
metabolism and nutrition.

Furthermore, we conducted an energy-targeted metabolomic
analysis. In total, 68 energy-related metabolites were analyzed, and
19 metabolites were found to be significantly changed, among which
levels of all were downregulated. Similarly, a Z-score plot was
generated to show the relative expression of DEMs
(Supplementary Figure S4A), and a correlation heatmap suggested
that all downregulated DEMs correlated with each other
(Supplementary Figure S4B). KEGG enrichment analysis implied
that the changes in these energy-related metabolites might be
involved in the processes ‘aminoacyl-tRNA biosynthesis’, ‘alanine,
aspartate and glutamate metabolism’, and ‘arginine biosynthesis’
(Supplementary Figure S4C). These amino acid metabolic
pathways may be involved in the regulation of rPvt1 in
cardiomyocyte function through participation in energy productivity.

Integrated analysis of the transcriptomic and
proteomic data

The multi-omics approach that integrates information of several
omics, could provide more evidence for the biological mechanisms.
Therefore, we conducted a joint analysis of every two omics in order to
better understand the molecular mechanism of complex traits in
biological and disease processes. First, we integrated transcriptomic
and proteomic data. The DEGs and DAPs were next mapped based on
their respective NCBI Gene Symbols, and overlapping genes/proteins
between the transcriptomic and proteomic data were searched using a
Venn diagram approach (Figure 6A). Nineteen common genes/
proteins were identified, including Cp, Tcerg1, Stam2, Cpsf6, Ddx42,
Plcb3, Slit2, Hip1, Jak1, Pcyt1a, Aqp1, Ap2b1, Dars2, Cdc16, Atp2b4,
Atp2a2, Hnrnpu, Tmlhe, and Extl3. These genes were then subjected to
GO and KEGG enrichment analyses. The KEGG analysis indicated
that the common genes were enriched in the terms ‘ribosome’,
‘spliceosome’, ‘citrate cycle (TCA cycle)’, and ‘glycosaminoglycan
biosynthesis - heparan sulfate/heparin’ (Figure 6B). Meanwhile, the
GO analysis indicated that the common genes were enriched in ‘RNA

FIGURE 6
Integrated analysis of the transcriptomic and proteomic data. (A) Venn diagram representing the overlap between the DEGs and DAPs. Nineteen
proteins/genes were commonly identified in both transcriptomic and proteomic profiling. (B) GO and (C) KEGG enrichment of DEGs/DAPs.
Abbreviations: DAPs, differentially abundant proteins; DEGs, differentially expressed genes; GO, GeneOntology; KEGG, Kyoto Encyclopedia of Genes and
Genomics.
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metabolic process’, ‘ribonucleoprotein complex’ and ‘nucleic acid
binding’ (Figure 6C). These pathways are mainly involved in the
direction of energy productivity and metabolism.

Integrated analysis of proteomic and
metabolomic data

An integrated analysis of the DAPs and DEMs was also
conducted. The correlations between all DAPs and DEMs are
presented using a clustering heatmap (Supplementary Figure S5).
Then, the DAPs and DEMs with a correlation coefficient greater
than 0.9 were selected and shown in a nine-quadrant diagram

(Figure 7A). The third and seventh quadrants show DAPs and
DEMs with consistent expression patterns, whereas the first and
ninth quadrants show DAPs and DEMs with opposite expression
patterns. The second, fourth, sixth, and eighth quadrants show
instances of only one DAP or DEM exhibiting significant
changes. Finally, the fifth quadrant shows DAPs and DEMs with
no significant changes. Next, a loading diagram was plotted to show
the correlated proteins and metabolites (Figure 7B). The top
correlated proteins were Gpat3, LOC100911055, Dars2, Spry4,
and Kdm5a, and the top correlated metabolites were Val-Thr, 2-
hydroxy-6-aminopurine, PS (16:1_22:6), glycolithocholic acid, 4-
hydroxybenzaldehyde, Pro-Met, 4-deoxyuridine, PS (18:0_22:1), 2-
O-methylguanosine, carnitine isoC4:0, 13-oxoODE, 9-oxoODE, and

FIGURE 7
Integrated analysis of the proteomic and metabolomic data. (A) Nine-quadrant diagram representing the association between proteomic and
metabolomic variations. (B) Top correlated DAPs and DEMs. Red dots represent metabolites, and blue dots represent proteins. (C) Network of the
DAPs–DEMs. Red nodes represent metabolites, and blue nodes represent metabolites. (D) Correlated DAPs and DEMs involved in the KEGG pathway.
Abbreviations: DAPs, differentially abundant proteins; DEMs, differentially expressed metabolites; KEGG, Kyoto Encyclopedia of Genes and
Genomics.
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LPS (20:3/0:0). A DAP–DEM network was further constructed to
show their relationship (Figure 7C), and the correlated proteins
and metabolic pathways were subjected to KEGG enrichment
analysis. Twenty significant terms were identified, including the
main term of ‘glycerophospholipid metabolism’ (Figure 7D).
Glycerophospholipid metabolism is vital for biological

membrane functions, fatty acids and carnitines, which are
relevant to the energy production (Guo et al., 2022). Also,
glycerophospholipid metabolism has been reported to be involved
in the LPS-induced multiple organ injury (Wang et al., 2021). The
results also suggested that energy metabolismmay be involved in the
regulation of lncRNA rPvt1 in LPS-treated cardiomyocytes.

FIGURE 8
Integrated analysis of the transcriptomic and metabolomic data. (A) Nine-quadrant diagram representing the association between transcriptomic
andmetabolomic variations. (B) Top correlated DEGs andDEMs. Red dots represent metabolites, and blue dots represent genes. (C)Correlated DEGs and
DEMs involved in the KEGG pathway. (D) CCA compares the DEGs and DEMs in the glycine, serine, and threonine metabolism; glycerolipid metabolism;
and glycerophospholipid metabolism pathways. Gene IDs are in orange, and metabolite names are in blue. Abbreviations: CCA, canonical
correlation analysis; DEGs, differentially expressed genes; DEMs, differentially expressed metabolites; KEGG, Kyoto Encyclopedia of Genes and
Genomics.
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Integrated analysis of the transcriptomic and
metabolomic data

Similarly, an integrated analysis of the DEGs and DEMs was
conducted. The correlations between all DEGs and DEMs are
presented using a clustering heatmap (Supplementary Figure S6).
A nine-quadrant diagram was produced showing DEGs and DEMs
with a correlation coefficient greater than 0.9 (Figure 8A). The
loading diagram shows the correlated genes and metabolites
(Figure 8B), including the genes Cst3, Mt-Atp8, and Mt-Atp6 and
the metabolites pyrimidine-4-carboxylic acid sodium salt, pyrazine-
2-carboxylic acid, isolithocholic acid, Val-Thr, 2-methylglutaric
acid, FFA (31:0), and 2-hydroxy-6-aminopurine. KEGG
enrichment analysis was performed to show the correlated genes
and metabolites, which were enriched in terms including ‘glycine,
serine and threonine metabolism’, ‘glycerolipid metabolism’, and
‘glycerophospholipid metabolism’ pathways (Figure 8C). CCA
diagrams further show the enriched genes and proteins in each
pathway in detail (Figure 8D). Consistently, the enriched pathways
were related to the mitochondrial energy metabolism.

Discussion

Since their identification as epigenetic regulators, lncRNAs have
been assumed to be associated with septic cardiac dysfunction (Li et al.,
2021). Previous studies and those of our lab have demonstrated that the
lncRNAPvt1 is involved in cardiac injury after sepsis, but the associated
mechanisms are largely unknown (Zhang et al., 2019; Luo et al., 2021).
In the present study, we conducted transcriptomic, proteomic, and
metabolomic assays to gain a better understanding of Pvt1 associations
during LPS-induced injury using rat H9C2 cardiomyocytes.

Conventional transcriptome sequencing usually refers to RNA
sequencing, which is an approach used to identify transcriptome
profiles using deep-sequencing techniques (Lee et al., 2020).
Compared with gene chip technology, RNA sequencing is not
limited to complete genome data of the species. Moreover, it offers
the advantages of high resolution, low background noise, high
repeatability, and low cost (Head et al., 2014). Using RNA-
sequencing techniques, we can not only rapidly obtain RNA
expression levels and the functional annotation of DEGs but also
discover new transcripts and structural variations (Zhao, 2019). To
date, there have been hundreds of studies involving RNA-sequencing
analysis that have been used to investigate the treatment and
mechanism of septic myocardial injury (Xie et al., 2022; Yan et al.,
2022). In this study, 2,385 DEGs were identified, of which levels of
2,094 were upregulated and those of 291 were downregulated. GO
functional annotation revealed that the changes that occurred after
rPvt1 silencing in LPS-treated H9C2 cells were associated with protein
binding and cellular component organization. KEGG functional
annotation further showed correlations with the regulation of the
PI3K–Akt signaling and endocytosis pathways. The PI3K–Akt
pathway is an important pathway that is closely associated with the
pathological process of septic cardiomyopathy. The activation of this
pathway delays LPS-induced inflammation, oxidative stress, and
apoptosis induced by LPS (Li et al., 2019; Liu et al., 2021).
Endocytosis is the process by which extracellular substances are
transported into cells through deformable movement of the plasma

membrane (Joshi et al., 2020). A previous study indicated that LPSmust
be internalized to promote endotoxin-dependent signaling in
cardiomyocytes, and the internalization of LPS depends on
endosomal transport. Accordingly, the inhibition of endocytosis
specifically limits the early activation of extracellular signal-regulated
kinase proteins and NF-κB, as well as the subsequent production of
TNF-α and the expression of iNOS (Cowan et al., 2001). Other
significantly enriched pathways, including focal adhesion (Davani
et al., 2004), MAPK signaling (Frazier et al., 2012) and protein
processing (Jiang et al., 2021) in the endoplasmic reticulum, are also
related to septic myocardial dysfunction.

The emergence of MS-based high-throughput proteomic
techniques, which increase the depth of protein coverage while
reducing the sample analysis time, can quickly provide in-depth
proteomic data and advance studies on septic myocardial
dysfunction (Aslam et al., 2017). In this study, proteomic analysis
revealed 272 significant DAPs in LPS-treated H9C2 cells following
rPvt1 knockdown. Representative core proteins included three
members of the mitochondrial ribosomal protein (MRP) family,
specifically Mrpl16, Mrps11, and Mrps17. The PPI network further
revealed a series of downregulated MRPs in the proteome.
Mitochondria are the energy centers of cell (Andrieux et al., 2021).
Because the heart requires large amounts of energy to sustain its
continuous contractile activity, it is not surprising that mitochondria
account for approximately 30% of the cardiomyocyte volume (Schaper
et al., 1985). The metabolism of mitochondrial energy is essential for
cardiomyocyte contraction and survival (Hasna et al., 2018). During
septic cardiomyopathy, cardiomyocytes have been shown to exhibit
ATP depletion and bioenergetic dysfunction (Curley et al., 2018). Also,
the mitochondria are the main sites of ROS production and the main
target of ROS attack and injury (Annesley and Fisher, 2019). In the
LPS-injured heart, the excessive ROS easily injures mitochondria,
leading to their dysfunction and energy metabolic shutdown
(Stanzani et al., 2019). Intriguingly, the proteomic analysis related to
these altered mitochondrial ribosomal proteins suggests that rPvt1 is
associated with mitochondrial regulation in damaged cardiomyocytes.
Functional enrichment analysis also demonstrated that mitochondria
and ribosomes might be the main sites affected by rPvt1 modulation,
suggesting the function of lncRNA rPvt1 in cardiomyocyte injury may
be closely associated with the regulation of mitochondrial homeostasis.

Widely targeted metabolomics is a novel technology that integrates
the advantages of the universality of non-target metabolomics and
accuracy of targeted metabolomics technology. It has the characteristics
of high throughput, ultrasensitivity, wide coverage, and qualitative and
quantitative accuracy (Li et al., 2022). In this study, widely targeted
metabolomics were used to detect 75 DEMs in LPS-treated H9C2 cells
after rPvt1 knockdown, and levels of most of these DEMs were
downregulated. Metabolomic pathway analysis revealed that energy-
and catabolism–redox-related metabolic pathways were influenced by
rPvt1 modulation. Furthermore, energy-targeted metabolomic analysis
identified 19 energy-related DEMs of which levels were downregulated
by rPvt1 knockdown, including amino acids, phospholipases, and
nucleotides, indicating that rPvt1 might influence energy
metabolism. Since mitochondria are the primary functional sites,
these findings, interestingly, also suggest that the rPvt1 function may
be involved in mitochondrial regulation.

Moreover, these integrated transcriptomic, proteomic, and
metabolomic data provide in-depth insights into the complex
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mechanisms underlying rPvt1 associations. We conducted correlation
analysis to determine the relationships among these three omics
combinations. Integrative transcriptomic and proteomic analyses
identified genes with significant changes at both the RNA and
protein levels. These genes were determined to be mainly related to
mitochondrial, ribosomal, and energy metabolic processes. Moreover,
proteomic–metabolomic and transcriptomic–metabolomic analyses
suggested that energy-related processes, such as TCA and
glycerophospholipid metabolism, are involved in rPvt1 associations.
The results of multi-omics integration further implicate that the
function of rPvt1 in cardiomyocytes is related to energy regulation.

However, this study has some limitations. Firstly, a bigger cohort is
required to validate and support ourfindings because our sample sizewas
relatively small. Second, there were not enough in vitro or in vivo studies
in our investigation to evaluate the expression levels of the identified
genes, proteins ormetabolites. This constraintmight have diminished the
precision and comprehensive understanding of our investigation. Further
investigations utilizing a wider variety of experimental techniques and a
larger andmore varied sample sizemay shed further light on the function
of lncRNA rPvt1 in septic myocardial injury.

Conclusion

In summary, we used transcriptomic, proteomic, andmetabolomic
techniques to determine rPvt1 associations in LPS-treated
cardiomyocytes. The results of the multi-omics analyses suggest that
there are multiple regulatory mechanisms associated with rPvt1 in
septic cardiomyopathy and that mitochondrial energy metabolism is
one such possible mechanism. Exploring the effect of rPvt1 on
mitochondrial energy metabolism might provide new insights into
its use as a target to treat myocardial injury during sepsis.
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