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Introduction: CircRNA-protein binding plays a critical role in complex biological
activity and disease. Various deep learning-based algorithms have been proposed
to identify CircRNA-protein binding sites. These methods predict whether the
CircRNA sequence includes protein binding sites from the sequence level, and
primarily concentrate on analysing the sequence specificity of CircRNA-protein
binding. For model performance, these methods are unsatisfactory in accurately
predicting motif sites that have special functions in gene expression.

Methods: In this study, based on the deep learning models that implement pixel-
level binary classification prediction in computer vision, we viewed the CircRNA-
protein binding sites prediction as a nucleotide-level binary classification task, and
use a fully convolutional neural networks to identify CircRNA-protein binding
motif sites (CPBFCN).

Results: CPBFCN provides a new path to predict CircRNA motifs. Based on the
MEME tool, the existing CircRNA-related and protein-related database, we
analysed the motif functions discovered by CPBFCN. We also investigated the
correlation between CircRNA sponge and motif distribution. Furthermore, by
comparing the motif distribution with different input sequence lengths, we
found that some motifs in the flanking sequences of CircRNA-protein binding
region may contribute to CircRNA-protein binding.

Conclusion: This study contributes to identify circRNA-protein binding and
provides help in understanding the role of circRNA-protein binding in gene
expression regulation.
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1 Introduction

Circular RNAs (CircRNAs) are special “noncoding” RNAs with a circular closed loop
structure (Kristensen et al., 2019; Liu and Chen, 2022). Previous studies suggest that
CircRNAs have greater biological stability compare other biomolecules, and directly or
indirectly participates in gene expression regulation through the functional sites in CircRNA
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sequence. CircRNA-protein binding is a significant factor in gene
expression regulation (Li et al., 2018a; Zang et al., 2020; Su et al.,
2022a; Yang et al., 2022a; Su et al., 2022b; Wang et al., 2022).
Therefore, CircRNA-RBP binding sites prediction is always the
emphasis of CircRNA research. Biological experimental
technology was first proposed to identify CircRNA-protein
binding sites (Licatalosi et al., 2008; Hafner et al., 2010; König
et al., 2010; Barnes and Kanhere, 2016; Gagliardi and Matarazzo,
2016). Despite the drawback of time-consuming and cost-heavy,
these methods provide a wealth of dependable data relating
CircRNA-protein binding sites. In the beginning, the statistical
properties, such as k-mer frequency and secondary structure
elements, were employed to represent RNA sequence (Zhang
et al., 2011; Chen et al., 2014). And then, several conventional
computing models based on statistical methods or machine learning
methods were proposed to identify CircRNA-protein binding
(Kumar et al., 2008; Liu et al., 2010; Li et al., 2017a; Li et al.,
2017b). These methods are more suitable for biological research in
terms of time, cost, and accuracy than biological experimental.

In conventional computing models, the hand-crafted features
not only rely on the experience of researchers but also are difficult to
optimize and easy to lose important features. When dealing with
massive biological data, these methods still have a lot of room for
improvement in time complexity, noise sensitivity, etc. With the
improvement of GPU (Graphics Processing Unit) performance,
deep learning models, such as CNN (Convolutional Neural
Network), LSTM (Long Short-Term Memory), attention, and
transformer, have become widely used in bioinformatics (Zhou
and Troyanskaya, 2015; Quang and Xie, 2016; Abbasi et al.,
2020; Le et al., 2021). The first model to predict protein binding
sites in DNA/RNA using CNN was DeepBind (Alipanahi et al.,
2015). Subsequently, an increasing number of deep learning models
have been proposed for predicting protein binding sites (Shen et al.,
2019), non-coding variants (Zhou and Troyanskaya, 2015),
chromatin accessibility (Li et al., 2019), protein post-translational
modification (Wang et al., 2019a), gene expression (Singh et al.,
2016), etc. In CircRNA-protein binding prediction, multi-feature
learning methods are commonly used to encode RNA sequence data
with complex model structures (Jia et al., 2020; Wang and Lei, 2021;
Yuan and Yang, 2021; Yang et al., 2022b; Li et al., 2022; Niu et al.,
2022; Yu et al., 2022; Cao et al., 2023; Zhang et al., 2023). Wang et al.
utilised the one-hot encoding method and CNN to predict cancer-
specific CircRNA-protein binding sites (Wang et al., 2019b). Zhang
et al. proposes CRIP to predict CircRNA-protein binding sites by
using the codon encoding method and CNN-LSTM neural network
(Zhang et al., 2019a). Ju et al. first split the RNA sequence into a 10-
mer sequence, and use Glove to encode the 10-mer sequence, and
then use CNN, bidirectional LSTM and CRF (Conditional Random
Field) to extract features and predict motif sites (Ju et al., 2019). In
iCricRBP-DHN, CircRNA sequence is presented via concatenation
of encoded data using a K-tuple nucleotide frequency pattern and
CircRNA2Vec. To facilitate feature learning, this method deploys
deep multi-scale ResNet, bidirectional GRUs (Gate Recurrent
Units), a self-attention mechanism to extract features (Yang
et al., 2021).

Both machine-learning and deep learning methods consider
predicting CircRNA-protein binding sites as a binary classification
problem. Hence, the important concern is to select a negative

sequence. Commonly used methods include selection from the
upstream and downstream of protein binding sites, random
generation, and search from the whole genome. However, there
remains doubts concerning whether the sequences produced by
these methods really meet the criteria of negative sequences. On the
other hand, existing models extract various features from RNA
sequences for prediction and achieve better performance. These
methods make predictions at the sequence level, largely
concentrating on the sequence specificity of protein binding sites.
No attempt was made to identify motif sites at the nucleotide-level.

In computer vision, FCN (Fully Convolutional Network) can
complete tasks such as image segmentation and image classification
at pixel-level. As a result, FCN has been implemented for DNA
sequence analysis at nucleotide-level (Wang et al., 2021; Zhang et al.,
2021). In this study, we used FCN to predict CircRNA-protein
binding motifs, which we call the CPBFCN model. For CPBFCN, it
treats motif discovery as a nucleotide-level prediction task and can
identify motif sites of various lengths. The known protein binding
sites in the CircRNA sequence are considered as positive samples,
while other sites are regarded as negative sample. This eliminates
negative sequence generation in sequence-level models. For the
whole CircRNA sequence, the ratio of motif sites and other sites
is unbalanced, hard negative mining loss is used as the loss function
to reduce the negative effect of unbalanced data on model
performance. CPBFCN provides a new path to predict CircRNA
motifs. The trained CPBFCN was used to extract motif from
CircRNA sequence. In this study, we not only analyzed the
function of motif found by CPBFCN but also their distribution
and correlation with CircRNA sponge.

2 Materials and methods

2.1 Data

To evaluate model performance, 37 CircRNA-protein binding
datasets were collected fromCRIP and iCricRBP-DHN. Each dataset
is used for individual training and testing purposes. We obtained
37 original experimentally validated circRNA-protein binding data
from the CircRNA interactome database (https://circinteractome.
nia.nih.gov/), which includes over 100,000 human CircRNA
sequence information. Each entry in this database contains the
location information of protein binding region in CircRNA
sequence. To obtain positive samples, we started at the midpoint
of protein binding region and extended upstream and downstream
by 50-nt, respectively, a 101-nt short sequence is obtained as the
positive samples. We also use the same method to generate 201-nt
short sequence and 501-nt short sequence as positive samples. The
negative sample is obtained by randomly selecting 101-nt/201-nt/
501-nt short sequence from the remaining CircRNA sequence. To
eliminate the effect of redundant sequences, CD-HIT is used to
remove the redundant sequence with a threshold of 0.8. Details
about experimental data used in this study are presented in
Supplementary Data (see Supplementary Section “Experimental
Data Used in This Study—Data Processing”). All three different
length experimental datasets are used for hyper-parameter
experiments and to evaluate the performance of CPBFCN and
three baseline models. The number of sequence record of three
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different length experimental datasets is shown in Supplementary
Table S1. Supplementary Table S2 shows the motif length
information in 37 datasets.

CPBFCN is a nucleotide-level prediction model. Each site in
the input CircRNA sequence has a label indicating whether the
site belongs to the protein binding region. Based on the
CircRNA-protein binding sequence data and the binding
region information obtained from the circinteractome, we
generate an array that is the same length (101, 201, or 501) as
the CircRNA-protein binding data. Next, we need to identify the
interval position in the array that corresponds to the protein
binding region. Thirdly, each element within the interval is set to
1, and other elements in the array is set to 0. Additionally, a
sequence-label file is generated for the competing methods. For
every dataset, short sequence belongs to the positive sample are
labelled with 1, and other sites in CircRNA sequence belongs to
the negative sample are labelled with 0.

In this step, the input CircRNA-protein binding data is encoded
using one-hot method. Four bases are represented as follows:
A(1, 0, 0, 0), C(0, 1, 0, 0), G(0, 0, 1, 0), U(0, 0, 0, 1). If there are L

records in the input data, and each record’s length is M, the
encoded record is converted into a L × M × 4 matrix.

2.2 Model construction

CPBFCN is a deep learning model based on FCN, and its
workflow is shown in Figure 1. CPBFCN involves two chief
components: the encoding process and decoding process.

The aim of the encoding process is to extract features and reduce
dimensionality. In contrast, the decoding process involves restoring
the feature maps generated from the encoding process to the original
data size through deconvolution operations. Moreover, the skip line
is used to combine the deep semantic information with the shallow
appearance features. These two modules are explained in further
detail below.

2.2.1 Data encoding process
This process is also known as down sampled, which contains

three modules for feature extraction and an average pooling layer.

FIGURE 1
The workflow of CPBFCN.

Frontiers in Genetics frontiersin.org03

Shen et al. 10.3389/fgene.2023.1283404

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1283404


The feature extraction module comprises three parts: a
convolutional layer, a max-pooling layer, and a dropout layer.
The computational process is shown in Eq. 1.

MP out � MaxPooling ReLU Conv k*id, b( )( )( )
FE out � Dropout MP out( ) (1)

where, id is a matrix representing the input data encoded by one-hot,
k represents the convolutional kernel, and b is a bias term. Here, the
convolutional kernel can be seen as a motif scanner, scoring each
potential protein binding region in the CircRNA sequence.MP_out
represents the output of the Max pooling layer, which decreases data
dimensionality and chooses features for identifying protein binding
regions. Dropout can reduce the adverse impact of overfitting on
model performance.

Regardless of NLP or CV, numerous researchers have discovered
that the context feature is crucial for improving deep learning model
performance. To address this issue, various methods have been
proposed (Li et al., 2018b; Jain et al., 2020). In genomic analysis, the
context feature of motif sites in CircRNA sequences is also
significant for RNA-protein binding. Therefore, the impact of the
global average pooling on model performance is experimentally
demonstrate in the experimental section.

2.2.2 Data decoding process
This process contains four deconvolutional modules, each

including four components: an upsample layer, a batch
normalization (BN) layer, a ReLU layer, and a convolutional
layer. The skip layer is denoted by a blue dashed line and
performs a summation operation. The computation process is
shown in Eq. 2.

BN out � BN upsample EP out( ) + FE out( )
Re out � ReLU BN out( )
+DeConv � Conv kup*Re out, bup( )

(2)

where, BN_out represents the output of BN layer. FE_out
represents the output of the feature extraction module at the
same level as the current deconvolutional module in the data
encoding process. EP_out represents the output of the final
feature extraction module. kup and bup represent the
convolutional kernel and the bias term, respectively. The
purpose of upsample is to restore the size of the output
features of the data encoding process to be the same as the
input data.

2.2.3 Model loss function
In image segmentation, the objective is to separate the target

from other information within the current image. Therefore, the
target pixels in the image are considered as positive samples, while
the remaining pixels are negative samples. In other words, image
segmentation constitutes an imbalanced binary classification task.
Conventional loss functions are not suitable to this, which involves
imbalanced data. To address this issue, several methods have been
proposed. HNM (hard negative mining) is one of the more
commonly used methods (Ren et al., 2015). In this study, we
apply the HNM-based loss function HNML (hard negative
mining loss) proposed by (Zhang et al., 2021) to identify and
predict CircRNA-protein binding motifs. The computation
process is shown in Eq. 3.

losspos � Crossentropy +DeConvpos( )
lossneg � Crossentropy +DeConvneg( )
losssortneg � topk lossneg, ratio � V( )
loss � mean losspos( ) +mean losssortneg( )

(3)

Where +DeConv represents the output of the last
deconvolutional module. V represents the value that determined
top-k when selecting top-k loss. Crossentropy represents using cross
entropy function the to calculate the loss value. mean represents
calculating the average of loss value.

2.2.4 Predicting CircRNA sequence motifs
Unlike the sequence-level prediction models, which can only

predict whether a sequence is a bind to a protein, CPBFCN is a
nucleotide-level model that can predict whether a nucleotide site
binds to a protein. The outputs of CPBFCN require further
processing before it can be used for predicting CircRNA motifs.
We use the same approach as in CircCNN (Shen et al., 2022)
proposed previously to predict motifs. This procedure consists of
three steps. Firstly, the task of this step is to locate CircRNA-protein
binding region, the same process described above is repeated in this
step. Subsequently, the weights and outputs of first convolutional
layer in the trained model were used to evaluate the potential motifs
in the located regions. The highest-scored potential motif was
selected as the predicted motif. Finally, PFMs (Position
Frequency Matrixes) are computed by extracting the nucleotide
frequency information from all aligned predicted motifs. TOMTOM
is used to match the PFMs with known validated protein motifs.

3 Results

3.1 Experimental setting

In this study, three existing methods were used as baseline
models for comparison with CPBFCN: CRIP, circSLNN, and
iCircRBP-DHN. The evaluation of CPBFCN’s performance was
based on IOU (Intersection over Union). IOU is a commonly
used measure in image segmentation, which represents the
overlapping ratio of the predicted labels and the true labels. iou_
0 represents the ratio of predicted label 0 and true label 0. iou_
1 represents the ratio of predicted label 1 and true label 1. miou
(mean iou) represents the average of iou_0 and iou_1. Furthermore,
this study employed three statistical indicators (p-value, e-value and
q-value) to evaluate the performance of CPBFCN as compared to
three baseline models in predicting motifs. The role of 5-fold cross
validation in this study is to make full use of the experiment datasets

TABLE 1 Model hyper parameter value.

Parameter Value

Data Length 101, 201, 501

Loss Function BCE, HNML

HNML Ratio 0.3, 0.5, 0.7

Pooling Whether to use global average pooling
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to evaluate model performance when the experimental datasets are
insufficient. In 5-fold cross validation, all data are divided into five
parts, in which one of the segments is designated for testing purposes
while the remaining segments are used for training.

Considering the effect of model structure, input data, loss
function on model performance, four parameters were designed
for hyper-parameter testing in this section: input data length change,
the ratio value change in HNML, whether to use global average
pooling, use BCE (Binary Cross-Entropy) or HNML as loss function.
19 datasets were involved in hyper-parameter experiments. Table 1
shows the different values of four parameters. Hardware platform
information is shown in Table 2. The motif name in Ray2013_rbp_
Homo_sapiens can be found in Supplementary Table S3. 24 hyper-
parameter combinations were displayed in Supplementary Table S4.

Figure 2 shows the performance comparison of CPBFCN across
24 parameter combinations. Supplementary Tables S5–S12 shows
the comparisons of miou, iou_0, and iou_1 of CPBFCN on
19 datasets. From Figure 2, it is evident that iou_0 is optimal
when the input length is 201 and 501, iou_1 is best when the
input length is 101. When the input length is 201, miou is the mean
of iou_0 and iou_1 and the decline of iou_1 is not significant, hence
miou is optimal compared with other input lengths. Considering
that CPBFCN is a nucleotide-level model, our goal is to predict the
nucleotide sites labeled 1 in the input data. When the input length

increases, the number of positive samples does not change, andmore
negative samples are introduced. A variation of miou is not
indicative of CPBFCN being able to predict the motif sites more
accurately. Therefore, we select the best parameters from
8 parameter combinations when the input length is 101. We
have included the running times of different models in Figure 2.
From Figure 2, we found that model with FCN and average pooling
showed no advantage than model using only FCN. After a
comprehensive consideration of Figure 1 and Supplementary
Tables S4–S11, we opt M7 (101, HNML, 0.7) as the optimal
parameter. The subsequent section will evaluate model
performance across all 37 datasets and investigate the effect of
model structure change on model performance.

3.2 CPBFCN performance comparison and
analysis

In this section, model performance was tested with optimal
parameters across 37 datasets. Additionally, the influence of
structural variations on model performance was assessed through
the modification of the encoding and decoding modules within the
model. Figure 3 and Supplementary Tables S13–S15 show the
performance comparison of CPBFCN and its variations. Here,
CPBFCN_1 represents CPBFCN with two encoding modules and
two decoding modules, while CPBFCN_2 represents CPBFCN with
three encoding modules and three decoding modules. Since the
encoding module and the decoding module relate to feature
extraction and data recovery respectively, the performance of
CPBFCN_1 using only two encoding modules and two decoding
modules is least desirable. For both CPBFCN_2 and CPBFCN, there
is no significant performance when the input length is 101. However,
for the input length is 201 and 501, CPBFCN exhibits a clear
advantage. Overall, the performance of CPBFCN is still optimal.

TABLE 2 Hardware platform information.

Server DELL T7910

OS Ubuntu 16.04 LTS

CPU E5-2680V4 x2

Memory 128G

GPU NVIDIA 2080Ti

FIGURE 2
IOU and time comparison of CPBFCN with 24 parameter combination.
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During hyperparameter experimentation, we found that the
miou and iou_0 of CPBFCN are optimal with an input length
201, although there is a downward trend in iou_1. In this section, we
also found the same phenomenon when testing model performance
with 37 datasets. However, there are still some exceptions. As shown
in Supplementary Table S16, when the input length is 201, and six
datasets EIF4A3, FOX2, IGF2BP1, IGF2BP2, IGF2BP3, and
ZC3H7B are used to test model performance, three indicators
miou, iou_0 and iou_1 display an upward trend. This suggests
that an increased input length could potentially aid in identifying
protein binding sites. In the next section, we will further examine
this phenomenon by analyzing motif distribution.

3.3 Motif analysis

3.3.1 Motif discovery performance analysis
In this section, we first extract motifs from 37 datasets using

CPBFCN and three baseline models. Subsequently, we compare
known motifs in RNA/Ray2013_rbp_Homo_sapiens and motifs
predicted by four models by all four models using TOMTOM.
Given that CPBFCN is a nucleotide-level model, we evaluate the
performance of all four models using three metrics −log2
(p-value), −log2 (q-value), −log2 (e-value).

Supplementary Figure S1 displays the distribution of three
metrics for CPBFCN and three baseline models. It is clear from
this figure that CPBFCN does not have an advantage. Furthermore,
after comparing Supplementary Tables S1, S3, we observed that only
ten motifs coexist in the two tables: FUS, FXR1, FXR2, HNRNPC,
HUR, IGF2BP2, IGF2BP3, LIN28A, QKI, TIA1. Table 3 shows the
discovery performance comparison of CPBFCN and three baseline
models in discovering 10 coexisting motifs by scanning the motif

discovery data of four models. The comparison reveals that
CPBFCN and iCircRBP-DHN can identify 5 motifs, whereas
CRIP and circSLNN can identify 4 and 3 motifs respectively. By
comparing the p-value, e-value, and q-value of CPBFCN and
iCircRBP-DHN, it is evident that CPBFCN performs better than
iCircRBP-DHN in identifying HUR, IGF2BP3, TIA1.

What’s more, Supplementary Tables S17–S20 display the top
5 motif logos found by CPBFCN, CRIP, circSLNN and iCircRBP-
DHN for each dataset that correspond to the known database RNA/
Ray2013_rbp_Homo_sapiens. All motif information (including
match or not match with the known motifs in RNA/Ray2013_
rbp_Homo_sapiens) is provided in the xlsx file Supplementary Data
S2, which contain twelve sheets: FCN_all_motif, FCN_motif_
match_known_motifdb, FCN_match_motif_sorted, CRIP_all_
motif, CRIP_motif_match_known_motifdb, CRIP_match_motif_
sorted, circSLNN_all_motif, SLNN_motif_match_known_
motifdb, SLNN_match_motif_sorted, iCircRBP-DHN_all_motif,
DHN _motif_match_known_motifdb, DHN_match_motif_sorted
(Supplementary Tables S21–S32). Supplementary Figure S2 shows
the performance comparison of three baseline models. In summary,
for the task of motif discovery, CPBFCN does not hold a significant
advantage over the other three baseline models. However, it still
provides a novel avenue for feature learning andmotif identification.

Figure 4 and Table 4 display motifs found by CPBFCN. According
to the information obtained from protein databases and protein-related
literature, some motifs play critical roles in gene expression regulation.
For instance, the expression of specific factor E2F1 is related to
transcription and cell proliferation, and RALY can impact the
expression of E2F1, and thus regulate gene expression by modulating
the expression of E2F1 (Cornella et al., 2017). LIN28A can not only
recruit Tet1 to genomic binding sites, but the coordinated regulation of
LIN28A and Tet1 can affect DNA methylation and gene expression

FIGURE 3
(A)miou comparison of CPBFCN_1, CPBFCN_2 and CPBFCN; (B) iou_0 comparison of CPBFCN_1, CPBFCN_2 and CPBFCN; (C) iou_1 comparison
of CPBFCN_1, CPBFCN_2 and CPBFCN.
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TABLE 3 Performance comparison of four models for 10 coexist motifs.

CPBFCN CRIP circSLNN iCircRBP-DHN

HNRNPC

p-value: 1.00e−04

HNRNPC

p-value: 1.85e−05

HNRNPC

p-value: 6.41e−06

HNRNPC

p-value: 3.92e−05

e-value: 1.02e−02 e-value: 1.89e−03 e-value: 6.54e−04 e-value: 4.00e−03

q-value: 2.45e−03 q-value: 8.07e−04 q-value: 5.11e−04 q-value: 1.71e−03

HUR

p-value: 2.02e−05

HUR

p-value: 4.47e−05

IGF2BP3

p-value: 3.78e−04

HUR

p-value: 2.51e−05

e-value: 2.06e−03 e-value: 4.56e−03 e-value: 3.85e−02 e-value: 2.56e−03

q-value: 1.79e−03 q-value: 3.33e−03 q-value: 2.95e−02 q-value: 2.18e−03

IGF2BP3

p-value: 4.78e−04

IGF2BP2

p-value: 8.57e−04

TIA1

p-value: 9.97e−07

IGF2BP3

p-value: 1.44e−03

e-value: 4.88e−02 e-value: 8.74e−02 e-value: 1.02e−04 e-value: 1.47e−01

q-value: 4.53e−02 q-value: 2.06e−02 q-value: 4.40e−05 q-value: 4.02e−02

QKI

p-value: 1.03e−04

TIA1

p-value: 2.65e−05

None

QKI

p-value: 4.84e−05

e-value: 1.05e−02 e-value: 2.71e−03 e-value: 4.93e−03

q-value: 9.95e−03 q-value: 2.34e−03 q-value: 4.63e−03

TIA1

p-value: 9.70e−05

None None

TIA1

p-value: 3.65e−04

e-value: 9.89e−03 e-value: 3.73e−02

q-value: 4.24e−03 q-value: 6.36e−03
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(Zeng et al., 2016). SRSF1 is closely related to the immune system gene
expression regulation (Paz et al., 2021).

With the development of biological experimental technology, more
and more proteins are discovered to be significantly linked to the
occurrence, development, metastasis, and treatment of complex
malignant diseases. Table 5 shows the correlation between motifs
found by CPBFCN and complex diseases. In Hepatocellular
Carcinoma, the expression level of ZC3H14 has an obvious negative
correlation with Hepatocellular Carcinoma progression. That is to say,
ZC3H14 can not only serve as a tumor suppressor, but also a potential
prognostic biomarker for Hepatocellular Carcinoma patients (Zhang
et al., 2019b). SNRPA plays a critical role in gastric tumor size and
progression throughmodulating nerve growth factor, and also be used as
a prognostic biomarker for gastric cancer (Dou et al., 2018).
Overexpression of CORO1C can promote the invasion and metastasis
of breast cancer cells, and the upregulation or downregulation of
YBX1 can promote or inhibit the expression of CORO1C. Therefore,
the relationship between YBX1 and CORO1C provides a new way of
inhibiting breast cancer cell metastasis (Lim et al., 2017). Overexpression
of RBFOX1 enhances the Permeability of the Blood-Tumor Barrier
through the LINC00673/MAFF pathway, which provides a new
method for enhancing the efficacy of cancer therapy (Shen et al., 2020).

Most motifs found by CPBFCN are related to gene expression
regulation or cancer occurrence, metastasis, invasion, etc. Research have
demonstrated that CircRNA’s RBP sponge function also play a role in

gene expression regulation. Our future research will focus on two areas:
CircRNA formation regulation and CircRNA-related gene expression
(or disease) regulation. For CircRNA formation regulation, our aim is to
gather pre-mRNA, protein and other data related to CircRNA
formation, construct a regulatory network for CircRNA formation,
and investigate the underlying mechanism that control CircRNA
formation. For CircRNA-related gene expression regulation, our aim
is to gather CircRNA, protein, miRNA, and other data related to gene
expression regulation and disease, construct a regulatory network based
on a heterogeneous graph neural network, and explore the gene
expression (or disease) regulation related to CircRNA. Finally,
CircRNA formation network and CircRNA-gene expression (include
disease) network were combined to investigate the relationship between
CircRNA formation and gene expression (or disease) regulation. Our
study aims to uncover new CircRNA-related regulatory pathways and
identify potential targets for disease treatment.

3.4 Motif distribution analysis

3.4.1 Distribution analysis ofmotif directly found by
CPBFCN

Table 4 displays 5 motifs directly found by CPBFCN: HNRNPC,
HUR, IGF2BP3, QKI, and TIA1. According to the details described
in the “Data” section, we first need to find the midpoint of the

FIGURE 4
Some motif logos found by CPBFCN.
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protein binding region, and then select 50 sites from the upstream
and downstream to generate experimental data. Thus, these motifs
should be lie in the middle of the experimental data range. Figure 5
confirms our previous assumptions concerning the corresponding
distribution of HUR and QKI. For the remaining three motifs, their
primary distribution areas have minor variations from the midpoint,
this aligns with our initial expectations. In general, CPBFCN
successfully predicted motif-binding regions located in the central
region of input sequence.

3.4.2 Motif distribution and CircRNA sponge
analysis

In the “motif discovery performance analysis” section, we have
presented several protein cases that are implicated in gene
expression regulation and cancer. Due to the interaction between
protein and CircRNA, the expression level of these proteins is
affected by CircRNA. This is also referred to as CircRNA sponge.
To examine the correlation between CircRNA sponge region and
motif distribution, we tallied the protein-binding position of all

TABLE 4 Some motif information found by CPBFCN.

Protein
name

Motif found by
CPBFCN

Known motif in
database

Known motif
sequence

Gene
annotation

p-value e-value q-value

AGO3 UUUUUUUGGG RNCMPT00032 UUAUUUU HuR 0.000146 0.014931 0.005942

GGGAUCGAGC RNCMPT00067 GGAAGGA SRSF9 0.000111 0.01128 0.010108

UUUUUUUGGG RNCMPT00159 UUUUUUG RALY 0.000166 0.016972 0.005942

UUUUUUUGGG RNCMPT00274 UUUUUUU HuR 0.00021 0.021456 0.005942

CAPRIN1 CCUCUACAAG RNCMPT00172 ACAAACA IGF2BP3 4.98E−05 0.005081 0.004714

CAGAUUGACU RNCMPT00184 AGUGUGA RBM24 0.000328 0.033406 0.033245

CCUCUACAAG RNCMPT00033 ACAAACA IGF2BP2 0.000494 0.050382 0.01804

CGCAGAAGGA RNCMPT00036 CGGAGAA LIN28A 0.000425 0.04334 0.031237

FOX2 AGAUACUGUU RNCMPT00075 CGAUACU TUT1 6.21E−05 0.006331 0.006301

AGGAGGACAA RNCMPT00106 GGAGGAC SRSF1 0.000122 0.012459 0.009772

UUUUGUGUUU RNCMPT00004 UGUGUGU BRUNOL4 0.000298 0.030405 0.010691

UUUUGUGUUU RNCMPT00086 UUUGUUU ZC3H14 0.000321 0.032775 0.010691

HUR UUACUUUUUU RNCMPT00012 CUUUUUU CPEB2 4.75E−06 0.000484 0.000208

UUACUUUUUU RNCMPT00158 CUUUUUU CPEB4 4.75E−06 0.000484 0.000208

UGCUGGCCUU RNCMPT00063 GCUGGAC SAMD4A 6.01E−06 0.000613 0.000584

UUUUUUUUUU RNCMPT00274 UUUUUUU HuR 2.02E−05 0.002064 0.001788

QKI UUUGCACAAU RNCMPT00071 UUGCACA SNRPA 3.77E−05 0.003848 0.003516

AUGAUUUUUU RNCMPT00025 AUUUUUU HNRNPC 0.000129 0.013187 0.005912

AUGAUUUUUU RNCMPT00167 AUUUUUU HNRNPCL1 0.000129 0.013187 0.005912

ACUAACAUCU RNCMPT00047 ACUAACA QKI 0.000103 0.010481 0.009947

TABLE 5 Motifs found by CPBFCN are closely related to disease.

Protein name Motif found by
CPBFCN

Known motif in
database

Known motif
sequence

Gene
annotation

Disease

FOX2 UUUUGUGUUU RNCMPT00086 UUUGUUU ZC3H14 Hepatocellular Carcinoma

IGF2BP2 UCAAGAAAAU RNCMPT00064 AGAAAAA SART3 Colorectal Cancer

HUR GAAGGCGCUA RNCMPT00154 GAAGGAG RBM5 Lung Cancer

QKI UUUGCACAAU RNCMPT00071 UUGCACA SNRPA Gastric Cancer

GAGAACAUCU RNCMPT00083 AACAUCA YBX1 Breast Cancer

AGO1 UACCUUUUCU RNCMPT00079 UUUUUUC U2AF2 Non-Small Cell Lung
Cancer

TIA1 UCUGCAUGCC RNCMPT00168 UGCAUGC RBFOX1 Blood Tumor Barrier

Frontiers in Genetics frontiersin.org09

Shen et al. 10.3389/fgene.2023.1283404

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1283404


CircRNAs in circinteractome, and merged them into a file that
outlines the protein-binding area of each CircRNA sequence. Then,
we selected four motifs (RALY, LIN28A, SART3, RBM5) and four
CircRNAs (hsa_circ_0000002, has_circ_0000021, hsa_circ_
0000065, hsa_circ_0000136). The distribution of four motifs in
CircRNA sequence is depicted in Figure 6.

From Figure 6, we found that the main distribution regions of
LIN28A, SART3, and RBM5 in hsa_circ_0000002 and hsa_circ_
0000021 largely overlaps with the protein-binding region in
CircRNA sequence. However, there are only a few motif
distribution regions in hsa_circ_0000065 and hsa_circ_
0000136 that overlaps with the protein-binding region. For the
motif RALY, its main distribution region only marginally
overlaps with the protein-binding region in four CircRNA. Due
to the large number of motifs and CircRNA, we will present the
distribution of only four motifs in four CircRNA. Generally, the
overlap of the main distribution region and CircRNA sponge region
indicates that CircRNA can act as a sponge and influence protein
expression level through CircRNA-protein binding, thereby
regulating gene expression and cancer. In future research, we will
collaborate with medical institutions and scientific research
institutions to further confirm the relationship between CircRNA
sponge and protein and explore potential regulatory pathways.
There is an expectation that this research will aid in the
treatment of complex diseases.

3.4.3 Some short sequences help CPBFCN to
predict CircRNA-protein binding site

During experiments, we found that when the input length is 201,
the miou, iou_0, iou_1 of six datasets (EIF4A3, FOX2, IGF2BP1,

IGF2BP2, IGF2BP3, and ZC3H7B) outperform those with input
length 101. It is well-established that deep learning models
necessitate a significant amount of training data for the
extraction of adequate features. Increasing the input data length
may potentially improve model performance. Additionally, we are
still thinking about whether there are some short sequences in the
added sequence that can help identify CircRNA-protein binding
sites. Here, we first divide each record in each dataset into short
sequences with length 12, then count the positions of these short
sequences across all records, and finally generate a distribution
figure corresponding to each short sequence.

Table 6 shows motif numbers in six datasets before and after
threshold filtering. While the total count of motif within six datasets
is substantial, only a small number of motifs with high occurrences
remain after the filtering process. If the threshold set for all six
datasets is too high, motifs may not be found in some datasets, such
as FOX2, IGF2BP2, ZC3H7B. Conversely, a low threshold may
identify numerous candidate motifs. Therefore, different thresholds
were set for six datasets. Figure 7 shows the distribution of some
motifs with high occurrences in six datasets. The distribution of all
motifs is shown in Supplementary Figures S3–S8. From Figure 7 and
Supplementary Figures S3–S8, we found that the main distribution
region of motif is divided into four types: left flank of the original
binding region, right flank of the original binding region, both the
left flank and right flank, and the original binding region. This
suggests that alongside motif distribution within the original
binding region, other motifs might assist in identifying protein
binding sites independently or collectively. In our future research,
besides acquiring more experimental data, we will also aim to
collaborate with research institutions to investigate if these

FIGURE 5
(A) The distribution of motif HNRNPC found by CPBFCN (model motif) and motif HNRNPC in RNA/Ray2013_rbp_Homo_sapiens (mememotif); (B)
The distribution of motif HUR found by CPBFCN (model motif) andmotif HUR in RNA/Ray2013_rbp_Homo_sapiens (mememotif); (C) The distribution of
motif IGF2BP3 found by CPBFCN (model motif) and motif IGF2BP3 in RNA/Ray2013_rbp_Homo_sapiens (mememotif); (D) The distribution of motif QKI
found by CPBFCN (model motif) and motif QKI in RNA/Ray2013_rbp_Homo_sapiens (meme motif); (E) The distribution of motif TIA1 found by
CPBFCN (model motif) and motif TIA1 in RNA/Ray2013_rbp_Homo_sapiens (meme motif). Here, meme motif represents the motif sequence in RNA/
Ray2013_rbp_Homo_sapiens, model motif represents the motif sequence found by CPBFCN.
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sequences can help identify protein binding sites via biological
experiments.

4 Discussion

CircRNA-protein binding is a crucial factor in complex
biological activity and disease development. The prediction of
CircRNA-protein binding motifs helps to unveil the role of
CircRNA in gene expression regulation. In this study,
CPBFCN was used to predict CircRNA-protein binding motif.
As a nucleotide-level model, CPBFCN uses CircRNA sequence

as input data. Only a small fraction of CircRNA sequence
contains protein binding sites, with other sites being
considered negative samples, and the proportion of positive
and negative samples is unbalanced. To address this issue,
hard negative mining loss was introduced. Despite the lack of
a significant advantage of CPBFCN, it still provides a new path
for identifying CircRNA motifs. Further analysis of the motif
distribution showed that the overlap between motif main
distribution region and CircRNA sponge region is more
favorable for to the regulatory function of CircRNA in the
biological process, and some short sequences help to identify
CircRNA-protein binding sites.

FIGURE 6
The relative positional between protein binding region and special motif distribution in CircRNA. Here, blue line and yellow line represents the
distribution of meme motif and model motif, respectively, and the pink bar represents the protein binding region in CircRNA sequence. Due to the
different length of CircRNA, the column width may be thick or thin.

TABLE 6 Motifs with high occurrences in six datasets.

Protein name Motif number Threshold Motif number after threshold filtering

EIF4A3 2146479 50 127

FOX2 111833 10 5

IGF2BP1 2460754 30 72

IGF2BP2 1337480 30 37

IGF2BP3 2387811 30 98

ZC3H7B 1881151 30 56
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For future research, we have two directions. One is to
enhance the motif prediction ability of CPBFCN by fine-
tuning the model structure and parameters. The other is
based on CPBFCN and includes three subtasks. Firstly, based
on the experimental result of CPBFCN and CircCNN,
combined with other CircRNA-related data, we will
construct a CircRNA formation regulation network by
integrating the experimental outcomes of CPBFCN and
CircCNN with other CircRNA-related data, and then explore
the regulatory mechanism behind CircRNA formation.

Secondly, make full use of CPBFCN to identify protein
binding regions in CircRNA sequence, in-depth study the
role of CircRNA sponge, integrate biological data such as
miRNA, protein, and construct CircRNA-gene expression
(and disease) regulation network, reveal the function of
CircRNA in biological activity. Thirdly, CPBFCN is a
nucleotide-level model that can be used to identify whether
the CircRNA sequence site is mutated, and then to study the
impact of CircRNA site mutation on gene expression and
disease regulation.

FIGURE 7
Distribution of the short sequence with high occurrences in six datasets. To facilitate the statistics of short sequence distribution, we divide the
sequence into four intervals, each interval length is 50, and the red, blue, and green dotted lines represent the boundaries of each interval. The peaks in
each interval represent that a short sequence appears more frequently in the current interval.
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