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Background: Single-cell sequencing (SCS) is a technique used to analyze the
genome, transcriptome, epigenome, and other genetic data at the level of a
single cell. The procedure is commonly utilized in multiple fields, including
neurobiology, immunology, and microbiology, and has emerged as a key
focus of life science research. However, a thorough and impartial analysis of
the existing state and trends of SCS-related research is lacking. The current study
aimed to map the development trends of studies on SCS during the years
2010–2022 through bibliometric software.

Methods: Pertinent papers on SCS from 2010 to 2022 were obtained using the
Web of Science Core Collection. Research categories, nations/institutions,
authors/co-cited authors, journals/co-cited journals, co-cited references, and
keywords were analyzed using VOSviewer, the R package “bibliometric”,
and CiteSpace.

Results: The bibliometric analysis included 9,929 papers published between
2010 and 2022, and showed a consistent increase in the quantity of papers
each year. The United States was the source of the highest quantity of articles and
citations in this field. The majority of articles were published in the periodical
Nature Communications. Butler A was the most frequently quoted author on this
topic, and his article “Integrating single-cell transcriptome data across diverse
conditions, technologies, and species” has received numerous citations to date.
The literature and keyword analysis showed that studies involving single-cell RNA
sequencing (scRNA-seq) were prominent in this discipline during the
study period.

Conclusion: This study utilized bibliometric techniques to visualize research in
SCS-related domains, which facilitated the identification of emerging patterns
and future directions in the field. Current hot topics in SCS research include
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COVID-19, tumor microenvironment, scRNA-seq, and neuroscience. Our results
are significant for scholars seeking to identify key issues and generate new
research ideas.
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1 Introduction

Cells are considered the fundamental unit of biological structure
and function (Bai et al., 2021). Research in scientific fields, such as
reproductive development, genetics, and neural activity, are rooted
in the study of cells. Furthermore, understanding the pathogenic
mechanisms of all disorders requires exploration of cytopathic
conditions. Cell research is not only the foundation of life science
but also a crucial factor in the advancement of modern life science. A
research project designated the Human Cell Atlas was initiated to
acquire high-resolution information on cell type, number, location,
relationship, andmolecular expression, as well as accurately describe
and define cell composition and health status in diseases. The
human cell map is based on molecular maps (such as gene
expression) to identify all cell types and associate this
information with classic cell characteristics, such as location and
morphology (Regev et al., 2017). This research has been recognized
as a milestone of epoch-making significance in the field. Recent
decades have seen significant progress in sequencing technologies.
Traditional sequencing methods, such as Sanger and next-
generation sequencing (NGS), have certain limitations. The low-
throughput capacity and efficiency of Sanger sequencing make it
difficult to meet the needs of modern scientific development for the
acquisition of biological gene sequences. NGS has compensated for
the shortcomings of Sanger sequencing to an extent. However, this
technique generates short reads, which are not desirable for full
genome assembly. SCS further addresses the limitations of prior
techniques. This high-throughput approach facilitates analysis of the
genome, transcriptome, epigenome, and other genetic data at the
level of a single cell, providing critical insights into cell type,
function, status, and variations. Since its inception, SCS has been
extensively utilized in multiple disciplines, such as neurobiology and
cancer biology. Brady et al. (1990) originally reported the single-cell
cDNA amplification method in 1990. Subsequently, the group of
Tang et al. (2009) conducted pioneering research on single-cell
mRNA sequencing, which garnered substantial attention. Interest in
research on SCS has grown significantly over the past few years.
Bibliometric analysis of SCS is therefore essential to provide
important insights for harnessing the full potential of completed
research and identifying emerging trends in the field.

Bibliometric analysis is a valuable tool for quantitative
evaluation of scientific publications and characterization of
research trends (Niu et al., 2021). Compared to systematic
literature review, bibliometrics provides a more objective and
reliable analysis (Aria and Cuccurullo, 2017), which reduces the
potential bias caused by subjective intention. The results are of great
significance in identifying potential hotspots and avenues for future
research in specific fields (Niu et al., 2021). To date, limited
bibliometric studies have been conducted in the discipline of
SCS. With the increasing number of publications in this area,

bibliometric techniques provide an effective means to update the
collected data and identify trends in research.

Here, we have conducted a comprehensive bibliometric analysis
of SCS studies published between 2010 and 2022 using CiteSpace
and VOSviewer, with the aim of visually analyzing research trends in
SCS up to this time through evaluation of nations/regions, research
institutions, authors, and co-cited authors. Furthermore, we have
identified key hotspots and speculated on the future of this
research avenue.

2 Materials and methods

2.1 Data sources and search strategy

Web of Science Core Collection (WOSCC) serves a key global
data source for literature searches. We conducted a thorough search
of theWOSCC database for research publications between 1 January
2010 and 3 December 2022. On 3 December 2022, we performed a
literature search and downloaded data to eliminate potential biases
resulting from frequent database updates. The following search
strategy was used: TS = (“Single-cell transcriptome” OR “Single-
cell RNA-seq” OR “single-cell transcriptomic” OR “single-cell
transcriptomics” OR “Single-Cell RNA Sequencing” OR “single-
cell multiomics sequencing”). This report focuses on published
articles and reviews related to SCS that are limited to the English
language. A total of 9,929 records were selected for analysis. The
specific literature screening process is presented in Figure 1.

2.2 Data analysis

We exported and stored 9,929 documents using Excel and plain
text files. To obtain detailed information, relevant data (such as
titles, authors, organizations, nations/regions, citations, and
periodicals) were collected from the included papers and loaded
into VOSviewer, CiteSpace, and the bibliometric analysis software
“bibliometrix” for further analyses.

CiteSpace was utilized to conduct network analysis of the
potential trends and hotspots, and obtain crucial information on
scientific research pertaining to a specific subject (Chen, 2006).
CiteSpace version 5.8 was applied in this study to display the
progression of research on SCS based on available information,
such as authors, institutions, and nations. The Time Slicing
specifications for CiteSpace were set to consider each year
between 2010.01 and 2022.12 as a timestamp.

VOSviewer (version 1.6.15), a broadly utilized graphical tool
that supports various analyses (van Eck and Waltman, 2010),
including author co-occurrence, keyword co-occurrence, co-cited
literature analysis, and coupling analysis (such as literature, source
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journals, authors, and institutions), was employed. This information
can aid in identifying hotspots in a specific field by highlighting data
trends and patterns. The author, institution, nation, and subject
attributes were examined via co-occurrence and cluster analyses.

In addition to the above methodologies, quantitative data on the
distribution of journals, nations, institutions, authors, and publications
on SCS were examined with the aid of “bibliometrix” (https://www.
bibliometrix.org), a tool in R (Aria and Cuccurullo, 2017).

3 Results

3.1 Annual publications and citation trends

The quantity of papers and annual citations indicates trends in
research directions in this field. We observed an overall increase in
the full count of articles and citations in WOSCC between 2010 and
2022, as shown in Figure 2. Prior to 2015, research on SCS was slow
to develop, which was followed by a steady rise in annual
publications and citations after this time. Although the data are
incomplete, the 2022 report recorded the highest frequency of
annual citations of 97,860 with 2,890 articles. In conclusion, the
field of SCS is evidently a focus of escalating research attention.

3.2 Distribution of nations/regions

Currently, dozens of countries/regions are involved in SCS
research. According to Figure 3A, connections were mainly
identified between North America and Europe, North America
and East Asia, and Europe and Oceania. The top ten nations/
regions based on the quantity of articles published, frequency of
citations, and link strength are shown in Table 1. The top three
countries/regions for SCS publications were the United States,
China, and Germany, accounting for approximately 62.72% of all
SCS-related articles. The country with the most published papers
was the United States (4,919 papers, 49.54%), followed by China
(3,120 papers, 31.20%) and Germany (954 papers, 9.61%). The
United States remained the most influential country/region in
terms of overall citations.

Cluster analysis is one of the most common methods of
multiparametric data analysis, a frequently used procedure for
partitioning data into structurally distinct states. Cluster analysis
reveals the internal structure of the data, grouping individual
observations according to their degree of similarity. A cluster
analysis of countries/regions related to SCS was carried out using
VOSviewer (Figure 3B). The diameter of the circle indicates the
number of publications by country/region while the line signifies the

FIGURE 1
Flow chart of the screening process for research on single-cell sequencing.
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level of cooperation between countries/regions. Our results showed
that the United States occupied the largest proportion within the
circle, followed by China, Germany, England, Canada, and
Switzerland (Figure 3B).

3.3 Analyses of institutions

The leading institutions that published the highest quantity of
SCS articles are presented in Table 2. The institution with the most
articles was identified as Harvard Medical School (512 publications,
5.16%). The other top institutions were the Chinese Academy of
Sciences (355 publications, 3.58%), Stanford University
(305 publications, 3.07%), and the Karolinska Institute
(282 publications, 2.84%).

Cluster analysis of academic institutions was conducted with the
aim of comprehending the global distribution of research related to
SCS and its connected disciplines (Figure 4A). VOSviewer divides
institutional cooperation into four closely related blocks. The node
diameter reflects the level of productivity of the institutions while
line width indicates the degree of institutional cooperation. The
colors of the nodes represent various clusters. It is evident that the
institutions are significantly interconnected and engage in frequent
communication. Among these institutions, HarvardMedical School,
Broad Institute of MIT, and Harvard had the most collaborations,
followed by the Chinese Academy of Sciences and Massachusetts
General Hospital. VOSviewer was used to generate a heatmap of
each institution, as depicted in Figure 4B. Institutions conducting
significant research in the discipline of SCS over recent years, and
considered an emerging force in the field are presented in red.
Institutions that have conducted relatively little research in SCS
lately are indicated in blue. Sun Yat-sen University, Zhejiang
University, Central South University, Fudan University, and
Capital Medical University were identified as the institutions
contributing to the majority of research in recent years, followed
by Stanford University, Harvard Medical School, Cambridge

University, and Karolinska Institute, highlighted as the sources of
relatively more research in the past.

3.4 Analyses of authors and co-cited authors

Identification of the most prolific authors according to the
number of publications and co-citations in the field of SCS could
provide insights into hotspots of research. The top ten most prolific
authors produced 447 papers, representing 4.50% of all publications
in the field (Table 3). Regev A was identified as the most prolific
author, having produced 61 papers (0.61% of the total publications).
With 55 reports (0.55% of the total), Teichmann SA, ranked second
in terms of quantity of publications. The term “co-cited authors”
refers to a situation where two or more authors are cited together in
one or more subsequent works. The two most cited among the top
ten authors were Regev A and Teichmann SA, who were collectively
cited in over 2000 articles (Table 3). This was followed by Stuart T
(1,928 co-citations), Macosko EZ (1,527 co-citations), and Picelli S
(1,303 co-citations). We conducted further analysis of co-cited
authors with the aid of VOSviewer (Figure 5A). The total link
strength is the sum of the link strength between a node (such as a
journal or scholar) and other nodes, providing a measurement of the
degree of relatedness between nodes A larger total link strength
value indicates that the node is more closely or strongly connected to
other nodes, which could be used to assess the influence of an
academic journal or scholar and size of a collaborative network. As
shown in Figure 5A, the strongest link strength was observed for the
authors Butler A, Stuart T, and Trapnell C, demonstrating their
significant influence in the field of SCS.

VOSviewer provided critical insights into the collaborations of
authors involved in research on SCS (Figure 5B). The various colors
of the nodes reflect authors in different clusters and node diameter
signifies the frequency of occurrence. According to the co-cited
author network diagram, authors were roughly divided into four
categories. The collaborative network in our study was centered on

FIGURE 2
Overall growth in WOSCC articles and citations from 2010 to 2022. The trend of annual publications on research of SCS increased each year
between 2010 and 2022, with the publications and citations related to SCS reaching their peak in 2022. The data for 2022 is incomplete.
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Regev A and Teichmann SA. Our results showed associations of
Regev A with Rozenblatt-Rosen O, Satija R, Teichmann SA, and
Marioni JC, while Tang F worked closely with Qiao J, Fan X, Yan L,
and Chen X had active ongoing collaborations.

The histogram depicts the distribution of SCS-related authors
from the top 20 countries (Supplementary Figure S1A). American
authors ranked first in terms of the number of comprehensive
articles in this field. The percentage of single-country

publications (SCP, green) was greater than that of multinational
joint publications (MJP, red). USA was followed by China, Britain,
Germany, Japan, Canada, Australia, Sweden, Switzerland,
and France.

The development of research hotspots in the SCS field could be
predicted by sorting the published papers and authors in relation to
time, and analyzing the citation relationships among relevant
authors (Figure 5C; Supplementary Figure S1B). Ramskold

FIGURE 3
The Analysis of the nations/regions related to SCS. (A) Nations/regions collaboration map. Higher rates of collaboration were indicated by darker
blue, and the larger the connecting line, the greater the rate of cooperation between nations. (B)Distribution of nations/regions related to SCS. The circle
diameter indicates the quantity of publications published by each countries/regions, while the lines indicate the level of collaboration among the
countries/regions.
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D published a Smart-Seq protocol in OncoTargets and Therapy in
2012. In 2014, Trapnell C, Treutlein B et al. applied the above
protocol. On this basis, in 2015, Satijia R, Finak G, and co-workers
published an article on Model-based Analysis of Single-cell
Transcriptomics. After 2017, cross-referencing by authors in the
field became more frequent.

3.5 Analyses of academic journals and
co-citations

We identified several periodicals with published articles related
to SCS, including Cell, Science, Nature, and other well-known
journals. The Vosviewer tool was employed to analyze previously
published papers and identify journals with high publication rates
and impact as well as understand the scholarly impact of these
journals within domains associated with SCS. The top three journals
that published the largest number of papers were Nature
Communications, Frontiers in Immunology, and Cell Reports, with
539, 336, and 255 articles respectively. Notably, Nature
Communications had the highest impact factor and number of

overall publications among the journals examined. Through
analysis of the citations, key journals could be located. Nature
(28,894) was the most highly co-cited among the top ten
journals, clearly indicating its considerable influence in research
communications on SCS. The Journal Citation Reports (JCR)
quartiles were sorted according to the impact factors of various
fields in the current year and subsequently categorized into four
distinct sections designated Q1, Q2, Q3, and Q4. Q1 signifies the top
25% of journals in the impact factor classification by discipline,
followed by Q2 (top 25%–50% of journals), Q3 (top 50%–75% of
journals), and Q4 (journals below 75%). Table 4 displays the top ten
journals ranked based on production. Clearly, 80% of the top ten
journals that published the most papers belonged to Q1 and the
remaining 20% to Q2. Moreover, the top ten journals presented in
Table 4 belonged exclusively to Q1.

Data from cluster analysis of journals with articles related to SCS
are presented in Figure 6A. Each circle indicates a journal and the
diameter is variable depending on multiple factors, such as strength
of the relationship and quantity of citations. Moreover, each cluster
is indicated by a different hue on the circle according to the cluster to
which it is assigned. Overall, clustering in this study was divided into

TABLE 2 Top 10 intitutions related to single-cell sequencing.

Rank Institution Count (%) Country Institution Total link strength

1 Harvard Med Sch 512(5.16%) United States Harvard Med Sch 1,541

2 Chinese Acad Sci 355(3.58%) China Broad Inst Mit and Harvard 897

3 Stanford Univ 305(3.07%) United States Mit 843

4 Karolinska Inst 282(2.84%) Sweden Chinese Acad Sci 667

5 Univ Cambridge 274(2.76%) United Kingdom Massachusetts Gen Hosp 635

6 Shanghai Jiao Tong Univ 254(2.56%) China Harvard Univ 599

7 Peking Univ 249(2.51%) China Brigham and Womens Hosp 585

8 Univ Chinese Acad Sci 240(2.42%) China Stanford Univ 555

9 Fudan Univ 233(2.35%) China Univ Chinese Acad Sci 525

10 Mit 223(2.25%) United States Univ Calif San Francisco 508

TABLE 1 Citation, and link strength rankings by country/region.

Rank Countries Publications (%) Countries Citations Countries Total link strength

1 United States 4,919(49.54%) United States 197,269 United States 3,300

2 China 3,120(31.42%) England 48,651 Germany 1,481

3 Germany 954(9.61%) China 47,852 China 1,446

4 England 884(8.90%) Germany 43,496 England 1,398

5 Japan 463(4.66%) Sweden 29,161 Sweden 700

6 Sweden 404(4.07%) Israel 16,008 Netherlands 617

7 Canada 392(3.95%) Netherlands 15,962 Switzerland 597

8 Switzerland 382(3.85%) France 15,390 Canada 573

9 Australia 374(3.77%) Australia 14,440 France 571

10 France 342(3.44%) Switzerland 14,315 Australia 556

Frontiers in Genetics frontiersin.org06

Chen et al. 10.3389/fgene.2023.1285599

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1285599


five types. The red cluster included studies pertaining to
immunology and biological sciences (Nature Communications,
Frontiers in Immunology), the blue cluster included studies on
bioinformatics and genome biology (Scientific Reports,
Bioinformatics, Genome Biology), the green cluster included
publications focusing primarily on cell biology (Cell Reports,
Proceedings of the National Academy of Sciences of the

United States, eLife), the yellow cluster included studies on the
circulatory system (Circulation Research, Arteriosclerosis
Thrombosis and Vascular Biology, and Circulation), and the
purple cluster included studies on the life sciences (iScience).

According to the quantity of co-citations, academic periodicals
were categorized into four clusters (depicted in Figure 6B),
indicating a tendency to follow similar research trajectories. The

FIGURE 4
The cluster analysis of academic institutions. (A) Analyses of institutions clustering. Node colors denote various clusters, whereas node diameter
denotes the quantity of articles produced by institutions and line thickness denotes the degree of institutional collaboration. (B) Analyses of the amount of
publications institutions have published recently. Blue indicates that the institution has produced fewer papers in recent years, while red indicates that
they have produced more.
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red cluster mainly represents immunology (Immunity, Nature
Immunology, Frontiers in Immunology, and others), the green
cluster cell biology (Proceedings Of The National Academy of
Science of the United States, Development, Cell Reports, Cell Stem
Cell), the blue cluster cytology (Cell, Nature, Nature Methods), and
the yellow cluster the cardiovascular system (Arteriosclerosis
Thrombosis And Vascular Biology, Circulation,
Circulation Research).

In addition, we conducted a dual-map overlay study of journals
using VOSviewer. Labels on the right of Supplementary Figure S2
represent the referenced journals while those on the left symbolize
SCS-related cited journals. Curves represent the citation line. The
length of the vertical axis is proportional to the number of published
papers and the elliptical horizontal axis to the number of authors.
We identified three primary citation paths (yellow, green, and red),
which indicated that researchers principally cited publications from
molecular biology, immunology, dermatology, surgery, and clinical
periodicals.

3.6 Analyses of keywords

Relevant manuscripts can be successfully identified by
researchers through the use of keywords. Analysis of keywords in
papers assists in highlighting popular topics and current scientific
issues. The top 20 terms with the greatest overall link strength and
frequency in our study are shown in Table 5. In addition to “scrna-
sep” (2,461 times) and “single-cell” (300), the keyword
“transcriptomics” appeared frequently (299), followed by “rna-
sep” (253) and “tumor microenvironment” (206). Research on
SCS is particularly focused on fields associated with
transcriptomics. The keyword clustering function of VOSviewer
serves to classify and summarize hotspots in a certain research area
during a specific time frame to identify study hotspots in a specific
field. SCS-related keywords in the literature were grouped using
VOSviewer. As shown in Figure 7A, each of the labels and circles
represents a separate unit, and each colored unit forms a unique
cluster. Keywords were grouped into five clusters: application of SCS
in tumors (green), introduction and classification of SCS (navy
blue), studies on the intracellular mechanisms of SCS (red),

studies on SCS in the immune system (purple), SCS in the
cardiovascular system (yellow), and studies on SCS in COVID-19
(light blue).

Keyword analysis elucidated the popularity and patterns of research
in the realm of SCS. A heat map of SCS keywords was generated to
establish the frequency of keywords used (Figure 7B). In the figure, red
segments signify more recent and frequent keyword appearances
whereas blue sections represent keywords from relatively early
studies. “Tumor microenvironment”, “immunotherapy”,
“hepatocellular carcinoma”, “prognosis”, and “COVID-19” were
identified as topics of active research in the last few years, providing
an overview of the current research hotspots.

3.7 Analyses of cited references

The top 15 most frequently cited papers among the
9,929 manuscripts included for study are displayed in Table 6. The
most cited publication (3,846 citations) presents a novel analytical
method of integrating scRNA-seq datasets, entitled “Integrating
Single-cell Transcriptome Data Across Various Circumstances,
Technologies, and Species” (Butler et al., 2018). The next most
common reference was “Comprehensive Integration of Single-Cell
Data” (3,801 citations). This article offers a method for integrating
single-cell observations by “anchoring” various data sets. The protocol is
effective across scRNA-seq technologies as well as various other
modalities (Stuart et al., 2019). The third was a publication by Patel
AP (1,378 citations) that revealed hitherto underappreciated diversity in
various regulatory processes crucial to the biology, prognosis, and
treatment of glioblastoma (Patel et al., 2014). A map classifying
references into 23 groups using the cluster analysis function of
Citespace is presented in Figure 8A. The diameter of a circle reflects
the number of citations in the paper. The calculated weighted mean
silhouette was 0.9104 while the modularity Q value was 0.7855,
signifying high clustering structure stability and credibility. The map
highlighted the newest research trends. The largest grouping was
“clustering” (cluster #0), followed by “tumor microenvironment”
(cluster #1), “gene expression analysis” (cluster #2), and “lineage
tracing” (cluster #3). Other notable clusters included “neuronal
diversity”, “deep learning”, and “spatial transcriptomics”. The top

TABLE 3 Top 10 authors and co-cited authors related to stem cells in stroke.

Rank Authors Count (%) Total link strength Authors Co-citations Total link strength

1 Regev A 61(0.61%) 51 Butler A 2,201 18,080

2 Teichmann SA 55(0.55%) 43 Stuart T 2,167 17,396

3 Tang F 54(0.54%) 128 Trapnell C 1928 20,534

4 Marioni JC 44(0.44%) 24 Macosko EZ 1,527 18,130

5 Wang W 42(0.42%) 38 Picelli S 1,303 16,108

6 Amit I 41(0.41%) 55 Qiu X 1,117 11,887

7 Quake SR 39(0.39%) 15 Dobin A 1,105 9,986

8 Liu Y 37(0.37%) 27 Satija R 1,085 10,846

9 Shalek AK 37(0.37%) 23 Tirosh I 974 10,880

10 Theis FJ 37(0.37%) 9 Zheng GX 967 10,954
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25 references with the most significant citation bursts are displayed in
Figure 8B. Citation bursts indicate a sudden and increasingly rapid rise
in the number of citations. A reference with a strong citation burst

represents an article that is frequently cited during a certain period of
time. The first citation bursts occurred in 2012. The relevant study
(Ramskold et al., 2012) described the possibility of genome-wide

FIGURE 5
Analyses of single-cell relevant authors. (A) Visualization of authors’ collaborative networks in VOSviewer. (B) An analysis of the VOSviewer
collaborative network visualization of author citations. (C) Analysis of citation relationships among SCS related authors.
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transcriptome analysis in individual cells. Notably, a report entitled
“Highly parallel genome-wide expression profiling of individual cells
using nanoliter droplets” by Macosko EZ and co-workers (Macosko
et al., 2015) published in the journal Cell in 2015 was highlighted as the
article with the greatest burst (strength = 227.96) over a duration of
5 years until 2020. According to the data, 2015 and 2014 were the years
that had the most recent citation bursts, occurring 11 and 8 times
respectively, implying that the linked research boom was caused by the
high-burst publications in these 2 years. Scholars are particularly
interested in research involving scRNA-seq, as evident from the
multiple citation bursts in this direction by 2020.

3.8 Analyses of subject area

Subject area analyses of SCS literature were conducted using
CiteSpace (presented in Supplementary Figure S3). The most cited
academic field was “CELL BIOLOGY”, followed by
“BIOCHEMISTRY and MOLECULAR BIOLOGY”, “GENETICS
and HEREDITY”, and “MULTIDISCIPLINARY SCIENCES.” The
purple circles surrounding these disciplines reflect their importance
in this field. In particular, “CELL BIOLOGY”, “BIOCHEMISTRY
and MOLECULAR BIOLOGY”, “GENETICS and HEREDITY”,
“IMMUNOLOGY”, “CELL BIOLOGY”, “ONCOLOGY”, and
“NEUROSCIENCES” are denoted by purple circles, indicating a
greater influence of these disciplines within the field of SCS.

4 Discussion

4.1 Global research trends of SCS

This research focused on 9,929 publications related to SCS in the
WOSCC, spanning 1 January 2010, until 3 December 2022. Figure 2
displays the annual trend of studies published on SCS. The first
article, published by Tang F of Peking University in 2009 (Stuart

et al., 2019), marked the beginning of advancements in SCS. In 2015,
two teams from Harvard University combined micro-low fluid
technology with single-cell RNA-seq to develop drop-seq
(Macosko et al., 2015) and in-drop (Klein et al., 2015),
respectively, which were published in the same issue of Cell.
These two techniques could facilitate simultaneous sequencing of
all genes and trace the cell of origin for each gene. Their emergence
facilitated analysis of gene expression in thousands of single cells in a
rapid and low-cost manner. Since then, rapid advances have been
made in the field of single-cell sequencing technology. In 2018,
single-cell sequencing was named one of the top ten scientific
breakthrough technologies by Science, and in 2019, awarded
“Technology of the Year” in the field of life sciences by Nature
Methods. The field of SCS has seen progressive advances over the
years and the number of related papers continues to increase. From
2019 to 2021, the number of publications increased significantly,
reaching a peak in 2022. The overall findings indicate that SCS
technology has become increasingly popular over the past few years
and is undergoing a rapid developmental phase.

The quantity of papers and total link strength were the two
most significant metrics in nation/region analyses. Similarly, the
level of cooperation between nations or regions was reflected by
total link strength. The United States had the highest number of
publications, citation frequency and total link strength, followed
by China (second in quantity of publications, third in citation
frequency and fourth in total link strength). Five of the top ten
institutions were from the Chinese mainland while three were
American, as shown in Tables 1, 2. Based on the above data, China
and the US were identified as the two nations that have made the
greatest contributions to the field of SCS to date. Other countries
with significant contributions to the advancement of SCS include
England, Germany and, Switzerland.

The highest co-citation frequency was for Butler A, highlighted
the significant contribution of this researcher to SCS-related fields
(Table 3; Figure 5). In 2019, Butler A et al. (Stuart et al., 2019)
published an article introducing a SCS data integration system that

TABLE 4 Top 10 journals and co-cited journals related to single-cell sequencing.

Rank Journal Count
(%)

IF(JCR
2021)

JCR
quatile

Co-cited-
journal

Citations IF(JCR
2021)

JCR
quatile

1 Nature Communications 539 (5.43%) 17.694 Q1 Nature 28,894 69.504 Q1

2 Frontiers In Immunology 336 (3.38%) 8.787 Q1 Cell 27,508 66.85 Q1

3 Cell Reports 255 (2.57%) 9.995 Q1 Science 19,524 63.832 Q1

4 Bioinformatics 231 (2.33%) 6.931 Q1 Nat Commun 16,477 17.694 Q1

5 Scientific Reports 192 (1.93%) 4.997 Q1 P Natl Acad
Sci Usa

15,800 12.779 Q1

6 Elife 174 (1.75%) 8.713 Q1 Nat Methods 15,380 47.99 Q1

7 Genome Biology 167 (1.68%) 18.01 Q1 Nat Biotechnol 13,647 68.164 Q1

8 Frontiers In Cell And Developmental
Biology

164 (1.65%) 6.081 Q1 Genome Biol 11,049 18.01 Q1

9 Frontiers In Genetics 164 (1.65%) 4.772 Q1 Bioinformatics 10,810 6.931 Q1

10 Proceedings Of The National Academy
Of Sciences Of The United States

163 (1.64%) 12.779 Q1 Nucleic Acids Res 9,375 19.16 Q1
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could successfully transfer information between single-cell
transcriptome, proteome, epigenome, and spatial information
datasets. The scheme was based on thorough, updated statistical

models. At that time, sequencing costs were still high and the
sequencing process was complex. The data integration method
described in the report undoubtedly provided a powerful tool for

FIGURE 6
Analyses of single-cell relevant journals and co-cited academic journals. (A) Journal clustering analyses related to SCS. Each circle symbolizes a
journal, and the diameter varies based on factors such as the number of citations and strength of the relationship. Additionally, the circle’s color indicates
the cluster to which it belongs, with various colors indicating different clusters. (B) Co-cited journals related to SCS.
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full mining and joint analysis of biological targets from existing and
emerging data. Additionally, this publication had the highest
quantity of cited articles, with 3,801 citations. The study was
conducted under the guidance of Satija R, the corresponding
author of this paper. Regev A, was the most prolific, followed by
Teichmann SA, Tang F, and Marioni JC. These researchers are
pioneers in this field and have made significant contributions to
numerous publications. Notably, in 2009, Tang F published a study
on single-cell mRNA sequencing, which pioneered SCS research.
This work revolutionized the field and introduced the era of single-
cell gene expression analysis. Satija R and co-workers have
developed a software known as Seurat (Delorey et al., 2021),
which locates individual cells in 3D spatial models of tissues and
identifies cell subtypes. This technique is valuable for exploring the
organizational origin of each transcriptome. Regev A made
important contributions in the field of single-cell sequencing
which has significantly advanced our understanding of cellular
diversity and biological complexity.

Single-cell RNA sequencing technology was initially developed
by Regev A. Over the years, her group has been involved in the
development of a number of advanced single-cell RNA sequencing
technologies, such as drop-seq and inDrop (Macosko et al., 2015),
which facilitate high-throughput single-cell gene expression analysis
using microdroplet technology. These methods have provided
effective tools to explore gene expression patterns in individual
cells, revealing the diversity of cell types and states. Moreover, Regev

A is involved in studies on cell type that highlight differences in gene
regulation between cell types. Using SCS, the research group has
successfully mapped cell types within multiple tissues and organs,
and conducted detailed analyses of transcriptional regulatory
networks between cell types (Kalluri et al., 2019). These findings
provide a deeper understanding of cellular functions and
developmental processes. In addition, Regev A has focused on
uncovering the mechanisms underlying the heterogeneity of
tumor cells. With the aid of SCS technology, her team has
evaluated gene expression and mutational patterns of different
cell subsets within tumors, revealing mechanisms of tumor
evolution and drug resistance with important implications for
cancer therapy and individualized treatment regimens (Patel
et al., 2014; Tirosh et al., 2016; Venteicher et al., 2017). The
collective contributions of these researchers to the field of SCS
have provided critical breakthroughs, improving our
understanding of cellular diversity, biological complexity and
related diseases (Macosko et al., 2015).

Nature Communications, Frontiers in Immunology and Cell
Reports are the top three periodicals in terms of quantity of
related reports, with 539, 336, and 255 publications, respectively
(Table 4; Figure 6). Among the ten leading periodicals, 80% were
classified as Q1 and 20% as Q2. Nature ranked first with
28,894 citations, followed by Cell with 27,508 citations and
Science with 19,524 citations. All the top ten cited journals
were from Q1. A quarter of the top ten journals had an

TABLE 5 Top 20 keywords in terms of frequency of occurrence and the corresponding total link strength.

Rank Keyword Occurrences Total link strength

1 scrna-seq 2,461 2,811

2 single-cell 300 578

3 transcriptomics 299 609

4 rna-seq 253 442

5 tumor microenvironment 206 368

6 macrophage 191 375

7 covid-19 164 234

8 immunotherapy 158 302

9 gene expression 146 268

10 heterogeneity 140 290

11 inflammation 125 240

12 mouse 118 192

13 prognosis 99 200

14 stem cells 89 158

15 clustering 85 158

16 biomarker 84 144

17 microglia 83 172

18 bioinformatics 82 175

19 t cells 81 129

20 machine learning 73 147
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impact factor (IF) greater than 60 based on the journal citation
reports, including Nature, Cell, Science, and Nature
Biotechnology. Nature Methods had an IF value between
40 and 50, while four other journals (Nature Communications,
Proceedings of the National Academy of Sciences of the
United States, Genome Biology, and Nucleic Acids Research)
had IF values between 10 and 20. Bioinformatics had an IF
value between 5 and 10. The overall results indicate that SCS
studies are generally of high quality. Furthermore, the published
research was predominantly focused on cytology, biology, and
immunology.

4.2 Advances in SCS

With the development of technology and expansion of
application areas, single-cell sequencing has triggered many novel
technological advances. This article mainly focuses on three aspects:
multi-modal single-cell analysis, data processing, and new
technology development.

4.2.1 Application of multimodal single-cell analysis
Single-cell multimodal omics is a method that combines

multiple single-cell sequencing technologies to obtain

FIGURE 7
Analyses of single-cell relevant keywords. (A) Clustering analysis of keywords. (B) Keywords heat map on SCS.
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comprehensive and accurate cell information (Yu et al., 2023). This
technique allows simultaneous analysis of the multimodal
molecular attributes of gene expression, chromatin accessibility,
and protein abundance at the global level of individual cells,
enabling researchers to clarify cell heterogeneity and understand
the fine cellular states, currently a cutting-edge field in genomics
research (Di et al., 2020; Zhu et al., 2020). With the continuous
improvement of multimodal single-cell analysis methods, this
technology has been progressively applied in the disciplines of
cancer research (Herrera et al., 2021; Koya et al., 2021), vaccination
(de Assis et al., 2023; Sparks et al., 2023), and other related fields
(Jang et al., 2023; Mullin et al., 2023).

4.2.2 Improvement in handling and analysis of
diverse sample data

In recent years, data analysis methods for single-cell sequencing
have progressed rapidly. An increasing number of data processing
and analysis software tools have been developed, greatly reducing
the barriers to processing and analysis of single-cell sequencing data.
The main purpose of single-cell latent variable models is extraction

of information from large-scale high-dimensional data to reveal the
underlying characteristics and biological states of cells. Depending
on the nature of the latent variables and structure of data, single-cell
latent variable models can be divided into different methods and
algorithms, including Latent Semantic Analysis (Lozoya et al., 2020),
Latent Dirichlet Allocation (Lou et al., 2023), Factor Analysis
(Buettner et al., 2017), and Variational Autoencoder (Rashid
et al., 2021). Compared with the traditional algorithm based on
population averages, the single-cell latent variable model is more
effective in accurately describing and resolving the heterogeneity
between cells (Liu et al., 2021). The model is able to classify cells into
different subpopulations or types, and infer characteristics and states
(Liu et al., 2019), such as cell type and developmental status.
Moreover, single-cell latent variable models have been utilized to
identify previously unknown cell subsets by mining structural
patterns in low-dimensional latent space, extract latent variables
from large-scale single-cell data and cluster cells into subsets with
similar characteristics, leading to the discovery of new cell types and
functions (Liu et al., 2019). Conos is a method that relies on multiple
trusted sample mappings to construct a global graph connecting all

TABLE 6 Top 15 cited references related to single-cell sequencing.

Rank Author Article title Source title Cited Year DOI

1 Butler A et al Integrating single-cell transcriptomic data across different conditions,
technologies, and species

NATURE
BIOTECHNOLOGY

3,846 2018 10.1038/nbt.4096

2 Stuart T et al Comprehensive Integration of Single-Cell Data CELL 3,801 2019 10.1016/j.cell.
2019.05.031

3 Patel AP et al Single-cell RNA-seq highlights intratumoral heterogeneity in primary
glioblastoma

SCIENCE 2,326 2014 10.1126/
science.1254257

4 Trapnell C
et al

The dynamics and regulators of cell fate decisions are revealed by
pseudotemporal ordering of single-cells

NATURE
BIOTECHNOLOGY

2,260 2014 10.1038/nbt.2859

5 Tirosh I et al Dissecting the multicellular ecosystem of metastatic melanoma by
single-cell RNA-seq

SCIENCE 1900 2016 10.1126/
science.aad0501

6 Satija R et al Spatial reconstruction of single-cell gene expression data NATURE
BIOTECHNOLOGY

1857 2015 10.1038/nbt.3192

7 Picelli S et al Full-length RNA-seq from single-cells using Smart-seq2 NATURE PROTOCOLS 1845 2014 10.1038/nprot.
2014.006

8 Klein AM
et al

Droplet Barcoding for Single-Cell Transcriptomics Applied to
Embryonic Stem Cells

CELL 1737 2015 10.1016/j.cell.
2015.04.044

9 Zeisel A et al Cell types in the mouse cortex and hippocampus revealed by single-cell
RNA-seq

SCIENCE 1,653 2015 10.1126/
science.aaa1934

10 Becht E et al Dimensionality reduction for visualizing single-cell data using UMAP NATURE
BIOTECHNOLOGY

1,466 2019 10.1038/nbt.4314

11 Sungnak W
et al

SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells
together with innate immune genes

NATURE MEDICINE 1,336 2020 10.1038/s41591-020-
0868-6

12 Wolf FA et al SCANPY: large-scale single-cell gene expression data analysis GENOME BIOLOGY 1,301 2018 10.1186/s13059-017-
1,382-0

13 Zou X et al Single-cell RNA-seq data analysis on the receptor ACE2 expression
reveals the potential risk of different human organs vulnerable to 2019-

nCoV infection

FRONTIERS OF
MEDICINE

1,245 2020 10.1007/s11684-020-
0754-0

14 Ziegler C et al SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in
Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets

across Tissues

CELL 1,235 2020 10.1016/j.cell.
2020.04.035

15 Liao MF et al Single-cell landscape of bronchoalveolar immune cells in patients with
COVID-19

NATURE MEDICINE 1,178 2020 10.1038/s41591-020-
0901-9
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measured cells. The graph can effectively identify recurrent cell
clusters and propagate information between datasets in multi-
sample or atlas-scale collections (Barkas et al., 2019). The basic
function of Conos is to construct a relationship network between

cells by calculating their similarity and overlap via six steps:
data preprocessing, construction of a similarity matrix, overlap
calculation, construction of a cell network, cell clustering,
visualization, and analysis (Barkas et al., 2019), providing a joint

FIGURE 8
Analyses of single-cell relevant cited references. (A) Cluster view of references in SCS research. (B) The top 25 references that had the most
significant bursts of citations.
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analysis of heterogeneous single-cell RNA-seq dataset collections. In
contrast to traditional single-cell sequencing analysis algorithms,
Conos calculates the overlap, representing genes that are commonly
expressed between cells, which facilitates more accurate
discrimination of cell subsets. Conos also has the advantageous
ability to process large-scale single-cell sequencing data and visualize
cell networks. The hierarchical Poisson factorization uses Bayesian
inference to model single-cell sequencing data, which can be adapted
to various data types and characteristics (Gopalan et al., 2014).
Compared with linear assumption of data in the traditional
algorithm, this algorithm can better capture nonlinear data
relationships and improve the description ability of the model. In
addition, a penalty term can be introduced to reduce the complexity
of the model and improve its robustness to noise, which effectively
removes noise and outliers from the data, and improves the accuracy
and stability of the model (Levitin et al., 2019). Moreover, the
proposed algorithm can extract the relationship between potential
biological features and gene expression distribution from single-cell
sequencing data, presenting a powerful processing tool that
effectively mines hidden information within the datasets and
provides critical support for biological research. These novel
single-cell sequencing data analysis methods provide improved
tools and procedures, allowing accurate analysis and
identification of different cell subtypes, and in-depth
characterization of the properties of individual cells.

4.2.3 Development of new single-cell sequencing
technologies

In recent years, various new single-cell sequencing technologies
have been developed, including single-cell methylation sequencing,
single-cell ATAC sequencing, and single-cell proteomics
sequencing. Single-cell ATAC-seq can effectively reveal the
accessibility of chromatin regions using the in situ transposase
technique (Liu et al., 2019). Recent studies using ATAC-seq
technology identified major and subclass-specific cell types and
cis-regulatory elements in the mouse cerebral cortex, and further
analyzed the heterogeneity of chromatin accessibility (Xu et al.,
2022). SPLitseq (split-pool ligation-based transcriptome
sequencing) is a low-cost scRNAseq method based on split-pool
single-cell sequencing technology, which can achieve transcriptional
analysis of thousands of fixed cells or nuclei in a single experiment
(Rosenberg et al., 2018). To meet the needs of bacterial scRNA-seq,
researchers have developed a single-cell transcriptome sequencing
protocol for prokaryotic cells, which uses the split-pool method to
label individual bacterial cells and complete single-cell RNA
sequencing of prokaryotic cells (Blattman et al., 2020; Kuchina
et al., 2021). The emergence of these novel technologies is
expected to facilitate comprehensive and accurate analysis of cell
features, and expand the applications of single-cell sequencing
technology in basic medicine and clinical diagnosis.

4.3 Hotspots and frontiers

Elucidation of the cutting-edge and trending issues in SCS
was further achieved using keyword analysis. The primary search
terms in previous investigations were “scrna-seq,” “single-cell,”
“transcriptomics”, “rna-seq”, “tumor microenvironment”,

“macrophage”, “COVID-19”, “immunotherapy”, “gene expression”,
and “heterogeneity” (Table 5), representing popular topics of SCS
research. A heat map of these keywords revealed “tumor
microenvironment”, “immunotherapy”, “hepatocellular carcinoma”,
“prognosis”, and “COVID-19” as research hotspots in this discipline
(Figure 8B). Moreover, the majority of research was conducted in the
fields of oncology, neuroscience, and developmental biology
(Supplementary Figure S3).

4.3.1 SCS and oncology
The relationship between SCS and tumors is currently an area

of increasing interest. In the field of oncology, significant progress
in research on the origin, development, and treatment of tumors
has been made with SCS. Intra-tumor heterogeneity is one of the
main factors underlying poor therapeutic effects and recurrence.
Using SCS, researchers can gain insights into cellular heterogeneity
within tumors, leading to improved understanding of the
mechanisms underlying tumor development and treatment
resistance. For instance, SCS technology has provided key
insights into the heterogeneity of tumor cells in breast cancer.
Different subclones show distinct expression and mutation
profiles, which could be used to inform novel therapeutic
strategies for breast cancer (Thakur et al., 2023). SCS is
employed by researchers to understand the type, number, and
functional status of tumor immune cells. Analysis of immune cells
in melanoma patients has shown that the diversity of tumor-
infiltrating T cells is closely related to survival, providing an
important basis for individualized immunotherapy (Li et al.,
2022; Vasudevan et al., 2023). Resistance of tumor cells to
chemotherapeutic drugs is a considerable challenge in clinical
treatment. SCS has the ability to uncover the internal drug
resistance mechanisms of tumor cells, thus providing a basis for
individualized drug therapy (Dai et al., 2020). For example, an
earlier study using SCS to characterize chemotherapy drug-
resistant cells in colon cancer patients showed specific gene
expression patterns in these cells, which could serve as an
important indicator for predicting drug resistance and
developing new therapeutic strategies (Wang et al., 2022). In
addition, the tumor microenvironment has a significant impact
on tumor development and, consequently, therapeutic efficacy. In
this regard, interactions between tumor cells and their surrounding
cells can be effectively distinguished using SCS (Tian and Li, 2022).
Analysis of the tumor microenvironment of pancreatic cancer
patients with SCS revealed that interactions between tumor and
pancreatic stellate cells play an important role in cancer growth
and metastasis, providing new ideas for designing therapeutic
strategies targeting the tumor microenvironment (Zhang et al.,
2021). Recently, pro-nociceptin and leukocyte-associated
immunoglobulin-like receptor 2 were identified as biomarkers
for assessment of immune infiltration in cholangiocarcinoma
using a combination of batch sequencing and single-cell
sequencing (Chen et al., 2021).

In summary, the utility of SCS in oncology involves numerous
aspects, such as tumor heterogeneity, evolution, tumor immunology,
drug resistance, and the microenvironment. However, multiomics
technology is often restricted by flux limitations, artificial operation,
and other limitations, which inhibit its widespread adoption.
Furthermore, the high cost makes it challenging for smaller
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laboratories to participate in technological advancements and
improvements. As a result, the direction of SCS is moving
towards achieving automated, high-throughput, and cost-effective
approaches. As SCS technology continues to develop, its impact on
cancer research is expected to increase, potentially leading to
significant contributions to the development of tumor
precision medicine.

4.3.2 SCS and neuroscience
The nervous system is the most dominant and complex system

in the human body, exhibiting a high degree of heterogeneity.
Clarification of the complexities that arise from this system can
aid in the prediction, diagnosis, and treatment of neurological
diseases. SCS has been effectively applied to determine the
molecular characteristics, developmental processes, and synaptic
connections of different cell types in the nervous system.
Research on the use of SCS in understanding the mechanisms
underlying various nervous system diseases is progressively
gaining importance. For instance, a study on Parkinson’s disease
used single-cell RNA sequencing to reveal the molecular signatures
and abnormally expressed genes of dopaminergic neurons (Smajic
et al., 2022). Based on single-cell sequencing of dopaminergic
neurons in a population of PD patients and healthy controls, the
investigators identified disease-related genes that were abnormally
expressed, which provided important clues for understanding the
pathogenesis of PD and identifying new treatments (Duan et al.,
2021). Moreover, SCS has provided deeper insights into nervous
system functions and disease mechanisms. Another study conducted
single-cell analysis of the cortex and hippocampus. Earlier
experiments have shown that hippocampus may play a role in
the pathogenesis of autoimmune demyelination through
immunosuppression and inflammation regulation of the central
nervous system. Finally, SCS was employed to examine neuronal
cell types and establish connectivity maps. Single-cell transcriptome
sequencing has been applied to delineate the molecular profile and
heterogeneity of the hippocampus in type 2 diabetic mice. By
focusing on microglia subsets, pathological changes of
hippocampal injury mediated by inflammation and oxidative
stress in mice were revealed, which could provide potential
diagnostic biomarkers and therapeutic interventions for type
2 diabetes (Ma et al., 2022).

4.3.3 SCS and developmental biology
The emergence of SCS has greatly promoted research progress

in the field of developmental biology. Firstly, SCS has been
effectively utilized in the identification and classification of cell
types at different stages of development. By determining gene
expression patterns, specific cell subsets during development can
be identified. Previous studies using SCS have demonstrated that
cells with similar gene expression profiles can be grouped together
and used to identify cells in multiple tissues and, more importantly,
new types of cells within these populations (Zeisel et al., 2015;
Zhou et al., 2016). Secondly, SCS can help delineate cell
differentiation trajectories during the differentiation process.
Specifically, trajectories of cell differentiation could be inferred
and constructed by analyzing differences in gene expression in cells
at distinct stages. An earlier study distinguished different human
ES cell-derived progenitor states via scRNA-seq analysis of

1776 cells. Novel regulators of transition from mesoderm to
endoderm were validated by reconstructing the different
trajectories at single-cell resolution (Chu et al., 2016). In
addition, application of SCS in reproductive development has
been a hot topic in recent years. More recently, scRNA-seq
analyses of the early developmental stages of mammalian and
vertebrate embryos have been conducted. Researchers have used
SCS to track the embryonic development of zebrafish and frogs,
and construct dynamic maps of gene expression, thereby
uncovering the entire process by which a single cell can
generate an entire organism (Farrell et al., 2018; Han et al.,
2018; Wagner et al., 2018).

Overall, the evolution of SCS provides powerful tools and
methods in the field of developmental biology. Using SCS, we
can gain insights into the cell types and differentiation
trajectories during development, and identify the specific
mechanisms underlying cell fate decisions. These advances will
further advance the study of developmental biology, and expand
our understanding of the origin and evolution of life.

4.3.4 SCS and microbiology
Important advancements in microbiology have also been

attributed to single-cell sequencing. SCS is widely used in this
field to gain insights into microbial diversity, function,
interactions, and evolution. Firstly, due to the low gene content
and small sample numbers of microorganisms, conventional
sequencing methods cannot be employed to sequence
microorganisms that are difficult to culture. In comparison, SCS
can be applied to sequence individual microbial cells with a high
degree of accuracy, thereby revealing new microorganisms and
further clarifying microbial life processes. For instance,
DeLorenzo S et al. (DeLorenzo et al., 2012) sequenced a rare
marine microbe, showed its association with sulfur oxidation,
and further identified the genes involved in aerobic metabolism.
Secondly, SCS could be applied to obtain information about
metabolic phenotypes and genotypes of microbial single cells. In
a previous study, single-cell microorganisms with specific metabolic
phenotypes were isolated, and single-cell genome sequencing of this
complex microbial system achieved. This method was used to
simultaneously obtain phenotype and genotype information on
the target microorganisms, and genome integrity reached up to 93%
(Jing et al., 2021). In addition, SCS may be used to explore
interactions and cooperative behaviors between host and
organism. For example, earlier reports have revealed host-
microbe interactions at spatial, cellular, and molecular levels in
oral squamous cell carcinoma and colorectal cancer by applying in
situ spatial analysis and single-cell RNA sequencing techniques
(Nino et al., 2022). Finally, SCS technology effectively facilitates the
identification of subtle variations in microbial genomes, study of
evolution and tracing of the origin of pathogenic microorganisms.
Further investigation of viral infection dynamics and redefinition of
the metabolic profile, pathogenic potential, and drug resistance of
pathogenic microorganisms may also enable the timely and
accurate diagnosis of certain rare infectious diseases (Tolonen
and Xavier, 2017). In summary, application of SCS provides new
perspectives and methods for the study of microbiology, leading to
key information on microbial diversity, interactions, and evolution,
and consequently, significant research developments.
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4.4 Advantages and limitations

This report has provided a comprehensive compilation of data
from SCS studies between 2010 and 2022, including publication
volume and growth patterns, journals, authors, institutional
connections, references, and keywords. Furthermore, we
simultaneously used three bibliometric approaches, including
VOSviewer and CiteSpace, both widely recognized in the
bibliometrics community, which improved the validity of our
data analysis procedure.

This study inevitably has a number of limitations that should be
taken into consideration. As the scope is limited to English language
writing, representation of non-English publications may have been
insufficient. Additionally, exclusive use of theWOSCC database may
have resulted in the exclusion of essential studies from other
databases. Moreover, insufficient data prevented the inclusion of
all papers published in 2022.

5 Conclusion

Using WOSCC as a database, we employed CiteSpace software
for bibliometric and visual analysis of global research on SCS
spanning the previous 12 years, with the aim of providing a clear
scientific summary of the development trends in this field. Visual
analysis disclosed that studies on SCS are in a stage of rapid
development and relevant literature is constantly emerging,
showing a stable growth trend. The United States, China,
Germany, England, and other nations have made significant
contributions to the area of SCS research. The journals,
organizations, and authors with the most influence included
Nature, Harvard Medical School and Regev A, respectively.
COVID-19, tumor microenvironment, scRNA-seq, and
neuroscience factors were identified as hot topics in SCS
research. Currently, a period of rapid development in SCS
technology continues to drive the common progress of multiple
disciplines. Evidently, problems with single-cell sequencing remain,
such as amplification bias and difficulty in processing sequencing
data. However, with continued advancements in SCS technology, we
expect its application scope to increase and the depth and accuracy
of analysis to further improve, with the ultimate goal of
implementation in the diagnosis and treatment of multiple diseases.
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