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ESCO2 spectrum disorder is an autosomal recessive developmental disorder
characterized by growth retardation, symmetrical mesomelic limbmalformation,
and distinctive facies with microcephaly, with a wide phenotypic continuum that
ranges from Roberts syndrome (MIM #268300) at the severe end to SC
phocomelia (MIM #269000) at the milder end. ESCO2 encodes a 601-amino
acid protein belonging to the Eco1/Ctf7 family of acetyltransferases that is
involved in the establishment of sister chromatid cohesion, which is essential
for accurate chromosome segregation and genomic stability and thus belongs to
a group of disorders called “cohesinopathies”. We describe a 15-year-old
Malaysian female who presented with the characteristic triad of ESCO2
spectrum disorder, with an equivocal chromosomal breakage study and
normal karyotyping findings. She was initially suspected to have mosaic
Fanconi anemia but whole exome sequencing (WES) showed a likely
pathogenic homozygous splice variant c.955 + 2_955+5del in the ESCO2
gene. During the 15-year diagnostic odyssey, she developed type 2 diabetes
mellitus, primary ovarian insufficiency, increased optic cup-to-disc ratio with
tortuous vessels bilaterally, and an evolving but distinct facial and skin
hypopigmentation phenotype. Of note, there was an absence of learning
disabilities. Our findings provide further evidence for ESCO2 spectrum
disorder in an Asian child and contribute to defining the clinical and
radiographic spectrum.
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Introduction

ESCO2 spectrum disorder is a rare, autosomal recessive, genetic disorder that has a
broad range of clinical phenotypes from a severe type known as Roberts syndrome to a
milder type known as SC phocomelia (Vega et al., 2006). Roberts syndrome (RBS, MIM
#268300) was first described in 1919 in a baby boy with tetraphocomelia and cleft lip/palate
(Roberts, 1919). Vega et al. (2010) established the clinical criteria for RBS, which were based
on a cohort of 49 patients: growth retardation, symmetric mesomelic shortening of the
limbs predominantly affecting the upper limbs, and characteristic facies with microcephaly
(Vega et al., 2010). Fifty years later, Herrmann et al. reported a milder form that was
described as pseudothalidomide syndrome or SC phocomelia (MIM #269000) (Herrmann
et al., 1969). The prevalence of ESCO2 spectrum disorder is unclear. Approximately
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150 individuals of diverse ethnic backgrounds have been reported in
the literature (Vega et al., 2006). The clinical description of this
condition is rarely reported in patients of Asian ancestry.
Kantaputra et al. first reported two siblings of the Lisu tribe from
Thailand who were initially diagnosed with Juberg-Hayward
syndrome with ESCO2 mutations (Kantaputra et al., 2020).

ESCO2 spectrum disorder belongs to a group of developmental
disorders termed “cohesinopathies,” which are associated with
biallelic pathogenic variants in the ESCO2 gene (MIM 609353)
on chromosome 8p21.1, resulting in complete or partial loss of
the acetyltransferase domain (Zakari et al., 2015). Cohesin consists
of a ring-shaped multiprotein complex with four subunits (SMC1A,
SMC3, RAD21, and STAG1/2) and, together with regulatory factors,
is essential for sister chromatid cohesion, genome organization, gene
expression regulation, DNA repair, and genome safeguarding
(Cucco and Musio, 2016). ESCO2 is one of the regulatory factors
in the Cohesin pathway; it encodes a 601-amino acid protein
belonging to the Eco1/Ctf7 family of acetyltransferases that is
involved in the establishment of sister chromatid cohesion
(Faramarz et al., 2020). The cohesion of sister chromatids is
essential for accurate chromosome segregation and genomic
stability (Tomkins et al., 1979). A cytogenetic study of RBS
revealed a rod-like chromosome morphology, resulting in a
“railroad-track” appearance and characteristic premature
chromatid separation (PCS), otherwise known as
heterochromatin repulsion (HR) or puffing (Vega et al., 2005).

A diagnosis of ESCO2 spectrum disorder is established when
there are suggestive clinical findings and biallelic pathogenic (or
likely pathogenic) variants in the ESCO2 gene as determined by
molecular genetic testing, or premature chromatid separation (PCS)
as determined by cytogenetic testing. In an analysis of 49 patients
with ESCO2mutations, including 18 previously reported cases, Vega
et al. reported no clear genotype/phenotype correlation (Vega et al.,
2010). Many patients with ESCO2 spectrum disorder are clinically
diagnosed with many overlapping syndromes. Here, we describe a
15-year-old Malaysian female who presented with the characteristic
triad of RBS, an equivocal chromosomal breakage study, and normal
karyotyping, who was initially diagnosed as mosaic FA for 11 years.
The diagnosis was established via whole exome sequencing (WES),
where a homozygous, likely pathogenic, variant was identified in
the ESCO2 gene.

Case description

A 15-year-old female of Indian ancestry was first referred to the
Genetics and Metabolism Unit, University of Malaya Medical
Centre (UMMC) at birth for multiple skeletal abnormalities and
intrauterine growth retardation (IUGR), with distinctive facial
features. She was the first child (V:1, see Figure 1) of a
consanguineous union, where her parents were first cousins. Her
mother and father were 24 and 28 years old, respectively, when she

FIGURE 1
Family pedigree showingmulti-level consanguinity. V:1 is the probandwhowas the first child of a consanguineousmarriage, where her parents were
first cousins (IV:4 and IV:5). The maternal grandparents (III:3 and IV:9) were third cousins.
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was born. The maternal grandparents were third cousins. She had a
younger brother (V:2) who was healthy, with no skeletal
abnormality. There was a family history of type 2 diabetes
mellitus. Antenatally, her mother had gestational diabetes
mellitus with good glycemic control and there was no known
teratogenic exposure. Serial antenatal ultrasound scans noted
oligohydramnios and intrauterine growth retardation. There was
no reduced fetal movement. She was delivered at term via elective
lower segment cesarean section for an abnormal lie, with Apgar
scores of 7 and 9 at 1 min and 5 min, respectively. She was admitted
to the neonatal intensive care unit (NICU) for 2 weeks for weight
management.

The patient’s gross and fine motor developmental milestones
were delayed due to the skeletal deformities. However, she had
normal intellectual development and attended normal school. She
was average in her school performance. She underwent multiple
corrective surgeries for her lower limbs. For the bilateral congenital
talipes equinovarus (CTEV), she was treated with serial casting from
birth, followed by a Dennis Brown (DB) splint and shoes until the
age of 7 months old. For the fixed flexion deformity of her knees, she
underwent bilateral Ilizarov external fixation twice at the age of

3 and 10 years old. She had bilateral distal femur and proximal tibia
hemi-epiphysiodesis performed at 6 years of age. These surgeries
enabled her to walk for short distances of approximately 50–100 m;
however, she developed pain and fatigue while walking for longer
distances. Ophthalmology review at birth revealed an increased
optic cup-to-disc ratio (CDR) at 0.8, with tortuous vessels
bilaterally. There was no increase in intra-ocular pressure, no
lens or corneal opacities, nor retinal abnormalities.

She was diagnosed with type 2 diabetes mellitus (T2DM) at the
age of 12 years, where she presented with polyuria, polydipsia,
significant weight loss, and recurrent skin abscess for a duration
of 5 months. The diagnosis was confirmed by a serum blood glucose
level of 20.5 mmol/L, with no metabolic acidosis or ketosis and a
c-peptide level of 0.9 ng/mL. There were negative islet cell
cytoplasmic autoantibodies (ICA), glutamic acid decarboxylase
autoantibodies (GADA), insulinoma-associated-2 autoantibodies
(IA-2A), and insulin autoantibodies (IAA). She was treated with
metformin and subcutaneous insulin. Her T2DM was complicated
by diabetic nephropathy, dyslipidemia, and a fatty liver. She attained
menarche at 14 years old and was diagnosed with primary ovarian
insufficiency when her menses stopped after a few months of

FIGURE 2
Clinical course and diagnostic timeline. *ELCCS, emergency lower C-section; UMMC, University Malaya Medical Centre; NICU, Neonatal Intensive
Care Unit; IUGR, intrauterine growth restriction; T2DM, type 2 diabetes mellitus; ICA, islet cell cytoplasmic autoantibodies; GADA, glutamic acid
decarboxylase autoantibodies; IA-2A, insulinoma-associated-2 autoantibodies; IAA, insulin autoantibodies; LH, high luteinizing hormone; FH, follicle-
stimulating hormone; CDR, cup-to-disc ratio; MRI: magnetic resonance imaging; ECHO, echocardiogram; US, ultrasound; NCS, nerve conduction
study; EMG, electromyography; FA, Fanconi anemia; SNP: CNV, copy number of variant; POI, primary ovarian insufficiency; WES, whole exome
sequencing; DB, Dennis Brown; CTEV, congenital talipes equino varus; y.o, years old; m.o, month old.
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irregular menses. A hormonal study revealed low estrogen levels,
with high luteinizing hormone (LH) and follicle-stimulating
hormone (FSH) levels. Pelvis ultrasonography visualized both
ovaries, which were normal in size. Figure 2 shows the clinical
course and diagnostic timeline for 15 years.

Physical examination at birth showed prenatal growth failure,
with a birth weight of 1.46 kg (Z = −4.7 SD), length of 35 cm
(Z = −8.1 SD), and head circumference of 26 cm (Z = −8.0 SD).
Distinctive features included brachymicrocephaly, diffuse alopecia,
down-slanting of palpebral fissures, hypertelorism, hypoplastic nasal
alae, bilateral low-set and simple ears, malar hypoplasia, and
micrognathia (Figure 3). There was no cleft or high-arched
palate. Bilateral symmetrical mesomelic shortening of the upper
and lower limbs was found, where the upper limbs were more
severely affected. There were bilateral absent radii, an absent left
thumb with a small, rudimentary right thumb, and bilateral

congenital talipes equinovarus. Capillary hemangioma was
present at birth over the forehead and extending down to the
nose, which gradually faded away when she was a toddler. There
were hypopigmented mosaic skin lesions noted since birth over her
left cheek, chin, upper limbs, abdomen, and back, which followed
Blaschko’s lines. These lesions became more obvious and prominent
over time. At 15 years of age, all her growth parameters remained
well below the third centile.

Based on her clinical features, a diagnosis of Fanconi anemia
(FA) was made. A skeletal survey performed at birth showed a small
skull with micrognathia, short ulnae with the absence of radii
bilaterally, fusion of the left metacarpal bones, short tibiae and
fibulae bones bilaterally, and the absence of patellar bilaterally,
suggestive of delayed skeletal maturation. The spine and pelvic
bone appeared normal (Figure 4). Cranial MRI showed
microcephaly, with no evidence of intracranial structural

FIGURE 3
Evolving phenotype of the patient over 15 years. Photographs of the patient at 2 years old (images (A–C)), at 6 years old (images (D–F)), and at
14 years old (images (G–I)). Images (A,B), (D,E), and (G,H) show diffuse alopecia, brachymicrocephaly, down-slanting of palpebral fissures, hypertelorism,
hypoplastic nasal alae, bilateral low-set and simple ear, malar hypoplasia, and micrognathia. Images (C,F,I) show fixed flexion deformities of both
her knees.
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abnormalities. The echocardiogram was normal. Given multiple
contractures, a nerve conduction study and electromyogram were
performed, and both were within normal limits. A chromosome
study revealed normal results, 46, XX. A chromosome fragility test
showed equivocal results, where chromosome breakage was detected
in 4/139 (2.9%) cells analyzed. Serial complete blood count showed
no evidence of bone marrow failure. A multigene panel sequencing
of 17 FA genes showed no pathogenic variant detected, while a
chromosomal SNPmicroarray revealed no clinically significant copy
number changes. However, extensive long stretches of homozygosity
were seen, representing 5% of the genome, suggesting the possibility
of an increased risk of recessive Mendelian disorders.

The parents were devastated by the negative results. However,
they were motivated to pursue further investigations. The patient
was treated as mosaic FA and medical surveillance was continued.

The patient was included in the Global Genomic Medicine
Collaborative (G2MC) Rare Disease project, in which whole
exome sequencing detected a homozygous splice variant NC_
000008.10(NM_001017420.3): c.955 + 2_955+5del (GRCh37
(chr8): g.27637786_27637789del) in the ESCO2 gene in the
patient. This variant does not present nucleotide change as it is
an intronic splicing variant. The frequency allele in gnomAD
v2.1.1 is 0.000012 and in the South Asian population is
0.00009827. This sequence change affects a splice site in intron
4 of the ESCO2 gene. It is predicted to alter splicing and results in
loss of protein function. Loss of function variants in ESCO2 are
known to be pathogenic (Schüle et al., 2005; Vega et al., 2005). Both
her parents were heterozygous carriers. This variant was close to the
highly conserved splice site. According to HGMD Professional
2021.3, this variant was previously described as disease-causing
for Roberts syndrome (Gordillo et al., 2008; Capalbo et al., 2019).
ClinVar listed this variant as likely pathogenic (Variation ID:
21252), and homozygosity was confirmed by parental testing.
According to the recommendations of the ACMG/AMP variant

classification guidelines (Richards et al., 2015), this variant was
classified as likely pathogenic.

Discussion

To the best of our knowledge, this is the first case report of an
individual with ESCO2 spectrum disorder/RBS with Asian Indian
ancestry with the classical triad of RBS that consisted of pre-and
post-natal growth retardation, bilateral symmetrical mesomelic limb
shortening predominantly affecting her upper limbs, and distinctive
facial features with microcephaly (Vega et al., 2010). Her limb
malformations include bilateral short ulnar and absent radii,
thumb defects, oligodactyly, left metacarpal synostosis, flexion
contractures over the elbows and knees, bilateral short tibia and
fibula, absent patella, and bilateral CTEV. The limb deformities
noted in our patient that are rarely reported were flexion
contractures (16%), metacarpal synostosis (12%), and absent
patella (4%) (Vega et al., 2010). The unique aspect of our case is
the 15-year follow-up of the patient’s progress. Whilst she had gross
and fine motor impairment due to her skeletal deformities, there was
no intellectual impairment. This included the documentation of the
absence of learning disabilities and a non-progressive increase in
CDR. Interestingly, our patient developed T2DM and primary
ovarian insufficiency (POI), which were not reported before in
other patient series. The etiology of POI could be autoimmune
(4%–30%) (Kirshenbaum and Orvieto, 2019) or genetic (França and
Mendonca, 2019), although the majority remains unknown. A few
case reports showed a biallelic pathogenic variant in STAG3, a
cohesion gene, affected the meiosis-specific cohesion complexes,
which might lead to premature ovarian failure (Caburet et al., 2014;
Colombo et al., 2017; Akbari et al., 2022). Other meiosis-specific
complexes in cohesin, including REC8, RAD21L, and SMC1β, have
been shown to be associated with abnormal oocyte development

FIGURE 4
Patient’s radiograph at the age of 2 years old. There was a shortened ulnar, with the absence of radius bilaterally, and fusion of the left metacarpal
bone. The spine and pelvic bone appeared normal.
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(Caburet et al., 2014; Ward et al., 2016). Thus, more studies will be
required to investigate the relationship between the ESCO2 gene,
regulatory factors in the cohesin pathway, and human fertility. The
evolving facial phenotype and hypopigmented skin lesions
documented in our patient will serve as a potential guide for
counseling and future dysmorphological studies in the Asian
population for RBS/ESCO2 spectrum disorders.

Our patient was initially diagnosed as having FA for 11 years.
Some of the clinical characteristics, namely, skeletal deformities,
growth retardation, microcephaly, and the extent of MMC-
induced chromosomal breakage in patients with
cohesinopathies overlapped with those of (mosaic) FA patients
(Lo Ten Foe et al., 1997). Patients with mosaic FA may present
without bone marrow failure due to spontaneous genetic reversion,
which corrects the bone marrow failure (van der Lelij et al., 2010).
Chromosomal breakage study, which is the gold standard in
diagnosing FA (Hirsch et al., 2020), could be equivocal in both
patients with mosaic FA and cohesinopathies. Chromosomal
breakage study on skin fibroblasts or conventional karyotyping
showed “railroad-track” chromosomes and premature chromatid
separation (PCS), which allowed these two conditions to be
distinguished. In our patient, the basic karyotyping performed
earlier showed normal results, and a chromosomal breakage study
on skin fibroblasts was not performed. Due to the highly variable
clinical phenotype, a patient with a cohesinopathy such as RBS
may exhibit multiple clinical features that overlap with mosaic FA.
Cellular hypersensitivity to MMC has also been reported in
cohesinopathies, including RBS (van der Lelij et al., 2010).
Thus, our patient was treated as mosaic FA initially but the
diagnostic odyssey ended with the whole exome sequencing
(WES) test, which demonstrated the homozygous splice site
variant c.955 + 2_955+5del in the ESCO2 gene. It was
important to establish an accurate diagnosis as there were
implications for clinical management and surveillance as well as
for genetic counseling. When she was initially diagnosed as having
Fanconi anemia, the family was informed of an increased risk of
tumors, and she received annual ultrasonography of the liver and
blood tests such as complete blood count and liver function tests.
With the revised diagnosis of ESCO2 disorder, frequent blood tests
and liver ultrasonography were no longer required as the cancer
risk was not increased. In addition, as both parents were carriers,
the family was counseled on the autosomal recessive inheritance
and recurrence risks. Cascade screening for extended family
members was also performed.

The protracted journey toward the final diagnosis for people living
with rare diseases, where up to 50% will remain undiagnosed (Shashi
et al., 2014), is not surprising. The clinical implementation ofWES has
helped in shortening the odyssey and has had significant clinical,
genetic counseling, psychosocial, and economic benefits (Sawyer et al.,
2016). It was reported that WES had a positive diagnostic yield of
approximately 39% in diagnosing disorders related to skeletal
malformations (Retterer et al., 2016). There is a need to assess the
clinical utility and cost-effectiveness of WES in ending the diagnostic
odyssey in low-resourced countries for Asian children with
dysmorphic features and multiple congenital malformations.
Further discussion with all stakeholders, patient support groups,
and governmental intervention is important to ensure equity of
care and an appropriate funding model for patients with rare diseases.
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