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Polygenic risk score (PRS) predictions often show bias toward the population of
available genome-wide association studies (GWASs), which is typically of
European ancestry. This study aimed to assess the performance differences of
ancestry-specific PRS and test the implementation of multi-ancestry PRS to
enhance the generalizability of low-density lipoprotein (LDL) cholesterol
predictions in the East Asian (EAS) population. In this study, we computed
ancestry-specific and multi-ancestry PRSs for LDL using data obtained from
the Global Lipid Genetics Consortium, while accounting for population-
specific linkage disequilibrium patterns using the PRS-CSx method in the
United Kingdom Biobank dataset (UKB, n = 423,596) and Taiwan Biobank
dataset (TWB, n = 68,978). Population-specific PRSs were able to predict LDL
levels better within the target population, whereasmulti-ancestry PRSs weremore
generalizable. In the TWB dataset, covariate-adjusted R2 values were 9.3% for
ancestry-specific PRS, 6.7% for multi-ancestry PRS, and 4.5% for European-
specific PRS. Similar trends (8.6%, 7.8%, and 6.2%) were observed in the smaller
EAS population of the UKB (n = 1,480). Consistent with R2 values, PRS stratification
in EAS regions (TWB) effectively captured a heterogenous variability in LDL blood
cholesterol levels across PRS strata. The mean difference in LDL levels between
the lowest and highest EAS-specific PRS (EAS_PRS) deciles was 0.82, compared to
0.59 for European-specific PRS (EUR_PRS) and 0.76 for multi-ancestry PRS.
Notably, the mean LDL values in the top decile of multi-ancestry PRS were
comparable to those of EAS_PRS (3.543 vs. 3.541, p = 0.86). Our analysis of
the PRS prediction model for LDL cholesterol further supports the issue of PRS
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generalizability across populations. Our targeted analysis of the EAS population
revealed that integrating non-European genotyping data with a powerful
European-based GWAS can enhance the generalizability of LDL PRS.
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Background

Blood lipid levels are significant, modifiable, and heritable risk
factors for coronary artery disease (CAD), including low-density
lipoprotein cholesterol (LDL-C) (Nelson, 2013). Previous studies
have shown that lipid levels have moderate-to-high heritability
variations of up to 60% (Weiss et al., 2006; Kathiresan et al.,
2007). Numerous common variants have been discovered in recent
genome-wide association studies (GWASs) associated with LDL and
many other traits (Sollis et al., 2022). However, the majority of these
variants are weakly associated individually with a given trait or disease
and have limited predictive power. The cumulative effects of several
common variants have been suggested to contribute significantly to
the risk stratification for clinical utility. Methods have been developed
for analyzing data from these large-scale studies and detecting genetic
variants and phenotype associations, and one such method is the
polygenic risk score (PRS). Several studies have evaluated the
association between PRS and the risk of various conditions (Khera
et al., 2018), including lipid traits (Graham et al., 2021), CAD (Fahed
et al., 2020), cancer (Hassanin et al., 2022; Hassanin et al., 2023),
diabetes (Dornbos et al., 2022), and neurodevelopmental disorders
(Nalls et al., 2019).

One of the major issues concerning the translational use of PRS
is the strong dependency on population specificity. In fact, the
performance of PRS can significantly be influenced by the linkage
disequilibrium (LD) across variants and allele frequencies that are
specific to different populations (Ding et al., 2023). As a
consequence, PRS has mostly been limited to European ancestry
cohorts for which larger reference GWASs are available (Duncan
et al., 2019). In addition to LD and allele frequencies,
gene–environment (Ordovas and Shen, 2008) interactions may
also be responsible for different genetic susceptibilities toward a
trait. Since individuals with East Asian ancestry account for more
than a fifth of the global population, understanding genetic
variations in the East Asian population is crucial to improve risk
characterization and preventive interventions (Ge et al., 2022).

In the last few years, the availability of large population-based
cohorts and cross-ancestry GWAS also enabled the development of
novel computational algorithms to improve the generalizability of
PRS (Ruan et al., 2022; Hoggart et al., 2023). A multi-ancestry,
GWAS meta-analysis of lipid levels was conducted by the Global
Lipid Genetics Consortium, including 350,000 people of non-
European ancestry, 150,000 East Asian individuals, and
approximately 1.65 million people worldwide (Graham et al.,
2021). The study also helped improve our understanding of the
genetic component associated with lipid levels by increasing
diversity rather than including additional European ancestry
individuals.

In this study, we derived ancestry-specific and cross-ancestry
PRS to predict the serum LDL level by first considering all

populations and then focusing on East Asian individuals.
Particularly, we derived six LDL-PRSs: four ancestry-specific
PRSs (East Asian, South Asian, European, and African) and two
multi-ancestry PRSs (East Asian with European meta-analysis and
the four ancestry meta-analyses). The six PRSs were tested among
nine population groups estimated from the United Kingdom
Biobank (UKB, n = 423,596). We focused on the East Asian
ancestry group from the UKB and validated PRS with
participants from the Taiwan Biobank (TWB, n = 68,978). Then,
we tested the associations between PRS and LDL cholesterol changes
among East Asian individuals in both biobanks.

Methods

Study subjects

The analysis was performed using genetic and phenotypic data
of the UKB and TWB. The UKB is a population-based cohort study,
with over 500,000 individuals aged 40–69 years at the time of
recruitment. We used the available imputed genotype array data
through the UKB (Bycroft et al., 2018). We excluded outliers with
high genotype missing rates, putative sex chromosome aneuploidy,
and discordant reported sex vs. genotypic sex (Hassanin et al., 2021).
We randomly excluded one from each pair of related individuals if
the genetic relationship was closer than the second degree, defined as
kinship coefficient >0.0884 as calculated by the UKB. A previous
approach was applied to divide UKB individuals into nine ancestry
groups by projecting data onto the principal component analysis
(PCA) space of 1,000 Genomes Project (Privé et al., 2022).

The TWB is a Taiwanese-based cohort study, with
68,978 individuals aged 30–75 years across 750 k SNPs (Wei
et al., 2021). For more overlapping SNPs with PRS models, we
imputed the TWB cohort. First, we filtered out SNPs based on
certain criteria: a missing rate of 0.2 for variants, missing rate of
0.5 for samples, and Hardy–Weinberg equilibrium of 5 × 10−7.
Subsequently, we employed SHAPEIT4 and IMPUTE5 to impute
the genotype with a reference based on the whole-genome
sequencing data of 1,496 Taiwanese individuals. SNPs with a
maximum genotype probability of less than 0.2 were removed. In
total, we obtained 15 million SNPs for 69 k Taiwanese individuals as
our external validation set.

United Kingdom Biobank ancestry grouping

We assigned the samples to different countries using PC-
projection, as demonstrated in a previous study (Privé et al.,
2022). In this previous study, the authors explored different
methods to classify individuals into ancestry groups using the
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PCA of genome-wide genotype data. They found that Euclidean
distances in the PCA space are proportional to the genetic
differences between populations and recommend using this
distance measure. They suggest using all principal components to
capture the population structure, as using only two or four is
insufficient for distinguishing certain populations. They applied
PCA-based distance to infer ancestry in datasets and proposed
two solutions: projecting PCs to reference populations or using
internal data. They demonstrated that these solutions are effective
for inferring ancestry and grouping genetically similar individuals.
Here, we used this approach to define the nine ancestry groups based
on United Kingdom Biobank data and birth country information.
These groups encompassed a range of geographical and ancestral
backgrounds, with some individuals from neighboring countries. In
particular, the defined ancestry groups were as follows: East Asian,
using China as the center; European, using three different centers of
United Kingdom, Italy, and Poland; African, using dual centers in
Nigeria and the Caribbean; South Asian, using India as the center;
Middle East, centered on Iran; and Ashkenazi Jewish, representing
individuals with Ashkenazi Jewish ancestry.

Furthermore, given that the majority of TWB individuals
clustered with the Han Chinese South group (Chen et al., 2016),
we employed a complementary approach, to further explore East
Asian subpopulations within the UKB dataset. We projected UKB
samples into principal component space based on the five East Asian
subpopulations from the 1,000 Genomes Project as reference points.
We only used two East Asian subpopulations from the UKB (Han
Chinese South [CHS] and Kinh in Ho Chi Minh City, Vietnam
[KHV]) and excluded the other three East Asian subpopulations due
to sample size limitations.

Construction of multi-ancestry polygenic
score

To evaluate the potential of PRS to predict increased LDL
cholesterol levels in East Asian ancestry, we used the latest
GWAS that was conducted in different populations to derive an
ancestry-specific or multi-ancestry LDL PRS (Graham et al., 2021).
We considered the summary statistics that did not include
United Kingdom Biobank samples. Six PRSs were created: one
for each ancestry (East Asian, South Asian, European, and
African) and two meta-analyses using multi-ancestry GWAS (one
using East Asian and European ancestry and the other using the four
ancestries). PRS weights were conducted using PRS-CSx (Ruan et al.,
2022) (accounting for population-specific allele frequencies and LD
patterns) and the 1000 Genomes Project as a reference panel that
matched the ancestry of each discovery GWAS. The PRS-CSx
method incorporates summary statistics from different GWASs
and links the genetic effects across populations using a
continuous shrinkage prior to that being shared between them.
This approach allows for a more precise estimation of effect sizes by
using information from the summary statistics and taking advantage
of the variation in linkage disequilibrium across the discovery
samples. By jointly modeling these multi-ancestry summary
statistics, PRS-CSx may be able to better capture the underlying
genetic effects and produce more accurate predictions. We
developed the multi-ancestry PRS using the “--meta” option

provided by the software. We tested each of the six PRSs in the
nine population groups from the UKB. Then, we evaluated the six
PRSs among the East Asian cohort of the TWB. We compared the
PRS performance between individuals in the TWB and two East
Asian subpopulations from the UKB (CHS and KHV) from the
1000 Genomes Project.

Assessment of PRS accuracy

We assessed the prediction accuracy of the six PRSs in the nine
estimated populations from the UKB and Taiwanese population
from the TWB. We standardized PRSs to a mean of 0 and standard
deviation of 1. In the evaluation of PRS and their impact on the
prediction of LDL levels, we considered the increase in explained
variance (incremental R2) due to PRS. The following outlines the
procedure: two models were utilized in our analysis.

(1) Full model: This model incorporated PRS as an additional
predictor, along with other covariates, including sex, age,
agê2, and the first four genetic principal components
(formula: LDL ~ PRS + sex + age + age2 + PC1 + PC2 +
PC3 + PC4).

(2) Reference model: In contrast, the reference model considered
only the covariates without PRS (formula: LDL ~ sex + age +
age2 + PC1 + PC2 + PC3 + PC4). To calculate the incremental
R2, we performed linear regression for both models.
Incremental R2, as performed in previous studies (Huang
et al., 2022), was computed as the difference between the
R2 of the full model (which included PRS as an additional
predictor) and that of the reference model. This approach
allowed us to quantify the additional variance in LDL levels
explained by the inclusion of PRS in the model. Mean LDL
values across the deciles of EAS_PRS, EUR_PRS, and multi-
ancestry PRS were computed in all individuals of TWB to
evaluate the range of phenotypic variability cover for
these PRSs.

Results

Study populations

In the United Kingdom Biobank, the estimated ethnic groups of
the United Kingdom (United Kingdom) and China had significantly
different study participant characteristics (Table 1). In comparison
to people in the United Kingdom (United Kingdom), Chinese
participants had lower LDL concentrations (mean, SD:
3.42 mmol/L, 0.77), lower TC levels (mean, SD: 5.54 mmol/L,
1.03), and similar HDL levels (mean, SD: 1.46 mmol/L, 0.38).
They were also younger (mean age, SD: 52.3, 7.71). The Chinese
participants had a lower percentage of men compared to the
United Kingdom (38.8% vs. 45.9%). Participants from China had
a significantly lower body mass index (BMI) (mean, SD: 24.07 kg/
m2, 3.4) compared to United Kingdom participants (p-value < 2.2 ×
10−16) (Supplementary Table S1).

In the TWB, the percentage of men is 31.2%, which is lower
than the percentage of Chinese participants in the
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United Kingdom Biobank, while the age distribution (mean, SD:
51.0, 10.9, respectively) is similar. In addition, TWB individuals
had lower levels of lipid traits, including LDL (mean, SD:
3.16 mmol/L, 0.82), HDL (mean, SD: 1.43 mmol/L, 0.35), and
TC (mean, SD: 5.12 mmol/L, 0.93), but higher BMI (mean, SD:
24.25 kg/m2, 3.80).

Evaluation of the PRS in the nine estimated
populations from the United Kingdom
Biobank

We assessed the performance of ancestry-specific PRS for LDL
levels across the nine estimated populations in the UKB (Figure 1).

TABLE 1 Study participant characteristics stratified by estimated ethnicity in the United Kingdom Biobank and Taiwan Biobank. HC, hypercholesterolemia; HDL,
high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; and SD, standard deviation.

Participants,
N

Males,
N (%)

Age,
mean
(SD)

HC
cases,
N (%)

HC
controls,
N (%)

BMI,
mean
(SD)

LDL,
mean
(SD)

LDL,
range

(mmol/L)

HDL,
mean
(SD)

TC,
mean
(SD)

United Kingdom Biobank

United Kingdom 423,596 194,259
(45.9)

56.81
(8.02)

110,166
(26.01)

313,430
(73.99)

27.4 (4.76) 3.57 (0.87) 0.27–9.80 1.45 (0.38) 5.71
(1.14)

Poland 4,095 1544 (37.7) 54.4 (7.53) 1088
(26.57)

3007 (73.43) 27.39
(4.96)

3.59 (0.85) 1.20–7.42 1.49 (0.4) 5.76
(1.13)

Italy 6,451 2,882
(44.7)

54.5 (8.41) 1624
(25.17)

4,827 (74.83) 27.35
(4.94)

3.56 (0.86) 0.28–7.67 1.45 (0.38) 5.68
(1.12)

Ashkenazi 2,359 1067 (45.2) 58.09 (7.1) 613 (25.99) 1746 (74.01) 27.13
(4.54)

3.55 (0.9) 1.16–8.62 1.44 (0.39) 5.68 (1.2)

Iran 1145 680 (59.4) 51.99
(7.98)

234 (20.44) 911 (79.56) 27.98
(4.55)

3.43 (0.86) 1.36–6.65 1.28 (0.33) 5.4 (1.11)

India 6,303 3413 (54.1) 53.42
(8.41)

1135
(18.01)

5168 (81.99) 27.42 (4.5) 3.35 (0.85) 0.97–6.98 1.25 (0.32) 5.31
(1.12)

Nigeria 3802 1744 (45.9) 51.95
(8.14)

551 (14.49) 3251 (85.51) 29.82
(5.31)

3.21 (0.84) 0.85–7.08 1.43 (0.35) 5.17
(1.09)

Caribbean 2,492 898 (36) 52.52
(8.13)

396 (15.89) 2096 (84.11) 29.49
(5.56)

3.28 (0.83) 1.10–6.52 1.47 (0.38) 5.29
(1.09)

China 1480 545 (36.8) 52.33
(7.71)

263 (17.77) 1217 (82.23) 24.07 (3.4) 3.42 (0.77) 1.10–7.04 1.46 (0.38) 5.54
(1.03)

Taiwan Biobank

Taiwan 68,978 21,495
(31.2)

51.0 (10.9) 8,196
(13.5)

60,782 (86.5) 24.25 (3.8) 3.16 (0.82) 0.02–9.59 1.43 (0.35) 5.12
(0.93)

FIGURE 1
Comparison of LDL prediction performance between ancestry-specific and multi-ancestry PRS models across nine ancestry groups in the
United Kingdom Biobank. Incremental R2 value was computed as the difference between the R2 of the full model (which included PRS as an additional
predictor along with covariates) and that of the reference model.
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As expected, the LDL PRS derived from the European GWAS
(EUR_PRS) was associated with the best performance in different
European populations (namely, United Kingdom, Poland, and Italy)
and in Middle East populations (namely, Ashkenazi Jews and
Iranians). Similarly, LDL PRS derived from the African GWAS
(AFR_PRS) showed the best performance in the population of
African origin (Nigeria and Caribbean). LDL PRS derived from
the East Asian GWAS (EAS_PRS) was the best performing
population in the Chinese population. Surprisingly, when we
tested EUR_PRS and PRS derived from the South Asian GWAS
(SAS_PRS) in the Indian participants, EUR_PRS performed better
than SAS_PRS.

Concerning the multi-ancestry PRS, we tested a PRS derived
from a meta-analysis of European and East Asian GWASs (EUR_
EAS_PRS) and a global PRS derived from a meta-analysis of the four
ancestries (EUR_EAS_SAS_AFR_PRS). The multi-ancestry PRS
showed comparable prediction to ancestry-specific PRS and
seems to be more generalizable across populations, particularly
for European, Middle East, and SAS populations. For instance,
for the United Kingdom population, the adjusted R2% using
EUR_PRS (8.62%) was similar to that using EUR_EAS_SAS_
AFR_PRS (8.56%). For the AFR and EAS populations, ancestry-
specific PRS performed better than multi-ancestry PRS. For
instance, for the Chinese population, the adjusted R2% using
EAS_PRS (6.35%) was higher than that using EUR_EAS_SAS_
AFR_PRS (5.55%).

Evaluation of the PRS in the Taiwan Biobank

Within the TWB, we evaluated the different ancestry-specific
and multi-ancestry PRSs for LDL levels (Figure 2). Similar to our
findings in UKB Chinese participants, the EAS_PRS (adjusted R2% =
9.3%) also demonstrated better performance than EUR_PRS
(adjusted R2% = 4.5%) in the TWB individuals and had an even
better performance compared to multi-ancestry PRS (adjusted

R2% = 6.7%). We also compared the performance of PRS
between TWB individuals and the East Asian subpopulations
from the UKB. We found that EAS_PRS has a comparable
performance, particularly between populations from the TWB
(adjusted R2% = 6.5%) and CHS (adjusted R2 = 6.1%) from the
UKB. We conducted an analysis and calculated the raw R2 only for
the PRS in the nine groups, and the results appear to align with the
incremental R2 value (Supplementary Figures S1, S2).

Association between different PRS strata
and LDL values

We analyzed the mean of LDL levels in individuals from the
TWB based on their EAS_PRS, EUR_PRS, and multi-ancestry PRS
deciles. We compared the difference in mean LDL levels between the
lowest and highest deciles of EAS_PRS, EUR_PRS, and multi-
ancestry PRS. Our findings showed that in East Asians, EAS_PRS
explained a wider range of phenotypic variability compared to EUR_
PRS. Particularly, the difference in mean LDL levels between the
lowest and highest EAS_PRS deciles was 0.82, while that for EUR_
PRS, it was 0.59 (Figure 3). The mean difference in LDL levels
between the lowest and highest multi-ancestry PRS deciles was 0.76.
However, the mean LDL levels in the highest deciles in both EAS_
PRS and multi-ancestry PRS were the same (LDL mean (mmol/L) =
3.54, p = 0.86).

Discussion

This study aimed at predicting LDL in two EAS populations
(from UKB and TWB) using the latest GWAS. Our findings indicate
that 1) ancestry-specific PRS yield better performance in predicting
LDL levels, and 2) multi-ancestry PRSs together with computational
approaches integrating a population-specific LD pattern can be used
to enhance the generalizability of PRSs. In particular, the multi-
ancestry PRSs showed that even the relatively small proportions of
non-European samples can significantly improve predictions in
non-EUR populations. Our work emphasizes the importance of
conducting GWAS that include diverse populations to enhance the
generalizability of PRSs, even when the availability of diverse
population samples is limited.

The findings presented indicate distinctions in the predictive
power of PRS based on different ancestry groups when examining
LDL cholesterol levels across diverse populations. As expected, the
European-specific PRS (EUR_PRS) showed superior performance in
all European populations. Similarly, we observed the same pattern in
Middle Eastern populations and South Asians, further extending the
applicability of the EUR_PRS. Interestingly, the EUR_PRS
outperformed the South Asian PRS (SAS_PRS) in the Indian
participants, though this could be also influenced by the
difference sample size of the population-specific GWAS. We
observed varying LDL prediction accuracies between
United Kingdom and Taiwan Biobanks using SAS-based GWAS,
and this is influenced by lifestyle, sample size, or gene–environment
interactions. Ancestry-specific PRSs often outperformed target
population PRS (e.g., EAS_PRS for the Chinese population and
AFR_PRS for African origins), highlighting the importance of

FIGURE 2
Comparison of LDL prediction performance between ancestry-
specific andmulti-ancestry PRSmodels in individuals from the Taiwan
Biobank and two East Asian sub-populations of the United Kingdom
Biobank (CHS and KHV).

Frontiers in Genetics frontiersin.org05

Hassanin et al. 10.3389/fgene.2023.1286561

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1286561


tailored genetic studies. These findings corroborate the need of
multi-ancestry genetic data in enhancing the accuracy and
precision of risk predictions.

Our targeted analysis in East Asian demonstrated that the
difference in mean LDL levels between the lowest and highest
deciles for the EAS_PRS was notably higher than the differences
observed for the EUR_PRS and the multi-ancestry PRS. This
suggests that the EAS_PRS might have a stronger discriminatory
power for LDL cholesterol levels among East Asians compared to
EUR_PRS. Furthermore, the similar mean LDL values observed in
the top decile for multi-ancestry PRS and EAS_PRS (with a p-value
of 0.86 indicating no significant difference between them) is of
particular interest. This similarity suggests that multi-ancestry PRSs
including relatively small proportions of non-European samples
may improve the prediction of high LDL levels in East Asians.

Our study further suggest that statistical genetics approaches can
be used to take advantage of the already available global GWAS data,
even when the number of non-European samples is limited. One
example, the latest GWAS includes individuals across five genetic
ancestry groups: admixed African or African (6.0% of the sample),
East Asian (8.9%), European (79.8%), Hispanic (2.9%), and South
Asian (2.5%) (Graham et al., 2021). Recently published Bayesian
PRS approaches demonstrated an improvement in the accuracy of
PRSs in non-European populations by utilizing common genetic
effects across ancestries (Ruan et al., 2022; Hoggart et al., 2023).
Another recent study, the authors conducted a benchmarking
analysis to compare several PRS methods for multi-ancestry
analysis in the UKB dataset, which included lipid traits and EAS
data using GWAS data as well (Zhang et al., 2023). The findings of
this study provided insights on the use of statistical methods to
improve prediction performance in non-Europeans.

The applicability of the findings on the portability of PRS from
multi-ancestry meta-analyses to other traits needs to be taken into
account, consideringmultiple factors (Majara et al., 2023). These factors
include the heritability of the trait (Momin et al., 2023), genetic
correlation (Shi et al., 2021), causal variants allele frequencies
(Cavazos and Witte, 2020), gene-environment interactions (Peterson
et al., 2019), and the inclusion of multi-ancestry populations in GWAS
(Fatumo et al., 2022; Yengo et al., 2022). In a recent study, they

estimated the cross-ancestry genetic correlation for cholesterol and
observed a significant genetic heterogeneity between ancestries for
total and LDL cholesterol (Momin et al., 2023). While many traits
exhibit a significant shared genetic correlation across ancestries,
indicating the potential transferability of multi-ancestry PRS (Ho
et al., 2020), some traits have specific genetic variations that are more
commonly found in particular ancestral groups (El-Boraie et al.,
2021; Kamiza et al., 2022). To ensure the effective use of PRS in
diverse populations, it is crucial to conduct comprehensive
investigations considering these factors and include a representative
range of ancestries in future GWAS studies (Duncan et al., 2019).
Moreover, a recent study emphasizes the necessity of moving away
from discrete genetic ancestry clusters and embracing the continuum
of genetic ancestries when analyzing and interpreting PRS (Ding et al.,
2023). By accounting for individual variation and considering the
diverse genetic backgrounds within populations, more accurate PRS
assessments can be achieved.

By leveraging the available diverse GWAS data, we can improve the
generalizability of PRSs and ultimately enhance our ability to predict
complex disease risk across diverse populations. As such, our study
provides valuable insights into the development and implementation of
PRSs for predicting lipid traits in East Asian populations and highlights
the need for continued efforts to increase diversity in genetic research
while also working on bioinformatics approaches to meta-analyze the
association signal across different populations.

Conclusion

In our study, we evaluated the performance of ancestry-specific and
multi-ancestry PRSs for LDL in various populations, including East
Asians from the United Kingdom Biobank and Taiwan Biobank. The
findings corroborated that ancestry-specific PRSs performed better than
the target population PRSs in their respective ancestries. In particular,
EAS_PRS had better performance in East Asian populations, while
EUR_PRS showed better performance in European and Middle East
populations. The multi-ancestry PRS analysis showed that even a small
proportion of non-European samples can significantly improve the
prediction in non-EUR populations. These findings provide valuable

FIGURE 3
LDL mean values across the deciles of EAS, EUR, and multi-ancestry PRSs of East Asians (Taiwan Biobank).
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insights into the development of PRSs for diverse populations and the
potential clinical applications of PRSs. On one hand, our analysis
suggests that incorporating cross-ancestry GWAS data and utilizing
optimized computational algorithms to account for population-specific
LD-patterns can improve the generalizability of PRS. On the other
hand, these results further emphasize the necessity of enhancing genetic
diversity in GWASs and establishing large-scale population-based
cohorts to more accurately model the genetic liability of
multifactorial traits, such as LDL cholesterol.
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