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Introduction: Multi-view data offer advantages over single-view data for
characterizing individuals, which is crucial in precision medicine toward
personalized prevention, diagnosis, or treatment follow-up.

Methods: Here, we develop a network-guided multi-view clustering framework
named netMUG to identify actionable subgroups of individuals. This pipeline first
adopts sparse multiple canonical correlation analysis to select multi-view features
possibly informed by extraneous data, which are then used to construct
individual-specific networks (ISNs). Finally, the individual subtypes are
automatically derived by hierarchical clustering on these network representations.

Results: We applied netMUG to a dataset containing genomic data and facial
images to obtain BMI-informed multi-view strata and showed how it could be
used for a refined obesity characterization. Benchmark analysis of netMUG on
synthetic data with known strata of individuals indicated its superior performance
compared with both baseline and benchmark methods for multi-view clustering.
The clustering derived from netMUG achieved an adjusted Rand index of 1 with
respect to the synthesized true labels. In addition, the real-data analysis revealed
subgroups strongly linked to BMI and genetic and facial determinants of these
subgroups.

Discussion: netMUG provides a powerful strategy, exploiting individual-specific
networks to identify meaningful and actionable strata. Moreover, the
implementation is easy to generalize to accommodate heterogeneous data
sources or highlight data structures.
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1 Introduction

In machine learning, unsupervised clustering has been widely
discussed and applied. It refers to a data-analysis problem where the
true classification of individuals (or items) is unknown, and we
derive clusters by exploiting between-individual similarity.
Clustering serves as an important tool for population
stratification, image segmentation, anomaly detection, etc.
(Ghosal et al., 2020). Specifically, clustering in medicine helps
subgroup patients with potential disease risks and characterize
each subgroup with distinctive genetic information. Patient
subgrouping or disease subtyping plays an essential role in
precision medicine, given that traditional medicine tends to offer
a one-size-fits-all solution over the entire population and often
overlooks heterogeneity (Spycher et al., 2008; Saria and
Goldenberg, 2015). While designing a drug customized for every
patient may not be feasible, fine-scaled disease subtyping is tractable
and can facilitate more personalized prevention, diagnosis, and
treatment.

To better characterize a disease or phenotype, it is beneficial to
turn to different sources, i.e., multi-view data, that are jointly more
comprehensive and informative than single modalities (Gligorijević
et al., 2016). For example, prior work has shown that multi-view
clustering algorithms often outperform single-view ones (Abavisani
and Patel, 2018; Chauvel et al., 2020; Wen et al., 2021). However,
many multi-view clustering methods have difficulty finding the
consensus between modalities or exploiting relationships within
and between views. Canonical correlation analysis (CCA)
provides a solution to obtain optimal linear transformations of
every data type to maximize their correlation (Hotelling, 1936).
Moreover, sparse CCA (sCCA) introduces a sparsity parameter for
each view, which can enforce the canonical weights on most features
to be zero (Witten et al., 2009). sCCA both reduces the feature
dimensionality and removes noisy features. Therefore, we can use
this method to select the most meaningful features from datasets as
input for the subsequent clustering. Sparse multiple canonical
correlation network analysis (SmCCNet) can take an extraneous
variable to detect modules of multi-view features with maximal
canonical correlation between the data views informed by a
phenotype of interest (Shi et al., 2019).

Current multi-view sample clustering methods integrate data
views in different ways, e.g., concatenating all features, mapping
views to a shared low-dimensional space, and merging between-
sample relationship matrices from every view. The approach
iCluster+ was designed to predict cancer subtypes from various
data types by constructing a common latent space from all views
(Mo et al., 2013). The extension iClusterBayes adopts a Bayesian
model in the latent space (Mo et al., 2018). PintMF imposes a
sparsity penalty on matrix factorization to integrate multiple data
types into a common space (Pierre-Jean et al., 2022). Other state-of-
the-art methods focus on combining similarity matrices from every
data view. For example, Spectrum is such a method with a self-
tuning density-aware kernel and similarity network fusion (SNF)
that transforms data views to sample networks and fuses them
nonlinearly (Wang et al., 2014; John et al., 2019). MRGC learns a
robust graph for each data view and unifies them afterward (Shi
et al., 2023). However, all the above-mentioned methods either
reform the feature space or compute the between-sample

interactions from features, which becomes deficient with data
containing much information in the between-feature interactions.

Feature interactions derived from large sample collections are
not individual-specific, although this has been shown to highlight
interwiring modules for risk prediction and corresponding sample
subtyping. Some analysis flows that illustrate this are built on the
weighted gene co-expression network analysis (WGCNA) algorithm
(Langfelder and Horvath, 2008). Starting from global networks,
namely, networks built on a collection of samples, each individual’s
perturbation to the global network can be used to derive a so-called
individual-specific network or ISN (Kuijjer et al., 2019). Comparing
ISNs thus implies comparing interaction profiles between
individuals. In reality, different features contributing to individual
wirings may have different origins, paving the way for system-level
clustering of individuals in a precision medicine context.

In this work, we propose netMUG (network-guidedMUlti-view
clusterinG), a novel multi-view clustering pipeline that clusters
samples on the basis of these sample-specific feature interactions
or wirings (Figure 1). In the presence of 2-view data, multi-view
features are jointly selected via SmCCNet, based on canonical
correlations and an additional extraneous variable. ISNs are
constructed from the selected features, taking as a measure of
edge strength the overall correlation between every pair of
features and the extraneous data. The Euclidean distance metric
representing dissimilarities between ISNs is fed into Ward’s
hierarchical clustering (Ward, 1963), using the R library
Dynamic Tree Cut to automatically derive the number of clusters
(Langfelder et al., 2008). After validating netMUG on synthetic data,
we applied our workflow to a collection of participants of recent
European ancestry with both genotypic information and 3D facial
images available (White et al., 2021). The aim was to dissect and
interpret between-individual heterogeneity, informed by BMI as
extraneous data. The application showed the potential of netMUG
to refine existing classifications for obesity and to identify novel
gene-BMI associations not yet discovered by genome-wide
association studies (GWAS).

Contributions of this paper:

• We developed a novel multi-view clustering method,
netMUG, that combines feature selection, network
construction, and downstream unsupervised learning in a
single workflow.

• netMUG exploits the synergy between data views, as well as
extraneous information, to assess heterogeneity between
individuals and help in disease subtyping and stratified
prevention.

• We simulated two data types whose features are cross-linked
and whose samples have a complex clustering structure to
validate the performance of netMUG.

• On a real-life dataset with genetic and facial information,
netMUG informed by BMI as extraneous information
highlighted known and novel characteristics of obesity.

2 Materials and methods

The code of netMUG is available on GitHub, along with its
computational environment for reproducibility (https://github.com/
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ZuqiLi/netMUG.git). The complete pipeline, simulation, and
analyses were done in R (version 4.2.1). The data representation
of the case study was computed in Python (version 3.9.7).

For the remainder of this paper, we denote the two data views as
X ∈Rn×p and Y ∈Rn×q, respectively; the phenotypic variable is
Z ∈Rn, where n is the number of individuals, p is the number of
features in view 1, and q is the number of features in view 2.

2.1 SmCCNet

The SmCCNet pipeline consists of a sparse multiple canonical
correlation analysis (SmCCA) and a module detection method (Shi
et al., 2019). CCA and its variants are a set of multivariate statistical
methods based on the cross-covariance matrix. The basic CCA aims
to find a pair of vectors a ∈Rp and b ∈Rq that maximizes the
correlation between Xa and Yb:

~a, ~b( ) � argmax
a,b

corr Xa, Yb( ) � argmax
a,b

aTΣXYb�������
aTΣXXa

√ ������
bTΣYYb

√ (1)

where ΣXY denotes the cross-covariance matrix between X and
Y, and ΣXX and ΣYY are the covariance matrix of X and Y,
respectively. If we standardize both X and Y so that every
feature has a mean of 0 and a standard deviation of 1, Eq. 1 can
be reduced to

~a, ~b( ) � argmax
a,b

aTXTYb�������
aTXTXa

√ �������
bTYTYb

√ (2)

If we further constrain the covariance matrices to be diagonal,
Eq. 2 can be rewritten as

~a, ~b( ) � argmax
a,b

aTXTYb, s.t. a‖ ‖2 � b‖ ‖2� 1 (3)

In case there are a lot of features with very little contribution to
the canonical correlation, a sparse version of CCA (sCCA) is
introduced, which applies the 1 regularization to the canonical
weights a and b. Hence, the objective of sCCA is as follows:

~a, ~b( ) � argmax
a,b

aTXTYb, s.t. a‖ ‖2 � b‖ ‖2� 1, a‖ ‖1 ≤ c1, b‖ ‖1 ≤ c2 (4)

where c1 and c2 are user-defined constants that regulate the sparsity,
c1∈ [1, ��

p
√ ], and c2∈ [1, �

q
√ ]. Their values can be chosen via cross-

validation.
CCA and sCCA are originally designed for only two data views;

however, additional information may be available and it may be
helpful to take into account the correlations between the existing
views and the extra one. In the special case where the extra data type
contains only a single feature, e.g. a phenotype of interest, this can be
considered as finding the optimal canonical pair from the two existing
views that also correlates with the phenotype. With the phenotypic
variable denoted as Z ∈Rn, the objective of SmCCA becomes

FIGURE 1
Workflow of netMUG (network-guided multi-view clustering). The pipeline consists of three parts: ① select phenotype-informed features from
multiple data modalities via SmCCNet;② build individual-specific networks based on the selected features and the phenotypic information;③ subtype
individuals via Ward’s hierarchical clustering.
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~a, ~b( ) � argmax
a,b

w1a
TXTYb + w2a

TXTZ + w3b
TYTZ( ),

s.t. a‖ ‖2 � b‖ ‖2� 1, a‖ ‖1 ≤ c1, b‖ ‖1 ≤ c2
(5)

Coefficients w1, w2, and w3 balance the three canonical
correlations to account for the different correlation strengths
among the multiple data types.

The pair of canonical weight vectors (~a, ~b) learned from the
SmCCA are sparse indicators of how much every feature inX and
Y contributes to the overall correlation among the two data
modalities and the phenotype. If we concatenate ~a and ~b to
form a new vector, ãb, from which we can construct us a
similarity matrix whose elements measure the relatedness
between every two features:

S � ãb ⊗ ãb
∣∣∣∣ ∣∣∣∣ (6)

where ⊗ is the outer product operator and | · | takes the absolute
value of every element in a matrix.

To make the canonical weights robust, SmCCNet integrates a
feature subsampling scheme, which results in multiple pairs of (~a, ~b)
with different subsets of features from X and Y. The similarity
matrices from each pair are then averaged and divided by the
maximum.

Hierarchical clustering with complete linkage is performed on
the distance matrix 1 − �S, where �S denotes the averaged and rescaled
similarity matrix. The dendrogram is subsequently cut at the user-
specified height and modules with feature(s) from a single view are
discarded to derive multi-view modules.

2.2 netMUG: workflow and algorithm

The input of netMUG is multi-view data with a phenotype (or
more generally, extraneous variables), both describing the same set
of samples. To reduce dimensionality and extract the most
informative features, netMUG first incorporates SmCCNet for

FIGURE 2
Performance of all methods on simulated data. The three barplot panels illustrate the ARI (on the left axis in yellow) and −log10Pval (on the right axis in
blue) for the 4 single-view (X or Y) and 10 multi-view (both X and Y) models. Four out of six baseline models (“Kmeans” and “PCA-Kmeans”) use a single
view (X or Y). Two-view “Kmeans” and “PCA-Kmeans”models are based on the concatenation of X and Y. “SmCCNet-Spectrum” and “SmCCNet-SNF” are
benchmark models with features selected by SmCCNet. “SmCCNet-ISN-SC” only differs from the proposed framework, netMUG, for the clustering
method.
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feature selection, namely, features in the final modules detected by
SmCCNet. We have found that in practice, it is difficult to assess and
quantify the balancing weights on each pairwise correlation (see Eq.
5), so this property has been omitted in netMUG,
i.e., w1 � w2 � w3� 1.

We then use the selected features to construct ISNs for each
individual. These networks are characterized by individual-specific
edges as well as individual-specific nodes. In particular, we first
construct a global network G(α) � (V, E(α)) across all samples,
where V denotes the set of selected features from both views and
E(α), the set of edge weights whose element e(α)ij is the sum of
pairwise Pearson correlations between feature i, j, and the
phenotype Z on all samples:

e α( )
ij � corr Vi, Vj( ) + corr Vi, Z( ) + corr Vj, Z( ) (7)

Second, we compute the leave-one-out network G(α−s) �
(V, E(α−s)) whose edges E(α−s) are derived from all samples but
sample s, similarly to Eq. 7. Intuitively, the difference between the
global and leave-one-out networks measures the perturbation on the
network caused by sample s. Based on this, in our work, we define
ISN by the absolute differential network:

e s( )
ij � e α( )

ij − e α−s( )
ij

∣∣∣∣∣ ∣∣∣∣∣ for ∀i, j ∈ 1, 2,/, r{ } (8)

where e(s)ij is the edge value between node i and j in the network
specific to individual s. Hence, G(s) � (V, E(s)), and r is the number
of selected features. Eq. 8 is a variant of the original ISN construction
method reported by Kuijjer et al. (2019) because deriving an
individual-specific association is not essential when the final aim
is to identify “distances” between individuals. A higher e(s)ij indicates
that individual s deviates from its population more than others
concerning the joint correlation between features and phenotype. In
addition, an ISN with patterns that are very different from those of
another ISN means that their corresponding individuals may belong
to different population subgroups.

The edge weights in an ISN can be seen as the coordinates of a
data point in a k-dimensional Euclidean space, where k = number of
edges. Accordingly, clusters can be achieved by hierarchical
clustering on Euclidean distance and Ward’s linkage. Because the
Euclidean distance is not squared, we chose “ward.D2” as the
method for the R function “hclust” to adopt the correct Ward’s
clustering criterion (Murtagh and Legendre, 2014). The clusters are
obtained automatically via the R package “dynamicTreeCut”, which
iteratively cuts the hierarchical tree and determines the optimal

FIGURE 3
UpSet plot showing the intersections of four gene sets. A, B, C, and D represent the gene list found by GWAS, DisGeNET, uninformed SmCCNet, and
standard SmCCNet, respectively. Uninformed SmCCNet maximizes the canonical correlation without extraneous information, whereas standard
SmCCNet takes BMI into account to supervise CCA. Genes of the four sets are listed in the Supplementary Material.
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number of clusters based on their shape. We set its hyperparameter
deepSplit = 1 to have fewer but larger clusters.

2.3 Simulation study

We synthesized 1,000 samples with two views, each of which
contains 1,000 variables, simulating complex, cross-linked datasets,
e.g., genetic and facial data. Samples are randomly distributed in
three balanced clusters. Because real-life data often contain a large
number of uninformative features, we generated 600 variables of
each data view from standard normal distribution N(0, 1),
representing the noise. Then, the remaining 400 features were
correlated within and between the two views to different extents
by linearly transforming 400 orthogonal vectors per view.

The first 200 orthogonal vectors in each view, Xcorr and Ycorr,
were sampled from a multivariate normal distribution with random
covariance ranging from 0.5 to 0.8, i.e., [Xcorr Ycorr]~ N(0,Σ),
where Σ � I R

R I
[ ], I ∈R200×200 is an identity matrix, and

R ∈R200×200 is a diagonal matrix with the 200 covariances on the
diagonal. The remaining 200 vectors in each view, Xclust and Yclust,
were generated similarly but with covariance ranging from 0.8 to 1.
Xclust and Yclust have three distinctive clusters of samples by
multiplying 1, 2, and 3 by their values for the samples in every
cluster. The clustering also gave rise to a phenotype that follows a
different normal distribution in every cluster,
i.e., Z � [Z(1) Z(2) Z(3)]T, where Z(1)~ N(−1, 1), Z(2)~ N(0, 1),
and Z(3)~ N(1, 1). To make the correlation patterns more
complex and representative of real-life data, we linearly

FIGURE 4
Genes and facial segments with the top 1% connections. Connections refer to the similarities between the canonical weights of genetic and facial
PCs, as described in Methods. Only inter-modality relationships are considered. A thicker connection in the circus plot means a higher relatedness.
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transformed [Xcorr Xclust] and [Ycorr Yclust] by multiplying a square
coefficient matrix whose values are random in the uniform range
[−3, 3].

We also investigated the execution time spent by each model.
The bottleneck of netMUG is the SmCCNet step that computes a full
SVD internally for each dataset, whose time complexity is

FIGURE 5
Violin plots for the distribution of BMI for individuals in every cluster. For each cluster, the red dot and vertical line indicate the mean and standard
deviation, respectively, and the number in blue is the size of every cluster. The three green horizontal dashed lines represent the cut-offs of the four
classic BMI categories shown on the right Y-axis.

FIGURE 6
Mean facial shapes of every cluster and the superposition of them. The first five faces are the average of all individual faces in every cluster, while the
last face was obtained by plotting the five mean faces on top of each other (colors of this superposition face correspond to the five mean faces).
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O(min (mn2, nm2)), where n and m are the two dimensions of the
data matrix. To make the method applicable to large-scale datasets,
e.g., the whole genomic data composed of millions of SNPs, we may
replace the full SVD with truncated SVD in the future for much
faster computation and less memory usage.

2.4 Case study

2.4.1 Data representation
Data pre-processing resulted in 265,277 SNPs and 7160 3D

facial landmarks for all 4,680 individuals with European ancestry
(detailed steps are described in the Supplementary Material). We
subsequently reduced the dimensionality of both genomic and facial
data via principal component analysis (PCA) (Pearson, 1901).
Specifically, SNPs were first mapped to protein-coding genes if
they fell within 2000 base pairs around a gene. Genes mapped
with less than three SNPs were removed for insufficient information.
Then, we performed PCA on the SNPs in every gene to obtain the
principal components (PCs) explaining at least 90% of its variance to
represent each gene by fewer but more informative features.
Meanwhile, we hierarchically segmented 3D facial images into
five levels and 63 segments via the method proposed by White
et al. (2021). Finally, the optimal number of PCs representing every

facial segment was determined via the simulation-based parallel
analysis. As a result, we obtained 60,731 PCs for 9,077 genes and
1,163 PCs for 63 facial segments.

2.4.2 Group-level interpretation
To estimate the association of BMI with our genomic data, we first

conducted a GWAS via PLINK to calculate the p-value of theWald test
(detailed steps are described in the Supplementary Material), which
would identify whether an SNP is significantly associated with BMI.
Only SNPs with FDR-adjusted p-values < 0.05 were kept and then
mapped to genes, following the same mapping strategy as in the ‘Data
representation’ step. Meanwhile, we also downloaded the list of BMI-
relevant genes from the DisGeNET database with a decent filter (≥0.1)
on the gene-disease association (GDA) score.

To further analyze the behavior of SmCCNet, we reran it with the
same settings but without phenotypic information (the two sparsity
parameters were re-determined via cross-validation). So far, four sets of
genes have been obtained from the standard SmCCNet, GWAS,
DisGeNET, and the uninformed SmCCNet. We investigated the
overlap among them to see the agreement between SmCCNet and
GWAS, the enrichment of DisGeNET genes in the gene set of
SmCCNet (detailed steps are described in the Supplementary
Material), and the difference in SmCCNet made by the presence of
phenotype.

FIGURE 7
UpSet plot showing the intersections of genes extracted from the mean ISN of every cluster.
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2.4.3 Cluster-level interpretation
We first evaluated the relationship between BMI and the clustering

derived by netMUG. Namely, we conducted a Kruskal–Wallis test to
determine whether there were statistically significant differences in
BMI distributions among the clusters. Our obesity subtypes were also
compared with the classic BMI categories, i.e., underweight
(BMI <18.5), normal (18.5≤BMI <25), overweight (25≤BMI <30),
and obese (BMI≥30) (WHO Global InfoBase team, 2005).

Further, we characterized every subgroup by facial and genetic
information. By averaging all facial images of each subgroup, we
represented it with a mean face shape. As for genetics, ISNs of every
cluster were averaged, and a subnetwork was taken from the mean
ISN based on the top 1% edge weights to only focus on the vital
signals. Subsequently, we computed the largest connected component
of every subnetwork and extracted all genes in this component. The
overlap among clusters was analyzed, and we paid special attention to
the cluster-specific genes to characterize each cluster. In particular, an
enrichment analysis was done via the analysis tool of the Reactome
website (Gillespie et al., 2022) to test which biological pathways are
significantly over-represented in the gene list specific to every cluster.

2.4.4 ISN-level interpretation
Because our pipeline represents every individual by a network,

namely, ISN, a fully-connected weighted graph, we need a lower-
dimensional representation of the ISNs to examine their behavior
better and visualize them. Therefore, the graph filtration curve
method was applied, which computed a function or curve from

each ISN, whose values were derived via graph evolution (O’Bray
et al., 2021). More specifically, we set a series of thresholds on the
edge weights and, at each threshold, constructed a subnetwork by
taking only edges larger than that threshold. In such a manner, we
got a series of subnetworks from smallest to largest for every ISN,
and the largest subnetwork is the ISN itself. Then, graph property
was calculated based on each subnetwork, and therefore, an ISN was
converted to a function of graph property against the edge threshold.
Here, in our project, we chose the mean node degree of the largest
connected component (LCC) as the graph property because the
subgraphs may not be fully connected anymore. The average degree
is a simple yet powerful tool to measure graph density.

3 Results

netMUG was validated on a synthetic dataset and compared
with both baseline and benchmark methods for multi-view
clustering. We then applied it to real-life large-scale multi-view
cohort data and characterized the resultant clusters by their
representative faces and enriched pathways.

3.1 Validating netMUG on synthetic data

We simulated a scenario where a multi-view dataset contained
complex feature patterns andmany noisy features, representing real-

TABLE 1 Enriched Reactome pathways in every cluster. Pathways for cluster 5 are all in italics because no p-value was lower than 0.05 after multiple testing
corrections (FDR). For cluster 5, the four pathways with raw p-values ≤ 0.01 are shown.

Cluster No. Pathways

Cluster 1 Tryptophan catabolism

Cluster 2 TP53 regulates transcription of death receptors and ligands

Defective GALNT12 causes CRCS1

Defective GALNT3 causes HFTC

NPAS4 regulates expression of target genes

Transcriptional regulation by NPAS4

Cluster 3 Regulation of TP53 expression

STAT3 nuclear events downstream of ALK signaling

Signaling by ALK

Regulation of TP53 expression and degradation

Cluster 4 Regulation of gene expression in early pancreatic precursor cells

Regulation of gene expression in late-stage (branching morphogenesis) pancreatic bud precursor cells

Rap1 signalling

Defective B3GALTL causes PpS

O-glycosylation of TSR domain-containing proteins

Cluster 5 Glycogen storage disease type Ib (SLC37A4)

Interleukin-33 signaling

RHOB GTPase cycle

RHOC GTPase cycle
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life high-dimensional data, e.g., genomics and images. Two criteria
were adopted to assess clustering performance, p-value from the
Kruskal–Wallis test, and adjusted Rand index (ARI). The
Kruskal–Wallis test was used as a non-parametric version of one-
way ANOVA to test whether the distribution of an extraneous
phenotype is similar across clusters because the simulated
phenotype follows a multimodal distribution (Kruskal and Wallis,
1952). Therefore, a low p-value (< 0.05) indicates a significant
association between the clustering and the phenotype. ARI was
computed to show the similarity between the derived clustering and
the phenotype (Rand, 1971): the higher, the better; an ARI of
1 means perfect fitting.

Various baseline and benchmark methods were considered in
addition to netMUG, and their performances were compared.
Baseline models included k-means on every single view, and both
views concatenated, with or without principal component analysis
(PCA) as a data dimensionality reduction strategy. We chose four

benchmark models, iCluster+ (Mo et al., 2013), iClusterBayes (Mo
et al., 2018), Spectrum (John et al., 2019), and SNF (Wang et al.,
2014), and their codes are available in R (R Core Team, 2022). To
show the effectiveness of SmCCNet as a feature selector, we also
applied Spectrum and SNF on the features selected by SmCCNet,
i.e., model “SmCCNet-Spectrum” and “SmCCNet-SNF’. Finally, as
an alternative to our proposed framework, we replaced hierarchical
clustering with spectral clustering as the last step of netMUG,
leading to the model ‘SmCCNet-ISN-SC’.

As shown in Figure 2 (exact values are listed in Supplementary
Table S1), all baseline models performed poorly in terms of ARI. The
p-values for models with PCA on singleX and both views were lower
than 0.05 but did not convey a big difference on the plot. Among the
benchmarks, SNF outperformed iCluster+, iClusterBayes, and
Spectrum. With features selected by SmCCNet, the performances
of both Spectrum and SNF were substantially improved, implying
the necessity of feature selection on high-dimensional and noisy

FIGURE 8
Filtration curves of ISNs grouped by the derived clustering. Every line linking the bottom-left and upper-right corners shows themean filtration curve
of each cluster. The vertical lines are the standard deviation of the function values at each threshold within each cluster.
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data. Integrating SmCCNet, ISN, and Dynamic Tree Cut, netMUG
achieved the best p-value and ARI results. It retrieved the clustering
of phenotype for the complex multi-view data we simulated.

The runtime of each method (Supplementary Table S1) shows
that all baseline models spent less than half a minute and PCA
brought an acceleration in speed for fewer features. iCluster+ and
iClusterBayes spent much more time than Spectrum and SNF,
without an improvement in performance. The SmCCNet feature
selection step took 33 min on its own, which became the bottleneck
of all the SmCCNet-based models (‘SmCCNet-Spectrum’,
‘SmCCNet-SNF’, ‘SmCCNet-ISN-SC’, and netMUG). This is
mostly due to the subsampling scheme and the full SVD
computation within SmCCNet.

3.2 Case study

To exemplify netMUG, we used a multi-view dataset of
4,680 individuals of recent European ancestry recruited from
three independent studies in the US: 3D Facial Norms cohort
(PITT), Pennsylvania State University (PSU), and Indiana
University-Purdue University Indianapolis (IUPUI) (White et al.,
2021). For each individual, facial images and genomic data were
collected along with extra information, including age, sex, height,
and weight. BMI was computed as BMI � weight(kg)/height(m)2.
Because both facial and genomic data are high-dimensional, we
converted them separately into low-dimensional PC spaces before
feeding them into a netMUG pipeline. More specifically, the
genomic and facial data views had 60,731 and 1,163 PCs as
features, respectively.

We interpreted netMUG analysis results at two levels: at the all-
samples level, hereafter referred to as “group-level”, and at the level
of clustered individuals. Group-level interpretation refers to
describing the multi-view features selected by SmCCNet. In
addition, we assessed the overlap between SmCCNet-selected
genes and genes found by a genome-wide association study
(GWAS) or DisGeNET database. Cluster-level interpretations
were made by evaluating the association between the final
clustering and BMI and the characterization of every cluster in
terms of facial or genetic characteristics. Finally, we applied graph
filtration curves to represent and visualize ISNs in 2D space (O’Bray
et al., 2021).

Two flavors of netMUG were implemented: one with SmCCNet
informed by BMI as an extraneous variable, and one without such
information.

3.2.1 Group-level interpretation
Informed by BMI. We chose the two sparsity parameters for

SmCCNet, namely, c1 and c2 in Eq. 5, via 5-fold cross-validation,
predicting the canonical correlation. The subsampling
proportions were determined as 50% and 90% for genomic
and facial data because of their substantial dimensional
differences. We then computed the average canonical weights
over 500 subsampling runs to derive the similarity matrix �S. Three
modules with 316 PCs (see Methods “Data representation”) were
found by cutting the hierarchical tree at a height very close to 1
(0.999) and discarding modules with a single feature or features
from a single view. The cutting threshold was determined

following Shi WJ et al. (Shi et al., 2019). The selected features
from the retained modules comprised 278 genes and 26 facial
segments. All the subsequent analyses were performed on these
features unless mentioned otherwise. One of the most well-
known obesity-related genes, FTO (Fawcett and Barroso,
2010), was on the gene list. Another essential gene for obesity,
MC4R (Loos et al., 2008) was not selected because it was filtered
out for having less than three SNPs mapped. A recent epistasis
analysis found two pairs of SNPs whose interactions were
associated with BMI (FTO–MC4R and RHBDD1 – MAPK1)
(D’Silva et al., 2022). SmCCNet did not detect RHBDD1 or
MAPK1, possibly caused by CCA’s focus on inter-modal rather
than intra-modal interactions.

GWAS detected 155 SNPs significantly associated with BMI
mapped to 95 protein-coding genes (p-value < 0.05 adjusted by false
discovery rate, or FDR). Out of these 95 genes, 16 (16.8%) were in
common with the 278 genes selected by SmCCNet (Figure 3, set A
and D), confirming the agreement between SmCCNet and GWAS
but also explaining their differences in the involvement of facial
information.

We found 1,014 genes from DisGeNET associated with BMI
with a gene-disease association (GDA) score≥0.1 (Piñero et al.,
2019), of which 873 were protein-coding genes. Of the 873 genes, 28
(3.2%) also appeared in the 278 genes selected by SmCCNet
(Figure 3, set B and D). The hypergeometric test showed that the
DisGeNET gene set was significantly enriched in the gene set from
SmCCNet (p-value = 6.0 ×10−5).

Uninformed by BMI. A total of 329 features were selected by the
uninformed SmCCNet, resulting in 200 genes and 50 facial
segments. Of the 200 genes, 157 (78.5%) were shared between
the standard and the uninformed SmCCNet (Figure 3, set C and
D). However, the uninformed SmCCNet found fewer GWAS genes
(4) and DisGeNET genes (14) than informed SmCCNet (Figure 3,
set A, B, and C). Furthermore, a lower percentage of BMI-related
genes were selected by uninformed SmCCNet (2% in GWAS and 7%
in DisGeNET) than informed SmCCNet (6% in GWAS and 10% in
DisGeNET), highlighting the merits of supervised analysis.

We also looked at the top 1% of connections between genes and
facial segments in the features selected by informed SmCCNet
(Figure 4). It was clearly shown that the full face has high
relatedness with all genes, indicating that those genes are
primarily associated with facial morphology globally. On a local
level, the selected genes are most strongly connected with the eyes
(with the temporal area) and chin, in line with the fact that they are
known facial signals of obesity. AATK and CD226 are the genes with
the most top connections. AATK plays a role in neuronal
differentiation and has been known to be highly associated with
BMI (Zhu et al., 2020). CD226 encodes a glycoprotein expressed on
the surface of blood cells and is related to colorectal cancer
(Storojeva et al., 2005), which could be a potential biomarker of
obesity. Furthermore, APOBEC3A, DNAJC5B, and NGFR all affect
body height and BMI (Kichaev et al., 2019).

3.2.2 Cluster-level interpretation
netMUG automatically detected five clusters with

significantly different BMI distributions given the
Kruskal–Wallis test (p-value = 7.4 ×10−150) (Figure 5). The
derived clustering is much more significantly associated with

Frontiers in Genetics frontiersin.org11

Li et al. 10.3389/fgene.2023.1286800

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1286800


BMI than the clustering uninformed by BMI (p-value =
1.8 ×10−17). Clusters 4 and 5 are the two outstanding
subgroups, and both fall into the classic category of ‘obese.’
(WHO Global InfoBase team, 2005). Nevertheless, as clearly
shown in Figure 5, our clustering provides higher granularity
on the obese subgroup, which is desired because it can lead to
more precise identification and better characterization of obese
people. Cluster 1 contains roughly half the people in the dataset,
and it substantially follows the distribution of the whole
population with most normal and normal-to-overweight
individuals. Clusters 2 and 3 have similar bimodal
distributions with different deviations. The two peaks of
cluster 3 are further away from the center than cluster 2.
Jointly looking at clusters 1, 2, and 3, they classify individuals
by how far they are from the ‘population normal’ while treating
underweight and overweight indifferently. This behavior suggests
that underweight and overweight people deviate from the normal
condition similarly in terms of multi-view interactions, which
may be related to, e.g., the double burden of malnutrition. It has
been shown that some crucial vitamins and minerals can affect
both underweight and overweight individuals.

Next, we look at the genetic and facial characteristics of the
identified clusters. The average facial shapes per cluster are depicted
in Figure 6 and largely follow the profile of mean BMI across clusters
(Figure 5). Again, clusters 4 and 5 stand out compared to clusters
1–3. Superposition of the average faces shows pronounced areas on
the forehead or the chin for cluster 4 individuals, whereas cheek and
eye areas are most responsible for cluster 5 differences in the rest of
the samples. Cluster one to three faces have pronounced features
around the nose and mouth.

For individuals within every cluster, we averaged their
corresponding ISNs and binarized the mean ISNs, with the top
1% edge weights being 1 and the rest 0. Subsequently, we computed
the largest connected component (LCC) from every binary
network, resulting in LCCs of 86, 129, 144, 112, and 136 nodes
(68, 114, 119, 94, and 118 genes) for the five clusters, respectively
(Figure 7). The genes MIGA1, CACNA1B, and SLC38A8 were
common to all clusters. MIGA1 regulates mitochondrial fusion
and shows a strong relationship with BMI according to the GWAS
Catalog (scoring 14.0) (Zhu et al., 2020). CACNA1B encodes a
voltage-gated calcium channel subunit and GWAS Catalog records
a strong association (scoring 12.2) between CACNA1B and acute
myeloid leukemia (Lv et al., 2017), for which BMI is a known risk
factor. SLC38A8 has a high GWAS Catalog score (14.1) with
adiponectin measurement (Spracklen et al., 2019), which
directly affects insulin sensitivity and obesity, and a strong
association with eye diseases, e.g., foveal hypoplasia 2 and
anterior segment dysgenesis. The link from gene SLC38A8 to
both obesity and facial features may imply a novel relationship
between obesity and facial morphology.

To further investigate the genes exclusively extracted from each
subgroup, i.e., subtype-specific genes, cluster 4 has the most subtype-
specific genes (24) and also has the highest proportion (25%) of all the
genes in its LCC, followed by cluster 5 with 21 unique genes (17.8%).
This observation is in line with the distinctive BMI distributions for
these clusters. Meanwhile, there are only five genes specific to cluster 1
(7.4% of 68 genes in the LCC of cluster 1), suggesting that cluster
1 represents the “population normal.”

One or more Reactome pathways were significantly enriched in
genes that were specific to a cluster, except for cluster 5 (Table 1).
The reason may be that genes enriching cluster 5 were also obtained
in other clusters, so they were not considered specific to cluster 5.
Another possibility is that those 21 genes exclusively in cluster 5 are
too functionally diverse as obesity is involved in many different
biological pathways.

3.2.3 ISN-level interpretation
With the mean node degree of the largest connected component

being the function to describe a graph, the filtration curves of ISNs
exhibited notable variation in their evolution trajectory, which
implies the ability of ISNs to exploit the between-individual
heterogeneity (Supplementary Figure S2). If we group the
filtration curves by the netMUG-derived clustering, their values
are significantly different at most edge thresholds (Figure 8).
Clusters 4 and 5 have higher mean degree values overall than the
rest along the graph evolution, indicating that their ISNs are
depicted by more densely connected components. This result is
in line with the association between BMI and every cluster (Figure 5)
in the sense that people with severe obesity (clusters 4 and 5) show
more prominent characteristics than normal or slightly overweight
people (clusters 1, 2, and 3). The ISN-level results both mean that
average degree is a good descriptor for ISNs and confirm that the
clusters differ in terms of intrinsic graph properties, e.g., average
degree.

4 Discussion

In this study, we introduced netMUG, a multi-view clustering
strategy that links population-based networks to individual-
specific networks, possibly informed by an extraneous
variable. Synthetic data analysis showed promising
outperformance of netMUG compared to baseline and
benchmark multi-view clustering methods. An application to
real-life cohort data and exploiting extraneous information via
BMI revealed a refined classification of obese individuals and an
increased understanding of genetic and facial segments linked to
BMI-induced subgroups.

Because our workflow is highly modular, various extensions or
adaptions can be implemented, at the discretion of the user. Here, we
presented a basic version. Modifications can be made at several
levels, which will be covered in the following paragraphs.

At the level of the data input, a single data view can be
considered, single or multiple extraneous variables can be
informative, and missing values can be inferred by imputation.
Single-view netMUG replaces its basic SmCCNet
implementation with one that targets a single dataset only.
With multiple extraneous variables (for instance a symptom
set of variables), weight optimization (in Eq. 5) is affected via
prior knowledge or cross-validation. When adopting imputation
strategies, it is important to account for within- and between-
data relationships. We refer to (Song et al., 2020), who reviewed
integrative imputation strategies for multi-omics datasets. Some
of the proposed strategies may also apply to highly heterogeneous
omics/non-omics mixed data. These include deep learning-
inspired approaches. In addition, the data representation may
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be impacted by different numbers of PCs or more complex
component summaries. We considered diffusion kernel PCA
(Walakira et al., 2022), which nonlinearly exploits the graphic
structure in the data. However, it is computationally intensive
and requires extra hyperparameter tuning, and therefore, was
discarded in this study.

Furthermore, adaptions are possible at the level of computing
relationships between sets of variables. For instance, structural
equation models (SEMs) can be used to conduct CCA in the
presence of missing data (Lu, 2019). It needs more work to see
how sparsity and supervision are best introduced in SEMs as in
sparse CCA, which was key to SmCCNet (Shi et al., 2019). For a
review of sparse CCA extension to genomic data, we refer to Witten
and Tibshirani (2009). Ideas on sparse supervised CCA and sparse
multiple CCA (more than two data views) pave the way for extended
applications of netMUG, for instance via the R function MultiCCA
(Witten et al., 2009).

Once a filtered heterogeneous network is obtained, its nodes can
serve as a template for constructing individual-specific edges. It is up
to the user to define the most appropriate measure of association.
Our analyses on real-life datasets showed a benefit to including the
extraneous data in this measure (here in this work: BMI). The
appropriateness of a measure of association between features is
context-dependent. For instance, a microbial co-occurrence
network has been utilized for building ISNs with microbiome
data (Yousefi et al., 2023).

At the level of sample clustering, multiple graph clustering
algorithms can be used. The diversity in algorithms is in part due
to the many ways distance or similarity between graphs (here:
ISNs) can be defined. Examples include edge difference distance
or graph diffusion distance. These options and many more are
discussed in a study by Kriege et al. (2020). The basic version of
netMUG represents ISNs as points in a high-dimensional
Euclidean space (axes refer to edges) and implements Ward’s
minimum variance hierarchical clustering method. The initial
cluster distance is taken to be the squared Euclidean distance
between points. As a potential replacement for Ward, a recently
published linkage method, k-centroid, takes the samples around
cluster centers into consideration and exhibits better
performance than conventional methods (Dogan and Birant,
2022).

Several measures can be taken to further increase the
robustness of netMUG. Our choice is to adopt the
subsampling feature in SmCCNet, i.e., SmCCA is run multiple
times, each time on a random subset of features. It relates to
increasing the robustness of feature selection. Robustness may
also be increased at the clustering level by fusing a variety of
clustering algorithms or settings within a multiple clustering
protocol (Zhang and Li, 2011). Deriving the optimal number
of clusters via Dynamic Tree Cut settings or computationally
more intensive multiscale bootstrap resampling may be included
in such a protocol. Alternatively, the hierarchical clustering
process and significance assessment are intertwined as in
netANOVA (Duroux and Van Steen, 2022), with promising
performance for ISNs.

We illustrated netMUG on cohort data, with BMI as
extraneous information. Alternative applications of netMUG
include disease subtyping and studies that explore the impact

of confounders on clustering results. The latter studies can be
carried out by comparing supervised (i.e., with the confounders
or extraneous information) and unsupervised netMUG
(i.e., without Z in Eq. 5). Our evaluation dataset consists of a
large number of individuals and features and has been properly
pre-processed by experts, contributing to the high clustering
performance. A potential improvement could be achieved in
the genotype imputation, which is essential for the quality and
quantity of genetic data.

In conclusion, our proposed netMUG method exploits
population-based and individual-specific network analyses to
construct and interpret multi-view clusters. It takes advantage of
SmCCNet for multi-view data integration, ISN for individual-
specific network representation, and Ward’s hierarchical
clustering for cluster analysis. Clusters may or may not be
supervised using extraneous data. The modular build-up of the
workflow easily allows customization at several steps in the
workflow, for instance, going beyond two data views. In the
future, we will apply netMUG on other multi-view patient
datasets for exploring disease subtyping and facilitating precision
medicine, e.g., using RNA-Seq data and histopathology images for
cancer subtyping.
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