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Editorial on the Research Topic
Statistical methods for genome-wide association studies (GWAS) and
transcriptome-wide association studies (TWAS) and their applications

Introduction

The Genome-Wide Association Studies (GWAS) has proven highly successful in
identifying millions of risk loci associated with various diseases in the past 15 years
(Klein et al., 2005). With the rapid accumulation of GWAS summary-level data,
biologists now have expanded opportunities to uncover new disease-associated variants
and gain insights into the mechanisms underlying complex human diseases (Michailidou
et al., 2017; Sud et al., 2017; Zhang et al., 2020). While GWAS is a powerful tool, it faces
challenges in pinpointing candidate disease risk genes. For instance, many disease-associated
variants reside in non-coding regions, complicating the identification of their regulatory
genes and underlying mechanisms due to the likely cell-type, context, and disease-specific
effects of non-coding causal variants (Kossinna et al., 2022). On the other hand, GWAS finds
it hard to distinguish between causal variant signals and significance signals in high Linkage
Disequilibrium (LD) regions, leading to poor interpretation of GWAS signals (Christoforou
et al., 2012; Cao et al., 2021a).

In response to these challenges, several post-GWAS methods have emerged, including
Transcriptome-Wide Association Studies (TWAS) (Gamazon et al., 2015; Cao et al., 2021b;
Cao et al., 2022; He et al., 2022), Proteome-Wide Association Study (PWAS) (Brandes et al.,
2020), and Summary Data-BasedMendelian Randomization (SMR) (Zhu et al., 2016). These
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methods serve as potent tools for discovering candidate disease risk
genes, offering benefits such as enhanced statistical power, improved
interpretability, and reduced computational costs. In recent years,
numerous studies have adopted GWAS, TWAS, and SMR to delve
into the intricate biological mechanisms of diseases (Baca et al.,
2022).

Causal variants in multiple traits

Untangling causal signals from mere associations in GWAS
presents a big challenge. Techniques such as fine mapping,
Mendelian randomization, and TWAS have risen to address this
challenge, facilitating the translation of GWAS findings into a
functional understanding of associated traits. In this Research
Topic of Frontiers in Genetics, six research articles demonstrate
the efficacy of these techniques. For instance, Lu et al. utilized
meticulous fine mapping to identify the rs7175517 variant as related
to Body Mass Index (BMI) across diverse populations, offering fresh
insights into the global obesity epidemic. In another study, Chen
et al. used blood proteins as traits in GWAS, employing a two-
sample Mendelian randomization analysis to identify causal
proteins linked to sarcopenia-related traits. This not only
identified potential therapeutic targets but also shed light on
underlying genetic factors. In a separate investigation, Lu et al.
focused on celiac disease, a comprehensive strategy involving TWAS
and chemical-gene interaction analyses unveiled celiac disease-
related genes and chemicals, providing valuable insights at both
the genetics and environmental levels.

Various tools in genome-wide
association studies

Another critical aspect of identifying disease-associated genes
involves prioritizing trait-specific tissues, which may lead to
differences in gene expression and variant regulation. To address
this, Ghaffar and Nyholt developed a method called genome-wide
imputed differential expression enrichment (GIDEE). GIDEE
prioritizes pathogenic tissues by analyzing the enrichment of
differentially expressed genes in each tissue. Additionally, the
relationship between diseases plays a key role in identifying
variants shared across multiple traits or diseases. To tackle this
challenge, graph-GPA 2.0 (GGPA 2.0) was proposed by Deng et al. It
integrates GWAS datasets of multiple diseases and utilizes
functional annotations within a unified framework, successfully
detecting pleiotropy between bipolar disorder and schizophrenia.
Furthermore, a Visual SNP interpretation tool named SNPMap was
proposed by Liu et al. to illustrate semantic relations between SNPs
and traits, significance, and SNP-related information. This tool aids

researchers in better understanding the link between genetic
variation and disease risk.

Conclusion

Together, these articles reveal the significant potential of
identifying disease susceptibility genes, understanding disease
mechanisms, and discovering drug targets using GWAS and
post-GWAS tools. They provide valuable knowledge resources for
future medical research and clinical applications.
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