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Osteosarcoma is one of the most common malignant bone tumors with high
chemoresistance and poor prognosis, exhibiting abnormal gene regulation and
epigenetic events. Methotrexate (MTX) is often used as a primary agent in
neoadjuvant chemotherapy for osteosarcoma; However, the high dosage of
methotrexate and strong drug resistance limit its therapeutic efficacy and
application prospects. Studies have shown that abnormal expression and
dysfunction of some coding or non-coding RNAs (e.g., DNA methylation and
microRNA) affect key features of osteosarcoma progression, such as proliferation,
migration, invasion, and drug resistance. Comprehensive multi-omics analysis is
critical to understand its chemoresistant and pathogenic mechanisms. Currently,
the network analysis-based non-negativematrix factorization (netNMF) method is
widely used for multi-omics data fusion analysis. However, the effects of data
noise and inflexible settings of regularization parameters affect its performance,
while integrating and processing different types of genetic data is also a challenge.
In this study, we introduced a novel adaptive total variation netNMF (ATV-netNMF)
method to identify feature modules and characteristic genes by integrating
methylation and gene expression data, which can adaptively choose an
anisotropic smoothing scheme to denoise or preserve feature details based on
the gradient information of the data by introducing an adaptive total variation
constraint in netNMF. By comparing with other similar methods, the results
showed that the proposed method could extract multi-omics fusion features
more effectively. Furthermore, by combining the mRNA and miRNA data of
methotrexate (MTX) resistance with the extracted feature genes, four genes,
Carboxypeptidase E (CPE), LIM, SH3 protein 1 (LASP1), Pyruvate Dehydrogenase
Kinase 1 (PDK1) and Serine beta-lactamase-like protein (LACTB) were finally
identified. The results showed that the gene signature could reliably predict
the prognostic status and immune status of osteosarcoma patients.
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1 Introduction

Osteosarcoma is one of the most common malignant bone
cancers, accounting for approximately 30% of all osteosarcomas
and mainly affecting children and adolescents, with a peak incidence
at age 18 (Sadykova et al., 2020). Neoadjuvant chemotherapy (NAC)
consisting of methotrexate, doxorubicin (also known as
adriamycin), and cisplatin is referred to as MAP (Benjamin,
2020). The combination of NAC and surgical resection has
significantly increased the 5-year survival rate for patients with
osteosarcoma from 20% to 70% (Chen et al., 2021). However, up to
20% of patients develop resistance to this treatment regimen (Bacci
et al., 2000), and their 5-year survival rate is extremely poor, at
around 20% (Prudowsky and Yustein, 2020). Therefore,
comprehensive analysis of multi-omics genetic data of
osteosarcoma, screening for differentially expressed genes (DEGs)
associated with drug resistance and analysis of the impact of DEGs
on prognosis are essential for finding new targets to improve overall
survival and reverse drug resistance.

Malignant osteosarcoma cells are strongly associated with
chemoresistance, recurrence, and metastatic processes (Schiavone
et al., 2019; Mutsaers and Walkley, 2014), and osteosarcomas have
significant heterogeneity at the genomic, transcriptomic, and
epigenetic levels resulting from abnormal epigenetic
modifications (Sun et al., 2023). For example, methylation levels
and miRNA dysfunction have been identified as characteristic
events in human osteosarcoma cell lines, with higher methylation
events associated with more severe phenotypes (de Azevedo et al.,
2019). Abnormal DNA methylation can affect gene expression, cell
cycle, and apoptosis and regulate the development and progression
of osteosarcoma by inhibiting transcription (Wang et al., 2020).
miRNAs (microRNAs) are endogenous small non-coding RNAs
that play critical regulatory roles in various biological processes,
including differentiation, cell proliferation, cell cycle control,
apoptosis, drug resistance, and innate immunity (Mens and
Ghanbari, 2018; Patil et al., 2013). Although many studies have
identified DNA methylation in osteosarcoma as an important
therapeutic target, the reasons why DNA methylation, miRNAs,
and target genes combine to lead to chemoresistance and poorer
prognosis remain to be determined.

Currently, non-negative matrix factorization (NMF) and its
various improvements are widely used in a single type of genetic
data analysis. For example, Lei et al. applied NMF to osteosarcoma
gene data analysis and identified molecular subgroups with different
Ferroptosis-related gene expression patterns (Lei et al., 2021). Jiao
et al. proposed a hypergraph regularization constraint-based NMF
method (HC-NMF) to select differentially expressed genes and
classify tumor samples (Jiao et al., 2020). Leng et al. proposed an
adaptive total-variance constraint-based NMF method (ATV-
NMF), which can adaptively denoise or maintain feature details
based on gradient information (Leng et al., 2017). Zhu et al. applied
ATV-NMF to single-cell sequencing data clustering and achieved
accurate results in cell subpopulation clustering and the
identification of marker genes (Zhu et al., 2021). However, these
improved NMF-based methods do not consider the relationship
between different types of genetic data and cannot integrate and
decompose different types of genetic data simultaneously. To
address this issue, Zhang et al. used a joint NMF (jNMF)

approach to integrate DNA methylation (ME), GE, and miRNA
expression data from ovarian cancer to identify ovarian cancer-
related multi-dimensional modules (Zhang et al., 2012). Liu et al.
proposed a TriNMF-based network-assisted co-clustering method
for cancer subtype identification (NCIS) that incorporates molecular
interaction networks into the clustering process to improve the
identification of cancer subtypes (Liu et al., 2014; Ding et al., 2006).
Chen proposed the netNMFmethod based on NMF using a network
framework to identify co-expression modules of two different types
of genetic data (Chen and Zhang, 2018). NetNMF uses the
decomposed submatrices to construct co-expression networks,
which may weaken the connectivity of the nodes in the network.
Therefore, Zhuang et al. proposed a hypergraph regularization
constraint-based netNMF method (HG-netNMF) (Zhuang et al.,
2023), and Ding et al. proposed a graph regularization-based
netNMF method (NMFNA), both of which can better mine
higher-order features between two genetic data compared to
netNMF (Ding et al., 2021). The above NMF-based network
analysis method provides an effective way to understand the
interactions of different genetic data to understand the
pathogenic mechanisms of cancer.

In this study, we proposed an improved NMF network analysis
method (ATV-netNMF) to integrate DNA methylation and gene
expression data. On this basis, combined with the miRNA and
mRNA data of MTX resistance, we built a signature of MTXDEGs
that predicted the prognosis of osteosarcoma, and the results
revealed that the high-risk group had fewer immune cells and a
lower degree of immune infiltration, which could lead to a poor
prognosis.

2 Materials and methods

2.1 Workflow of this study

This study is mainly divided into three stages, in the first
stage, to efficiently fuse methylation and gene expression data,
the proposed ATV-netNMF was applied to two types of genetic
data to identify co-expression networks and core gene modules
that are strongly associated with variation in both data.
Furthermore, the core module was analyzed by KEGG and GO
enrichment to compare with other methods based on the number
of pathways enriched and pathway significance (Figure 1A). In
the second stage, considering the degradation and inhibitory
effects of miRNAs, target genes were predicted using upregulated
miRNAs intersecting with downregulated genes and core module
genes taken as target genes regulated by MTX-resistant miRNAs.
Genes highly expressed in MTX-resistant osteosarcoma cells
were obtained using the intersection of upregulated genes and
core module genes. Finally, the two parts of genes were
considered together as MTXDEGs. Then, the extracted
MTXDEGs were used to construct the gene signature and
calculate the risk scores, which were validated for their
predictive performance using an independent dataset
(Figure 1B). In the third stage, the risk scores were used to
classify the samples into high-risk and low-risk groups for
functional analysis, immune infiltration analysis, and drug
sensitivity analysis (Figure 1C).
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2.2 Data sources

82 osteosarcoma patients with complete clinical characteristics,
methylation data, and gene expression data were obtained from the
TARGET database (https://portal.gdc.cancer.gov/) as the training
cohort, and 53 osteosarcoma patients with RNA-seq and clinical
characteristics from GSE21257 in the GEO database (https://www.
ncbi.nlm.nih.gov/geo) as the validation cohort. GSE16089 (Selga
et al., 2009) and GSE223857 (Zhang et al., 2023a) included three
methotrexate-resistant and three methotrexate-sensitive
osteosarcomas mRNA and miRNA data in the GEO database.

2.3 Adaptive total-variation constrained
based netNMF

The typical NMF (Lee and Seung, 1999) decomposes the
nonnegative matrix Vm×n into two nonnegative matrices Wm×k and
Hk×n, whereWm×k is the basis matrix and Hk×n is the loading matrix,
such that V ≈ WH, where k<min(m,n). To minimize the
factorization error between V and WH, which can be written as,

min
W ,H

V −WH‖ ‖2F (1)

s.t.W ≥ 0,H ≥ 0

On the basis of two and three-factor NMF(V ≈ FSG) (Ding
et al., 2006), if V is a symmetric similarity matrix, it could be
decomposed into GSGT . For biological networks with the
same samples but with two different types of features,
combining the above ideas, netNMF (Chen and Zhang,
2018) is defined as,

min
G1,G2, S11, S22

R11 − G1S11G
T
1

���� ����2F + λ1 R12 − G1G
T
2

���� ����2F + λ2 R22 − G2S22G
T
2

���� ����2F
s.t.G1 ≥ 0,G2 ≥ 0, S11 ≥ 0, S22 ≥ 0 (2)

NMFNA (Ding et al., 2021) applies graph regularization
constraints in netNMF that can discover and enhance the
inherent geometric data structure and improve the ability to
identify modules. Based on netNMF and graph regularization
constraints, the objective function of NMFNA is defined as,

min
G1,G2, S11, S22

R11 − G1S11G
T
1

���� ����2F + α R12 − G1G
T
2

���� ����2F + β R22 − G2S22G
T
2

���� ����2F
+∑2

i�1λiTr GT
i LiGi( )

s.t.G1 ≥ 0,G2 ≥ 0, S11 ≥ 0, S22 ≥ 0 (3)

where Rn1×n1
11 and Rn2×n2

22 are the autocorrelation matrices of X1 andX2

which are symmetric similarity matrices corresponding to the two

FIGURE 1
Workflow of this study. (A) Co-expression network analysis. (B) Identification of MTXDEGs and gene signature construction. (C) Functional analysis,
immune infiltration analysis and drug sensitivity analysis.
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features, and Rn1×n2
12 is the intercorrelation matrix between them, which

are all non-negative; Gn1×k
1 and Gn2×k

1 are non-negative matrices
identifying the feature modules in their respective networks. Sk×k11 and
Sk×k22 are symmetric non-negative decomposition matrices; k is a
prespecified dimensionality reduction parameter; L is the graph
Laplacian matrix; λ is used to adjust the strength of the graph
regularization constraint; α and β are used to balance the first three
terms of the objective function, which are set to n1/n2 and (n1/n2)2 by
default.

In order to better remove data noise and retain key feature
details, we propose the ATV-netNMF method, which can improve
the tolerance of the algorithm to noise and improve the performance
of the algorithm by introducing adaptive total-variation constraint
on NMFNA. Adaptive total variation (Leng et al., 2017; Levine,
2005) can be adapted based on gradient information for denoising or
preserving feature details, which can be illustrated as,

E G( ) � G‖ ‖ATV � ∫
Ω

1
p x, y( ) G| |p x,y( )dxdy (4)

p x, y( ) � 1 + 1 + G| |2( )−1, 1<p x, y( )< 2 (5)
where E is the energy function of G, ‖G‖ATV �
∫Ω

1
p(x,y)|∇G|p(x,y)dxdy represents the adaptive total-variation

regularization term, and (∇G)(i, j) � ((∂xG)(i, j), (∂yG)(i, j)) is
the discrete gradient form with ((∂xG)(i, j), (∂yG)(i, j)), is
given by

∂xG( ) i, j( ) � G i + 1, j( ) − G i, j( ) if i< r
G 1, j( ) − G r, j( ) if i � r

{ (6)

∂yG( ) i, j( ) � G i, j � 1( ) − G i, j( ) if j< n
G i, 1( ) − G i, n( ) if j � n

{ (7)

Based on the NMFNA and the adaptive total variation
constraint, the objective function of the ATV-netNMF is
defined as,

min

G1,G2, S11, S22
R11 − G1S11G

T
1

���� ����2F + α R12 − G1G
T
2

���� ����2F + β R22 − G2S22G
T
2

���� ����2F
+∑2

i�1 λiTr GT
i LiGi( ) + 2 Gi‖ ‖ATV[ ]
s.t.G1 ≥ 0,G2 ≥ 0, S11 ≥ 0, S22 ≥ 0

(8)
Where R11 andR22 are ME and GE co-expression networks,

R12 is ME-GE co-expression network, other symbolic meanings
and parameter settings are the same as NMFNA.

This study uses the multiplicative iterative update algorithm
to minimize the objective function of ATV-netNMF. Suppose
B1,B2,B3 andB4 are matrices of Lagrange multipliers which
constrain S11 ≥ 0, S22 ≥ 0,G1 ≥ 0 andG2 ≥ 0 respectively, and the
Lagrangian function f of ATV-netNMF is

f � tr R11 − G1S11G
T
1( )T R11 − G1S11G

T
1( )( )

+αtr R12 − G1G
T
2( )T R12 − G1G

T
2( )( )

+βtr R22 − G2S22G
T
2( )T R22 − G2S22G

T
2( )( ) + λ1Tr GT

1 L1G1( )
+λ2Tr GT

2 L2G2( ) + 2 G1‖ ‖ATV + 2 G2‖ ‖ATV + tr BT
1 S11( )

+tr BT
2 S22( ) + tr BT

3G1( ) + tr BT
4G2( ) (9)

Thus, the partial derivatives of f with respect to
S11, S22,G1, andG2 are,

∂f
∂S11

� −2GT
1R11G1 + 2GT

1G1S11G
T
1G1 + B1 (10)

∂f
∂S22

� −2GT
2R22G2 + 2GT

2G2S22G
T
2G2 + B2 (11)

∂f
∂G1

� 4 G1S11G
T
1G1S11 − R11G1S11( ) + 2α G1G

T
2G2 − R12G2( )

+ 2λ1L1G1 − 2div
G1

G1| |2−p( ) + B3 (12)

∂f
∂G2

� 4β G2S22G
T
2G2S22 − R22G2S22( ) + 2α G2G

T
1G1 − R12G1( )

+ 2λ2L2G2 − 2div
G2

G2| |2−p( ) + B4

(13)
Let B1S11 � 0,B2S22 � 0,B3G1 � 0,B4G2 � 0, the iterative

formula can be written as,

S11( )kk ← S11( )kk
GT

1R11G1( )kk
GT

1G1S11GT
1G1( )kk (14)

S22( )kk ← S22( )kk
GT

2R22G2( )kk
GT

2G2S22GT
2G2( )kk (15)

g1( )ik ← g1( )ik
αR12G2 + 2R11G1S11 + div G1

G1| |2−p( )( )
ik

2G1S11GT
1G1S11 + αG1GT

2G2 + 2λ1L1G1( )ik (16)

g2( )kj ← g2( )kj
αR12G1 + 2βR22G2S22 + div G2

G2| |2−p( )( )
kj

2βG2S22GT
2G2S22 + αG2GT

1G1 + 2λ2L2G2( )kj (17)

Where div denotes the divergence of the matrix, G denotes
the gradient of the matrix, and |G| denotes the norm of the
gradient of the matrix. The adaptive total variation regularization
includes a diffusion coefficient 1

|G|2−p in Eqs 18, 19, which controls
the data diffusion rate based on gradient information. For data
edges, larger values of |G|2−p and smaller values of 1

|G|2−p help to
maintain the edges. In data smoothing regions, smaller values of
|G|2−p and larger values of 1

|G|2−p help to remove noise (Leng
et al., 2017). ATV can preserve or enhance data features while
removing noise. The overall workflow of ATV-netNMF is shown
in (Figure 2A). Firstly, three co-expression networks are
constructed using ME and GE data. Then the network is
decomposed using the objective function to identify the co-
expression modules under the guidance of G1 and G2

(Figure 2B), z-scores of each column vector of gi are
calculated as follows.

g* � g − �g
1

n−1∑i gi − �g( )2 (18)

�g � 1
n
∑

i
gi (19)

The genes with each column weight greater than or equal to the
threshold are used as module members, the threshold is set to 2, and
the module with the most genes called the core module according to
the previous study (Ding et al., 2021).
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2.4 Analysis of differentially expressed genes
(DEGs) and miRNAs (DE-miRNAs)

The R package “limma” (Chen et al., 2022) was used to find
differentially expressed genes and miRNAs between methotrexate-
resistant and sensitive cells in the GSE16089 and
GSE223857 datasets, with the threshold set to |Log2FC|>1 and p < 0.05.

2.5 Prediction of miRNA targeted genes

The target genes of upregulated miRNAs were predicted by
TargetScan (http://www.targetscan.org/) and miRDB (http://mirdb.
org/miRDB/) online databases, and the screening threshold was set
as the cut-off parameter for TargetScan was the total contex++
score < - 0.05, while miRdb score >50.

FIGURE 2
Workflow of ATV-netNMF. (A) ATV-netNMF decomposes multi-omics data. (B) Identification of co-expression modules.
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2.6 Construction and validation of a MTX
resistance-related signature in
osteosarcoma

Statistically, significant (p < 0.05) MTXDEGs associated with OS
prognosis were obtained by univariate COX regression analysis using the
survival package in R. The least absolute shrinkage and selection operator
(LASSO) regression analysis was performed on prognosis-related
MTXDEGs using the glmnet package in R to reduce the
dimensionality of genes in the model. Subsequently, independent
prognostic genes were screened using multivariate Cox regression
analysis, and regression coefficients for the corresponding genes were
generated. A linear combination of gene expression levels and regression
coefficients created a signaturewith the following formula for the risk score.

Riskscore � ∑n

i�1Exp i( )*coef i( ) (20)

The median of Riskscore was used to determine the best critical
value to classify patients into high-risk and low-risk groups. Kaplan-
Meier survival curves and time-dependent receptor operating
characteristic (ROC) curves were used to assess the predictive
performance of prognostic signatures on overall survival.
GSE21257 was used as a validation set to verify the predictive
performance of the signature.

2.7 Construction of the nomogram based on
prognostic models

Compared with other clinical characteristics (including metastasis,
race, age, and gender), univariate and multivariate COX analyses were
performed to determine the independence of our established gene
signature in predicting overall survival, and p < 0.05 was considered
statistically significant. To predict the prognosis of patients with
osteosarcoma, a nomogram integrating riskscore and clinical
characteristics was constructed, and calibration curves were used to
evaluate the predictive accuracy of the nomogram, which was
constructed from the “rms” R package (Liu et al., 2023a). To estimate
the clinical robustness of the MTX resistance gene signature, decision
curve analysis (DCA)was used to calculate the net benefit of the signature
for different threshold probabilities in the training and validation datasets.

2.8 Functional analysis

The R package limma was used to obtain differential genes
between high-risk and low-risk groups, which were analyzed for GO
and KEGG pathway enrichment using David (the Database for
Annotation, Visualization and Integrated Discovery, https://david.
ncifcrf.gov). The threshold for significantly enriched pathways was
set to p-value <0.05, and the top 20 most significant pathways were
selected.

2.9 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed to identify
pathways enriched in the high-risk and low-risk groups to explore

the relationship between riskscore and biological function, with the
threshold of p < 0.05.

2.10 Evaluation of immune cell infiltration

A single sample gene set enrichment analysis (ssGSEA) (Liu
et al., 2023b) method was used to analyze the differences in
28 immune cell infiltrates between the high-risk and low-risk
groups. Tumor microenvironment analysis was performed on the
gene expression data of osteosarcoma using an R package estimate
(Zhang et al., 2023b) to obtain the immune score, stromal score, and
estimate score for each patient, and the difference in scores between
the high-risk and low-risk groups was analyzed. Correlation between
immune cells and immune scores was performed using the
ggstatsplot R package.

2.11 Drug sensitivity analysis

The OncoPredict (Maeser et al., 2021) R package was used
to predict in vivo drug response in cancer patients, including
half-maximal inhibitory concentration (IC50) values for
189 drugs corresponding to cell lines and a normalized gene
expression matrix for 809 tumor cell lines from the Genomics
of Drug Sensitivity in Cancer (GDSC) database. IC50 values
for the TARGET-OS cohort were predicted using the
oncoPredict method with a significance threshold set at
p < 0.001.

3 Results

3.1 Screening of core modules by ATV-
netNMF

The methylation and gene data of the TARGET-OS cohort had
the same 82 osteosarcoma samples but with different features.
Methylated genes with expression mean values less than
0.25 were filtered out from ME data, 15,819 methylated genes
were retained, and 23,683 mRNAs were filtered out in GE data.
Three co-expression networks were created from these data: ME
network R15819×15819

11 , ME-GE network R15819×23683
12 , and GE network

R23683×23683
22 . Based on the previous study (Zhuang et al., 2023), the

value of dimensionality reduction k generally is at most one-tenth of
the minimum number of samples or features of the network
modules. Therefore, in this study, k is set to 8, and the number
of iterations is set to 200. By running the λ from 0 to 0.1, the highest
module similarity is selected and set to λ1 and λ2, and the module
similarity (Wang et al., 2018) is defined as follows.

msim � ∑
x,y

Mx ∩ My

∣∣∣∣ ∣∣∣∣
min Mx,My

∣∣∣∣ ∣∣∣∣( ) (21)

Mx denotes the members belonging to module x. According to
Figure 3A, λ1、λ2 was set to 0.08. Finally, the core GE module
containing 2810 mRNAs closely related to methylation data and the
ME core module containing 1013 methylation genes were obtained
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by ATV-netNMF integrated analysis. The core gene module was
selected for further analysis.

The top 10 enrichment terms of the core GE modules identified
by ATV-netNMF are shown in Figure 3. The results showed that the
genes were most enriched in terms related to tumor cell function and
immune function. For example, KEGG was mainly enriched to cell
adhesion molecules, osteoclast differentiation, NF-kappa B signaling
pathway, Th17 cell differentiation (Figure 3B), and GOBP was
mainly enriched to inflammatory response, immune response,
cell adhesion, signal transduction (Figure 3C). The above results
indicated that ATV-netNMF could effectively screen the gene

network significantly related to the immune microenvironment of
osteosarcoma.

3.2 Identification of MTXDEGs

The flowchart for the identification of MTXDEGs is shown in
Figure 4A. We analyzed DEGs between methotrexate-resistant and
sensitive osteosarcoma cells using GSE16089 and screened
2397 DEGs, of which 1191 were upregulated and 1206 were
downregulated (Figures 4B, C). Then DE-miRNAs between
methotrexate-resistant and sensitive osteosarcoma cells were
analyzed using GSE223857, and 16 DE-miRNAs were screened,
of which 9 were upregulated and 7 were downregulated (Figures 4D,
E). The upregulated MTX-resistant genes intersected with the core
gene module, finally obtaining 172 highly expressed genes in MTX-
resistant osteosarcoma cells (Figure 4A). Considering the
degradation and translational repression of target genes by
miRNAs, the upregulated miRNAs were used to predict the
regulated target genes and intersected with the downregulated
MTX-resistant genes and the core gene module, and 49 target
genes regulated by MTX-resistant miRNAs were finally identified
(Figure 4A). They were combined to obtain 221 MTXDEGs for
further analysis.

3.3 Construction and validation of a
methotrexate resistance-related signature

We selected 82 samples with complete survival information
from the TARGET-OS cohort for further analysis. To identify
MTXDEGs significantly associated with prognosis, univariate
Cox regression analysis was performed on 221 MTXDEGs,
and 30 MTXDEGs were significantly associated with overall
survival (p < 0.05) (Figure 5A). LASSO regression was then
performed to screen genes for model building, and 10 genes
were screened based on the best λ (Figures 5B, C). Based on the
genes generated by LASSO regression, multivariate Cox
regression identified 4 genes, CPE, LASP1, PDK1, and LACTB,
as hub genes; Based on their expression levels, we developed a
Riskscore signature of:t

Riskscore � 0.482850197357161*CPE

− 0.655999299291687*LASP1

+ 0.44675499776076*PDK1

− 0.591342381951838*LACTB

(22)

The median of Riskscore was used as the threshold for the
high-risk and low-risk groups. The Kaplan-Meier curve showed
that the overall survival of the high-risk group was significantly
lower than that of the low-risk group (p = 0.00055) (Figure 6A).
The AUC of the 1-, 3-, and 5-year ROC curves were 0.73, 0.81,
and 0.83, respectively (Figure 6B). Figure 7 shows the riskscore,
survival status, and expression levels of the four candidate genes
in the training cohort. The high-risk group had significantly
higher risk scores and worse survival status than the low-risk
group (Figures 7A–C). The above results show that the signatures
can reasonably predict the overall survival of osteosarcoma

FIGURE 3
ATV-netNMF parameter setting and the top 10 enrichment
results of the core GE modules identified by ATV-netNMF. (A) Setting
of parameter λ. (B) Results of KEGG enrichment analysis. (C) Results of
GOBP enrichment analysis.
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patients in the training cohort. The validation cohort
GSE21257 also classified patients into high-risk and low-risk
categories using the median Riskscore. The Kaplan-Meier curves
showed that the high-risk group had a shorter survival time
compared to the low-risk group (p = 0.015) (Figure 6C), with
AUC of 0.76, 0.7, and 0.75 for the 1-, 3-, and 5-year ROC curves
(Figure 6D), respectively, which was consistent with the results of
the training cohort. The riskscore and the expression of the 4 hub
genes were also consistent with the training cohort (Figures
7D–F), indicating the prognostic value and reliability of the
signature.

3.4 Construction of the nomogram based on
MTXDEGs signature in TARGET-OS cohort

We used univariate and multivariate Cox regression analyses to
verify whether the Riskscore generated by the 4 genes was an
independent prognostic factor. The results showed that
metastasis (p = 0.003) and Riskscore (p < 0.001) were
independent prognostic factors for osteosarcoma (Figures 8A, B).
We developed a nomogram using Riskscore and clinical data based
on these significant factors (Figure 8C). The accuracy of the
nomogram was evaluated using calibration curves at 1, 3, and

FIGURE 4
Identification of MTXDEGS. (A) Flowchart for identifying MTXDEGs. (B,C) Volcano and heat plot of DEGs. (D,E) Volcano and heat plot of DE-miRNAs.
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5 years (Figure 8D). The results showed that the calibration curves
were very close to the ideal curve (a straight gray line with a slope of
1 through the origin of the coordinate axis). DCA curve was used to
evaluate whether the model contributes to clinical treatment
strategies. When the risk threshold probability varied between
0 and 1, the MTX-resistant gene signature achieved a higher net
benefit in both the training and validation cohorts than the “treat all”
and “treat none” strategies (Figures 8E, F). These results suggest that
the MTX resistance gene signature performs well in clinical
applications.

3.5 Functional analysis

A total of 1033 DEGs were identified between the high-risk and
low-risk groups, which were analyzed for GO and KEGG
enrichment. Figure 9 shows the top 20 most significantly
enriched KEGG pathways and GO biological processes. KEGG
analysis showed that DEGs were mainly enriched in Cytokine-
cytokine receptor interaction, Cell adhesion molecules (CAMs),
Phagosome, and other pathways related to tumor immune cell
function and apoptosis (Figure 9A). GOBP analysis showed that
DEGs were mainly enriched in signal transduction, immune

response, inflammatory response, and other pathways related to
immune function (Figure 9B). We also performed GSEA analysis to
identify the underlying biological processes in the high-risk and low-
risk groups. The results showed that ascorbate_and_aldarate_
metabolism, drug_metabolism_cytochrome_p450, and other
pathways related to metabolic function were enriched in the
high-risk group (Figure 9C), and cell_adhesion_molecules_cams,
chemokine_ signaling_pathway and other pathways related to
immune function were enriched in the low-risk group
(Figure 9D). The above results indicated that Riskscore is
significantly associated with osteosarcoma immune status.

3.6 Immune cell infiltration

To study the differences in immune infiltration between the two
groups of patients, we calculated the immune infiltration scores in
the high- and low-risk groups using the ESTIMATE method. We
noticed that the ImmuneScore, StromalScore, and ESTIMATEScore
were significantly lower in the high-risk group than in the low-risk
group. Riskscore and three immune scores were significantly
negatively correlated (Figure 10A). We performed ssGSEA
analysis and calculated the infiltration abundance of 28 immune

FIGURE 5
Construction of prognostic signature (A) Genes screened in univariate Cox regression (B,C) Best λ for LASSO regression.
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cells. Surprisingly, the infiltration abundance of all 28 immune cells
was lower in the high-risk group, with 23 immune cells being the
most significant (Figure 10B). Among them, the hub genes CPE and
PDK1 were significantly positively correlated with 18 and
12 immune cells, and LACTB and LASP1 were significantly
negatively correlated with 4 and 13 immune cells. Riskscore was
significantly positively correlated with 24 immune cells
(Figure 10C). The heat map (Figure 10D) and the above results
indicated that in the high-risk group, the infiltration of immune cells
was significantly lower, and there were fewer immune cells in the
tumor immune microenvironment, which may lead to a poor
prognosis.

3.7 Drug sensitivity analysis

We further analyzed the response to chemotherapy and targeted
therapy in the high-risk and low-risk groups. With a threshold p <
0.001, the results showed that the high-risk group showed higher
resistance to 20 drugs, and the high-risk group was more sensitive to
only one targeted drug, BI-2536 (Figure 11) [a small molecule
inhibitor against PLK1 with a dual role in inducing apoptosis
and impairing autophagy in neuroblastoma cells (Li et al., 2016)].

4 Discussion

4.1 Comparison of different multi-omics
NMF methods

ATV-netNMF successfully constructed co-expression networks
between methylation and gene expression data, identified
characteristic modules and characterized genes, and identified
osteosarcoma biomarkers. To verify the performance of ATV-
netNMF, we compared it with NMFNA and netNMF. We
performed GO and KEGG enrichment analyses using the core
modules identified by each of them, and the number of pathways
and p-values of the pathways obtained are shown in Figures 12A, B
and Table 1. It can be seen that the ME and GE core modules
identified by ATV-netNMF enriched more pathways, and the
p-values of the significant pathways were lower compared to the
other methods, which suggests that the modules identified by ATV-
netNMF may contain more biological information related to
osteosarcoma, and enriched to more significant pathways. This is
because the basis vectors obtained from ATV-netNMF
decomposition are more sparse than netNMF and NMFNA,
eliminating some noise in the data and enhancing some features
and details.

FIGURE 6
Kaplan-Meier analysis and time-dependent ROC analysis of MTX resistant signature in osteosarcoma. (A,B) Survival and ROC curves in training
cohort (TARGET-OS). (C,D) Survival and ROC curves in validation cohort (GSE21257).
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To further evaluate the applicability of ATV-netNMF and the
contribution between individual modules, we downloaded gene
expression data and miRNA data from cancer samples in the
High-Risk Wilms Tumor (TARGET-WT), Breast Invasive
Carcinoma (TCGA-BRCA), and Lung Adenocarcinoma (TCGA-
LUAD) datasets from the UCSC Xena database (https://
xenabrowser.net/datapages/) for analysis. Specifically, we
calculated the Pearson correlation coefficients between the
reconstructed matrices R11

′,R12
′ andR22

′ and the original matrices
R11,R12 andR22 in netNMF, NMFNA, netNMF + ATV, and
ATV-netNMF, respectively. As can be seen from Table 2, the
reconstruction of both R11 and R22 outperforms the netNMF
method for all four datasets under the separate constraints of
graph regularization and adaptive total variation. The proposed
ATV-netNMF method also outperforms the previous methods in
reconstructing all four datasets. The above results confirm that
graph regularization and adaptive full mutation help improve the
reconstruction performance of the methods, and the proposed

ATV-netNMF can be used to detect co-expression modules from
multiple diseases and genetic data.

4.2 Biological functional analysis

Patients with localized osteosarcoma can be cured with
neoadjuvant chemotherapy and surgical resection in up to 70%
of cases, but survival rates for chemotherapy-resistant and
metastatic patients are less than 20%. There is a significant
correlation between response to chemotherapy and the prognosis
of osteosarcoma, and one of the main challenges is inherent or
acquired resistance. Methotrexate is used as a common strategy for
chemotherapy in osteosarcoma, and patients with MTX resistance
often experience tumor recurrence and metastasis. Therefore, the
discovery of reliable biomarkers and the search for new therapeutic
targets are essential to improve the clinical prognosis of
osteosarcoma. To provide new prognostic predictors and

FIGURE 7
Risk score, survival status and hub genes expression heat map for MTX resistant signature in osteosarcoma. (A–C) Heatmap of Risk Scores, Survival
Status, and Candidate Gene Expression in Training cohort (TARGET-OS). (D–F)Heatmap of Risk Scores, Survival Status, andCandidate Gene Expression in
validation cohort (GSE21257).
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immunotherapies for chemotherapy-resistant patients with
osteosarcoma, our study identified meaningful predictive
biomarkers by comprehensively analyzing multi-omics genetic
data of osteosarcoma.

In this study, first, ME, GE, and ME-GE networks were
constructed based on two genetic data. Then, these networks were
decomposed under the constraints of total adaptive variance and
graph regularization, while co-expression modules were efficiently
identified, which is the highlight of ATV-netNMF. Finally, the core
networks were analyzed for GO and KEGG enrichment. Compared
with NMFNA and netNMF, ATV-netNMF could identify more
osteosarcoma-related GO terms and pathways, indicating that
ATV-netNMF could effectively detect modules and characterize
genes. Based on that, combined with MTX-resistant mRNA and
miRNA data, we established a new 4-gene prognostic signature for
osteosarcoma, including two high-risk MTXDEGs (CPE, PDK1) and

two low-risk MTXDEGs (LASP1, LACTB). We can categorize
patients into high-risk and low-risk subgroups based on the risk
scores derived from this predictive model. CPE is highly expressed in
MTX-resistant cells. PDK1, LASP1, and LACTB were lowly expressed
in MTX-resistant cells and were target genes regulated by MTX-
resistant miRNAs. CPE is a prohormone processing enzyme that is
usually overexpressed in osteosarcoma cell lines (Shi et al., 2020), and
the downregulation of CPE inhibits the migration and invasive ability
of osteosarcoma cells. Overexpression of a splice variant of CPE,
CPE − ΔN, promotes the growth andmetastasis of osteosarcoma cells
(Li et al., 2016). PDK1 is a key rate-limiting enzyme of the
tricarboxylic acid cycle. PDK1 expression was suppressed in DXR-
resistant osteosarcoma cells (Zhang et al., 2021), consistent with our
experimental findings that PDK1 is downregulated in MTX-resistant
osteosarcoma. PDK1 was overexpressed in osteosarcoma, multiple
myeloma, acute myelogenous leukemia, and breast cancer (Zhang

FIGURE 8
Construction of the nomogram predicting overall survival for osteosarcoma patients. (A,B) Forest plots for univariate and multivariate regression
analysis. (C) A nomagram combines Riskscoresand clinical information. (D) Calibration curves for the accuracy of signature to predict 1,3,5-year survival.
(E–F) Decision curve analysis for training (E) and validation (F) cohorts.
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FIGURE 9
Construction of the nomogram predicting overall survival for osteosarcoma patients in the TARGET-OS cohort. (A,B) Forest plots for univariate and
multivariate regression analysis. (C) A nomagram combines Riskscoresand clinical information. (D) Calibration curves for the accuracy of signature to
predict 1,3,5-year survival.

FIGURE 10
Analysis of immune infiltration between two groups. (A) Plot of differences between ImmuneScore, StromalScore, and ESTIMATEScore and
correlation with Riskscore. (B) Bar plot of the difference between the two groups of 28 immune cells. (C) Correlation plot of four hub genes and Riskcore
with immune cells. (D) Heatmap of immune cell infiltration between the two groups.
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et al., 2020). LASP1 is an actin-binding protein, and overexpression of
LASP1 is associated with poor prognosis in patients with gastric
cancer (Keckesova et al., 2017). After the downregulation of LASP1,
the resistance of osteosarcoma cells to cisplatin was reduced, the
IC50 decreased, and the knockdown of LASP1 could result in the
inhibition of the proliferation of osteosarcoma cells (Chang et al.,
2022). LACTB is a mitochondrial protein that is highly expressed in
skeletal muscle, heart, and liver (Keckesova et al., 2017). In breast and

colorectal cancers, low expression of LACTB predicts a poorer
prognosis for patients (Zhang et al., 2018; Li et al., 2019).
However, in glioblastoma, LACTB overexpression inhibits cancer
cell proliferation (Hu et al., 2022).

Based on these four genetic features in the risk model, we
performed a comprehensive analysis and assessment of the two
subgroups, which showed a significant difference in survival time
between patients in the high-risk and low-risk groups. In

FIGURE 11
Response to chemotherapy and targeted therapy in two groups.

FIGURE 12
Comparison of ATV-netNMF with other methods. (A,B) Number of GO and KEGG pathways enriched by GE and ME modules.
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addition, our KEGG and GO enrichment analyses showed that
many immune and tumor-related pathways were enriched. We
further performed GSEA analysis and found that metabolism-
related pathways such as ascorbate and aldate metabolism,
cytochrome P450 in drug metabolism to xenobiotics,
adolescent diabetes mellitus, glucose metabolism, etc., were
enriched in the high-risk group. In the low-risk group,
pathways related to immune function, such as cell adhesion
molecules, hematopoietic factor signaling pathways, cytokine-
receptor interactions, natural killer cell-mediated cytotoxicity,
and hematopoietic cell lines, were enriched.

We further analyzed the infiltration status of various immune
cells using ESTIMATE and ssGSEA methods to investigate the
immune infiltration differences between the two subgroups. The
findings showed that the immune, stromal, and estimate scores were
significantly lower in the high-risk group than in the low-risk

group. A significant negative correlation existed between our
calculated risk scores and the three immune scores. In addition,
the infiltration abundance of all 28 immune cells was lower in the
high-risk group, with significant differences in the infiltration
abundance of 23 immune cells. Riskscore showed a significant
positive correlation with 24 immune cells. Osteosarcoma is
considered a “cold tumor” in terms of immunogenicity. In the
high-risk group, the infiltration of immune cells was significantly
lower. The lower number of immune cells in the tumor immune
microenvironment may lead to a worse prognosis. The prognosis of
high-risk patients may be improved by increasing the immune
reactivity.

The need for high iron is an important feature of many cancer
cells (Torti and Torti, 2013), and many cancer cells also have higher
basal levels of intracellular unstable iron compared to normal cells.
In osteosarcoma cell lines, higher levels of iron in the cells enhanced

TABLE 1 KEGG pathways that appear in three methods in the GE module.

KEGG pathway ATV-netNMF NMFNA netNMF

p-value p-value p-value

Cytokine-cytokine receptor interaction 2.00E-21 8.06E-22 5.61E-14

Osteoclast differentiation 3.33E-20 1.98E-20 3.71E-18

Cell adhesion molecules 6.05E-16 1.43E-15 1.35E-15

Rap1 signaling pathway 4.33E-11 1.61E-10 4.25E-10

NF-kappa B signaling pathway 4.58E-08 1.64E-07 3.86E-05

Th1 and Th2 cell differentiation 2.07E-07 2.15E-07 1.70E-07

Pathways in cancer 6.19E-07 3.73E-07 3.26E-06

JAK-STAT signaling pathway 6.83E-07 2.14E-06 2.04E-06

The bold value indicates the Minimum values.

TABLE 2 Pearson’s correlation coefficients between the three original matrices and the three reconstructed matrices obtained by different algorithms in different
data sets.

netNMF NMFNA netNMF + ATV ATV-netNMF

TARGET-OS corr(R11 ,R11
′) 0.8737 0.8768 0.8792 0.8813

corr(R12 ,R12
′) 0.9038 0.9060 0.8958 0.9001

corr(R22 ,R22
′) 0.9170 0.9224 0.9194 0.9233

TARGET-WT corr(R11 ,R11
′) 0.8678 0.8682 0.8694 0.8762

corr(R12 ,R12
′) 0.9237 0.9225 0.9166 0.9193

corr(R22 ,R22
′) 0.9167 0.9163 0.9200 0.9204

TCGA-BRCA corr(R11 ,R11
′) 0.9285 0.9293 0.9291 0.9296

corr(R12 ,R12
′) 0.9190 0.9287 0.9213 0.9249

corr(R22 ,R22
′) 0.7579 0.7627 0.7764 0.7708

TCGA-LUAD corr(R11 ,R11
′) 0.9094 0.9052 0.9133 0.9141

corr(R12 ,R12
′) 0.8943 0.9145 0.9162 0.9165

corr(R22 ,R22
′) 0.7894 0.7902 0.7892 0.7930

The bold value indicates the Maximum values.
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ascorbate-induced pharmacological toxicity. They made the cells
more sensitive to ascorbic acid, thereby increasing the resistance of
MNNG/HOS and U2OS cells to ascorbate-induced drug toxicity
(Schoenfeld et al., 2017; Zhou et al., 2020). P450 is a major phase I
drug-metabolizing enzyme that activates a variety of potent
chemical carcinogens. Previous studies have confirmed that
resistance to chemotherapy in osteosarcoma is associated with
cytochrome P450, and our results may provide evidence for these
previous findings (Ferrari et al., 2009). The researchers found that
low expression of monocytes in patients with osteosarcoma reduced
the expression of cell adhesion molecules and chemokine receptors,
and they also exhibited decreased chemotactic function, i.e., the
ability of monocytes to enter the tumor site and initiate an anti-
tumor immune response (Mason, 1970). Our findings support the
notion that patients with higher monocyte expression have
monocytes that can migrate to areas of inflammation that
respond to chemotactic proteins, thereby improving survival
(Tuohy et al., 2016). Lower expression of regulatory T cells
predicts shorter overall survival (Biller et al., 2010); However, a
higher degree of T cell infiltration predicts increased survival (Scott
et al., 2018). In summary, there is a cross-talk between immune-
metabolic responses and tumor-related pathways that lead to
tumorigenesis and chemoresistance. The above evidence suggests
that immunomodulation has beneficial effects on prognosis.
Immune dysfunction promotes tumor progression and drug
resistance; therapeutic strategies to reverse immune dysfunction
can improve patient prognosis, and identifying relevant
biomarkers would further improve clinical response.

Survival of patients in the high-risk and low-risk groups was
significantly correlated with their sensitivity to chemotherapy, and
changes in therapeutic strategies are necessary to improve outcomes
in patients who are insensitive to chemotherapeutic agents.
Therefore, we analyzed the sensitivity of patients in both groups
to commonly used chemotherapeutic and targeted drugs. The results
showed that the high-risk group resisted most drugs, and BI-2536
may be considered a therapeutic candidate for the high-risk group.

This study has some limitations. Although this study is based on
multiple datasets and multi-omics data, further experimental
validation still needs to be improved. In subsequent studies, we
need to conduct more experiments to clarify the underlying
molecular mechanisms of MTXDEGs.

5 Conclusion

We proposed an adaptive total variant constrained-based
netNMF multi-omics analysis method that integrates and
efficiently identifies co-expression modules and characteristic
genes in osteosarcoma methylation and gene expression data.
Combined with the methotrexate-resistant multi-omics data, we
identified a four-gene-based prognostic model with predictive solid
ability for patient survival, immune microenvironment, and

immunotherapeutic efficacy, which provides direction for new
therapeutic strategies. In conclusion, the MTX resistance-
associated model based on ATV-netNMF offers new targets for
researchers to explore the mechanism of action of chemoresistance
in osteosarcoma.
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