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Background: Endometriosis (EM) is a common gynecological condition in women
of reproductive age, with diverse causes and a not yet fully understood
pathogenesis. Traditional diagnostics rely on single diagnostic biomarkers and
does not integrate a variety of different biomarkers. This study introduces multiple
machine learning techniques, enhancing the accuracy of predictive models. A
novel diagnostic approach that combines various biomarkers provides a new
clinical perspective for improving the diagnostic efficiency of endometriosis,
holding significant potential for clinical application.

Methods: In this study, GSE51981 was used as a test set, and 11 machine learning
algorithms (Lasso, Stepglm, glmBoost, Support Vector Machine, Ridge, Enet,
plsRglm, Random Forest, LDA, XGBoost, and NaiveBayes) were employed to
construct 113 predictive models for endometriosis. The optimal model was
determined based on the AUC values derived from various algorithms. These
genes were then evaluated using nine machine learning algorithms (Random
Forest, SVM, Gradient Boosting Machine, LASSO, XGB, NNET, Generalized Linear
Model, KNN, and Decision Tree) to assess significance scores and identify
diagnostic genes for each algorithm. The diagnostic value of these genes was
further validated in external datasets from GSE7305, GSE11691, and GSE120103.

Results: Analysis of the GSE51981 dataset revealed 62 DEGs. The Stepglm [Both]
and plsRglm algorithms identified 30 genes with the most potential using the AUC
evaluation. Subsequently, ninemachine learning algorithms were applied to select
diagnostic genes, leading to the identification of five key diagnostic genes using
the LASSO algorithm. The ADAT1 gene exhibited the best single-gene predictive
performance, with an AUC of 0.785. A combination of genes (FOS, EPHX1,
DLGAP5, PCSK5, and ADAT1) achieves an AUC of 0.836 in the test dataset.
Moreover, these genes consistently exhibited an AUC exceeding 0.78 in all
validation datasets, demonstrating superior predictive performance.
Furthermore, correlation analysis with immune infiltration strengthened their
predictive value by demonstrating the close relationship of the diagnostic
genes with immune infiltrating cells.

Conclusion: A combination of biomarkers consisting of FOS, EPHX1, DLGAP5,
PCSK5, and ADAT1 can serve as a diagnostic tool for endometriosis, enhancing
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diagnostic efficiency. The association of these genes with immune infiltrating cells
reveals their potential role in the pathogenesis of endometriosis, providing new
insights for early detection and treatment.
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1 Introduction

In the rapidly evolving landscape of modernmedical technology,
precision medicine has spearheaded a revolutionary transformation
in healthcare, offering patients tailored and customized medical
services. Profound shifts are taking place within the medical
community, particularly in areas such as disease diagnosis,
prognosis, and treatment methodologies. Amidst these
transformative changes, endometriosis has emerged as a
compelling focal point worthy of attention. Endometriosis, a
common gynecological disorder, refers to the abnormal growth
of endometrial-like tissue outside the uterus, often manifesting as
dysmenorrhea, chronic pelvic pain, infertility, and dyspareunia
(Leyland et al., 2010). It is estimated that 2%–10% of women of
reproductive age worldwide are affected by endometriosis, with 5%–
21% experiencing severe pelvic pain. In infertile women, the
proportion can reach up to 50%, associated with a 50% increase
in the risk of ovarian cancer (Dunselman et al., 2014; Vercellini et al.,
2014). This condition significantly impacts many women’s quality of
life and reproductive health.

The diagnosis of endometriosis includes detailed symptom
inquiry, clinical examination, and imaging techniques such as
ultrasound and MRI to observe the ectopic tissues and cysts
within the pelvic region (Smolarz et al., 2021). Laparoscopic
surgery is used for direct visualization of ectopic tissues,
combined with pathological examination to confirm the diagnosis
(Koninckx et al., 2021). Treatment options include nonsteroidal
anti-inflammatory drugs and hormone therapy to relieve pain and
control the condition. Surgical treatments involve laparoscopic
surgery to remove ectopic tissues and improve symptoms
(Chapron et al., 2019; Kalaitzopoulos et al., 2021). Individualized
treatment plans consider the severity, age, and fertility requirements
to ensure the best outcomes. Early comprehensive treatment can
alleviate symptoms, improve quality of life, and benefit overall
health and fertility prospects.

However, despite the gradual progress of research into this
disease, numerous mysteries remain concerning its etiology and
pathogenesis, posing challenges to clinical diagnosis and treatment.
Biomarkers, as indicators of specific molecules or features within the
body, offer valuable insights into disease prediction, diagnosis, and
treatment. Nevertheless, due to the complexity and diversity of
endometriosis, the application of a single biomarker is limited,
necessitating more comprehensive approaches to aid in disease
identification, prediction, and diagnosis.

Machine learning is a powerful data analysis tool, which
enhances predictive performance and stability by integrating
multiple models, offering a fresh perspective for predicting
combined biomarkers related to endometriosis. By amalgamating
information from various biomarkers, machine learning ensemble
methods can discern potential diagnostic combinations of strongly-

associated biomarkers with the disease, providing robust support for
developing precise diagnostics and personalized treatment
strategies.

Therefore, the objective of this study is to utilize a
comprehensive machine learning approach to identify combined
biomarkers associated with the diagnosis of endometriosis, thereby
enhancing the precision of prediction and diagnosis. By integrating
diverse biological information, the aim is to identify key diagnostic
biomarker combinations that hold significant predictive value,
offering more effective support for early prediction and diagnosis
of endometriosis.

2 Materials and methods

2.1 Data sources

Four datasets were downloaded from the Gene Expression
Omnibus (GEO) database https://www.ncbi.nlm.nih.gov/geo/,:
GSE51981, GSE7305, GSE11691, and GSE120103. Profiles of four
datasets are listed in Table 1. During the data preparation phase, Perl
(version 5.30) scripts performed ID conversion on these datasets and
computed the average values for duplicated gene names.
Subsequently, the limma package (version 4.3.0) was employed
within the R environment to conduct a differential analysis on the
data. In the process of differential analysis, filtering criteria are set to
retain only those differentially expressed genes that satisfied the
conditions (| log2FC |) > 1 and p < 0.05. Additionally, a schematic
representation of the research design was created (Figure 1).

2.2 Construct predictive models

A repertoire of 11 classical algorithms, encompassing Lasso,
Stepglm, glmBoost, SVM, Ridge, Enet, plsRglm, Random Forest,
LDA, XGBoost, and NaiveBayes were integrated. Through the
integration of machine learning techniques, a predictive model for
endometriosis was constructed by integrating the machine learning
techniques, with the optimal model being determined based on the
AUC values derived from various algorithms. Description of all
methods used in this study is attached in Supplementary Material
S1 with vital parameters to adjust the model for each algorithm.

2.3 Diagnostic gene selection

Differential analysis was performed on the GSE51981 dataset,
followed by further refinement of the different expressed genes.
From 11 distinct machine learning algorithms, diverse combinations
of predictive model ensembles tailored for endometriosis were
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constructed. Subsequently, the optimal predictive model was applied
to select the characteristic endometriosis genes from the
Differentially Expressed Genes (DGEs) in GSE51981. Nine
machine learning algorithms, including Random Forest (RF),
Support Vector Machine (SVM), Gradient Boosting Machine
(GBM), Least Absolute Shrinkage and Selection Operator
(LASSO), eXtreme Gradient Boosting (XGB), Neural Network
(NNET), Generalized Linear Model (GLM), k-Nearest Neighbors
(KNN) and Decision Tree (DT), were used to evaluate the
significance scores and determine the diagnostic genes for each
algorithm. Description of all methods used in this study is attached
in Supplementary Material S1 with vital parameters to adjust the
model for each algorithm.

2.4 Validation of diagnostic genes

The ROC curves and AUC values were used to assess the
effectiveness and accuracy of the model constructed by the selected

genes. The Calibration Curve Plots were used to evaluate the
accuracy of the nomogram. The best predictive value is
represented by the 45-degree line. The closeness of the curve to
perfection determines the accuracy of the results. The clinical
utility of the model was evaluated using Decision Curve
Analysis (DCA).

2.5 Functional enrichment analysis

The Disease Ontology (DO), Gene Ontology (GO), and
KEGG pathway enrichment analysis were conducted by using
R packages including ClusterProfiler, org. Hs.e.db, Digure, and
EnrichPlot. Gene Set Enrichment Analysis (GSEA) was
employed to identify significant functional terms between
EMS and control samples, plus a GMT reference gene set.
Significant enriched terms were determined with a threshold
of p < 0.025, a q-value of 0.05, and a false discovery rate <0.25
(Yu et al., 2012).

TABLE 1 Sample information for transcriptome data.

GEO name Sample size Control samples Patient samples Platforms Published References

Training Set GSE51981 148 77 71 GPL570 01 Oct 2014 Tamaresis et al. (2014)

Test Set GSE7305 20 10 10 GPL570 09 Apr 2007 Hever et al. (2007)

GSE11691 18 9 9 GPL96 22 Dec 2008 Hull et al. (2008)

GSE120103 36 18 18 GPL6480 26 Feb 2019 Bhat et al. (2019)

FIGURE 1
A schematic representation of the research design was created.
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2.6 Assessment of immune cell subtype
distribution

Following the revelation of the infiltration status of 22 immune cell
subpopulations, the CIBERSORTX algorithm was used to investigate
the disparities between endometriosis patients and healthy controls
regarding in situ endometrium (Newman et al., 2019). CIBERSORTX is
a computational method based on gene expression data that can
estimate the relative abundance of different cell types in a sample.
CIBERSORTX was chosen because it provides a more accurate and
reliable cell composition analysis, which helps to better understand the
cellular heterogeneity of the sample. Furthermore, the abundance of the
22 immune cell subpopulations and the percentage of immune cells
were visualized within each sample.

2.7 Immune correlation analysis and
validation

Spearman’s rank correlation analysis in R was employed to
investigate the correlation between identified gene biomarkers and
levels of infiltrating immune cells. The visualization of established
associations was accomplished using the ggplot2 package. The
filtering criterion was set at p < 0.05. Furthermore, the findings
were validated on a validation dataset for the selected genes. The
outcomes were also visualized for better representation.

2.8 Determination of combined biomarkers

To select the optimal combination of biomarkers, the diagnostic
genes selected by the best algorithm were randomly combined,
determining the best predictive combination for each gene count.

3 Results

3.1 Diagnostic gene selection

After conducting differential analysis on the GSE51981 dataset, a total
of 62 differentially expressed genes were identified. This analysis was
accompanied by visualizations of a heatmap (Figure 2A) and a volcano
plot (Figure 2B). Subsequently, 113 predictive models were built using
machine learning integration methods. A combination of Stepglm [both]
+ plsRglm algorithms was selected based on the predictive model’s AUC
values to identify 30 characteristic genes (Figure 3A). Then, using nine
different algorithms, the diagnostic genes of each algorithmwere calculated
(Figures 3B–E). Based on the ROC curve and other model evaluation
indicators, it was decided to select the top five genes selected by the LASSO
algorithm, comprising FOS, EPHX1, DLGAP5, PCSK5 and ADAT1.

3.2 Validate diagnostic genes

A nomogram (Figure 4A) and the calibration curve diagram
(Figure 4B) evaluated its accuracy. The clinical utility of the
nomogram was evaluated through Decision Curve Analysis (DCA)
(Figure 4C). ROC curves were plotted in the validation set, and the high
AUC values indicated the model’s predictive capability (Figures 4D–F).

3.3 Functional enrichment analysis

The results of the GO analysis indicate that the differentially
expressed genes are prominently enriched with terms associated with
“mitotic spindle organization,” “spindle pole,” “intercellular bridge,” and
“serine hydrolase activity” (Figure 5A). Furthermore, the KEGG analysis
suggests a potential connection between these differentially expressed

FIGURE 2
DEGs between EU and EC in the training set. (A) Heatmap of DEGs, with red indicating high expression and blue indicating low expression. (B)
Volcano plot of DEGs, with red indicating upregulation and green indicating downregulation.
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FIGURE 3
Construction of the predictivemodel and selection of diagnostic genes. (A) AUC values of 113machine learning algorithm combinations across four
testing cohorts. (B) Reverse cumulative distribution of residual for diagnostic gene selection using 9machine learning algorithms. (C) Boxplots of residual
for diagnostic gene selection using 9 machine learning algorithms, with the red dot representing the root mean square of residuals. (D) Feature
importance plots created for the DT, GBM, GLM, KNN, LASSO, NNET, RF, SVM, and XGBmodels. (E) ROC curves for diagnostic gene selection using
9 machine learning algorithms.
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genes linked to endometriosis and signalling pathways such as “Human
T-cell leukemia virus one infection,” “Osteoclast differentiation,” and
“Apoptosis” (Figure 5B). Given the discernible variations in gene
expression patterns between the disease and healthy groups, the Gene

Set Enrichment Analysis (GSEA) was employed to probe into biological
pathways relevant to their distinctive characteristics. The findings
strongly point to the disease group’s primary association with
pathways such as “ALLOGRAFT_REJECTION,” “AUTOIMMUNE_

FIGURE 4
Validation of diagnostic Genes. (A)Nomogram depicting validation genes. (B) Calibration curve plots illustrating the nomogram. (C) Decision Curve
Analysis conducted for validation genes. (D–F) ROC curve plots depicting feature genes in the GSE51981, GSE7305, and GSE25628 datasets,
correspondingly.
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THYROID_DISEASE,” “CYTOKINE_CYTOKINE_RECEPTOR_
INTERACTION,” “GRAFT_VERSUS_HOST_DISEASE,” and
“INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION”
(Figure 5C). Conversely, the healthy group exhibits connections to
pathways such as “CELL_CYCLE,” “OOCYTE_MEIOSIS,”
“PROPANOATE_METABOLISM,” “PROTEIN_EXPORT,” and
“SPLICEOSOME” (Figure 5D).

3.4 Immune infiltration analysis

The analysis of immune infiltration revealed a slight shift in the
immune microenvironment between the disease group and the healthy
group (Figures 6A, B). Notable variations were observed in the
expression of T cell gamma delta, Monocytes, and Macrophages
M2 between these two groups (Figure 6C). The correlation analysis

FIGURE 5
Enrichment analysis of DEGs. (A) GO analysis. (B) KEGG analysis. (C, D) Disease group and health group GSEA analysis.
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FIGURE 6
Immunocyte infiltration analysis. (A) This figure depicts the degree of infiltration of different immune cells between the diseases and normal groups.
(B) Immune cell correlation analysis. The horizontal and vertical axes represent the names of immune cells, and the values indicate the correlation
coefficients between immune cells. Red indicates positive correlation, while blue indicates negative correlation. (C) Violin plots illustrating the differences
in immune-infiltrating cells between the diseases group and the normal group. The horizontal axis represents the names of immune cells, and the
vertical axis represents the content of immune cells. Blue represents the normal group, and red represents the diseases group. p < 0.05 indicates
significant differences. (D-H). Correlation analysis of genes ADAT1, PCSK5, DLGAP5, EPHX1, and FOS with immune-infiltrating cells.
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highlighted that the ADAT1 gene displayed a positive correlation with
T cell gamma delta, dendritic cells activated, Eosinophils and T cell
CD4 memory resting while exhibiting a negative correlation with
Monocytes and T cell CD8 (Figure 6D). Similarly, the
DLGAP5 gene exhibited a positive correlation with T cell gamma
delta, Plasma cells, T cell regulatory (Tregs), and Mast cells resting but
showed a negative correlation with NK cells resting, Monocytes, and
Mast cells activated (Figure 6E). The gene EPHX1 displayed a positive
correlation withMonocytes, NK cells resting, dendritic cells resting, and
T cell CD8, while revealing a negative correlation with T cell gamma
delta, T cell CD4 memory resting, dendritic cells activated, Eosinophils,
and Macrophages M1 (Figure 6F).

Furthermore, the FOS gene demonstrated a positive correlation
with Mast cells activated, NK cells activated, T cell follicular helper,
Monocytes, and T cell CD4 memory activated, while indicating a
negative correlation with Mast cells resting, Macrophages M1, T cell
regulatory (Tregs), Macrophages M0, and T cells gamma delta
(Figure 6G). Lastly, the gene PCSK5 displayed a positive
correlation with T cells gamma delta, Macrophages M2,
Macrophages M1, T cells CD4 memory resting, and Eosinophils
while revealing a negative correlation with Monocytes, NK cells
resting, B cell memory, and T cell follicular helper (Figure 6H).

3.5 External validation set validation

The validation of the final set of five feature genes was conducted
across two datasets: GSE7305 and GSE51981. The results illustrated
that the ADAT1, EPHX1, FOS, PCSK5 and DLGAP5 gene were all
validated (Figures 7A, B). ADAT1, DLGAP5 and PCSK5 are low
expressed genes and EPHX1, FOS are high expressed genes.

3.6 Determination of the optimal predictive
combination

When evaluating the predictive performance of individual
genes, the ADAT1 gene demonstrated the best performance,

showing a significant predictive effect with an AUC score of
0.785 (Figures 8A, F). In cases involving pairs of genes, the
combined impact of the ADAT1 and FOS genes exhibited the
most robust performance, achieving an AUC value of 0.811
(Figures 8B, F). Within combinations of three genes, the fusion
of ADAT1, EPHX1, and FOS genes displayed the most favourable
outcomes, achieving an AUC of 0.816 (Figures 8C, F). For
combinations involving four genes, the collaborative effects of the
ADAT1, PCSK5, DLGAP5, and FOS genes showcased the highest
performance level, resulting in an AUC of 0.821 (Figures 8D, F).
Furthermore, the predictive impact of gene combinations involving
five members reached an impressive 0.836. The combination of five
genes exhibited optimal predictive performance (Figures 8E, F)
(Table 2).

4 Discussion

Endometriosis is a common gynecological disease that affects
women of childbearing age. Its causes are complex, and the
pathogenic mechanism is unclear. Traditional diagnostic methods
rely on surgical exploration and histopathological diagnosis, but
these methods are traumatic, high-risk, and costly. At present, most
research is limited to single diagnostic biomarkers and has not
integrated multiple different biomarkers. In order to provide more
comprehensive diagnostic information and improve diagnostic
accuracy, machine learning integration methods are used in this
study to enhance the performance of predictive models by utilizing
multiple algorithms. Using biomarker combination as a newmethod
for diagnosing endometriosis, has significant clinical promise.
Predictive models consider the performance of various
algorithms, and the accuracy, stability, and other indicators of
the model. A predictive model of endometriosis was built using
machine learning integration, and themodel Stepglm [both] plus the
plsRglm algorithm formed the optimal model based on the high and
low levels of the AUC.

NineMLmachine learning algorithms were then used to screen for
five potential endometriosis diagnostic genes, and the five diagnostic

FIGURE 7
The validation of the five feature genes associated with endometriosis was performed using the datasets (A) GSE51918. (B) GSE7305.
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genes were finalized after cross-validation using AUC and other
measurements. In order to select the best biomarker combinations
for predicting endometriosis diagnosis, the five genes obtained by the
LASSO algorithm were randomly combined with one to five genes and
the optimal prediction combinations of individual gene numbers were

screened. It was found that in the predictive performance comparison of
a single gene, ADAT1, the predictive effect was best, with an AUC of
0.785. The prediction for 5 gene combinations (FOS, EPHX1, DLGAP5,
PCSK5, and ADAT1) was 0.836. In addition, the diagnostic genes of
endometriosis and the characteristics of immune cell infiltration were

FIGURE 8
An overview of the optimal combination of genes in the test group. (A) ACU values for ADAT1, PCSK5, DLGAP5, EPHX1 and FOS. (B) The best
combination of two genes to diagnose a gene. (C) The best combination of three genes to diagnose a gene. (D) The best combination of four genes to
diagnose a gene. (E) The best combination of five genes to diagnose a gene. (F) The AUC values for each gene combination in the test group.
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analyzed. It was found that the selected diagnostic gene was closely
related to the infiltration of immune cells.

By analyzing the identified combination biomarkers, this study has
gained a deeper understanding of the underlying biological processes
associated with endometriosis. The study reveals that these biomarkers
involved the cell cycle’s mitosis and cell nucleus division processes.
Some related studies have also been reported. For instance, Mori et al.
(2015) indicate that the agonist G-1 of G protein-coupled estrogen
receptor 1 (GPER-1) induces cell cycle arrest and accumulation in the
sub-G phase, leading to apoptosis in endometriosis cells during mitosis.
It was also found that cell cycle proteins B1 and Plk1 may also mediate
the proliferation of ectopic endometrial cells under the regulation of
ovarian hormones (Tang et al., 2009).

Also, the results of KEGG analysis highlight the significant roles
played by pathways such as human T-cell leukemia virus 1 infection
and the p53 signalling pathway in this process. In severe/advanced
endometriosis, anomalies frequently arise in chromosome 17 as a
whole, particularly at the p53 locus. This may involve somatic
mutations, and the clonal evolution might depend not only on
p53 somatic mutations but also on alterations in other oncogenes or
tumour suppressor genes (Bischoff et al., 2002). Furthermore, the
downregulation of p53 was associated with the risk of Indian women
developing endometriosis (Govatati et al., 2012).

FOS1, EPHX1, DLGAP5, PCSK5, and ADAT constitute the
optimal set of identifying biomarkers among the identified
combination gene set in this study. Numerous studies based on
cell or animal models have confirmed that FOS1, EPHX1, and
PCSK5 have significant effects on the occurrence and development
of endometriosis, which is consistent with the results of this study.We
have summarized the impact of these three genes on endometriosis by
reviewing existing literature. Previous research has not studied the
impact of DLGAP5 and ADAT on endometriosis. This study is the
first to report on these two genes, and the potential impacts of these
two genes has been summarized.

The FOS gene family comprises a group of gene encoding
transcription factors, with the most prominent member being the
c-FOS gene. In an open, prospective, and controlled study, it was
found that the expression levels of the c-FOS gene were higher in
patients with endometriosis compared to normal endometrium.
Additionally, immune histochemical results revealed a more
abundant distribution of c-FOS protein in the extracellular
matrix of endometriosis tissues (Morsch et al., 2009; Reis et al.,
2009). Pan et al. (2008) pointed out that the expression of c-Fos in
human endometrium might be regulated by estrogen 17β-E, and
c-FOS could enhance the development of endometriosis by
promoting the expression of the MMP-9 gene, thereby increasing

the invasive potential of endometriotic implants. In a study
involving the population of Eastern India, the presence of IL-1β
induced the phosphorylation of c-FOS protein, further enhancing
gene transcription, promoting the production of MMP-13, and
increasing the risk of endometriosis (Pandit et al., 2022). This
series of research findings encompass multiple crucial roles of
c-FOS in developing endometriosis, spanning from gene
expression to protein activity. These findings provide a more
comprehensive understanding of its role in the disease mechanism.

PCSK5 (Proprotein Convertase Subtilisin/Kexin Type 5) is a
protein precursor convertase primarily responsible for processing
and activating various cell factors and adhesion factors. These
include matrix metalloproteinases, N-cadherin, and insulin-like
growth factors, which play pivotal roles in cell signalling, cell
adhesion, growth, and differentiation processes. Aberrant activation
of these factors may be associated with various diseases, including
endometriosis (Sounni et al., 2002; Bassi et al., 2005; Maret et al., 2012).

EPHX1 (Epoxide Hydrolase 1) is a gene that encodes an enzyme
belonging to the esterase family, which regulates the metabolism of
various compounds inside and outside the organism. The
EPHX1 enzyme is primarily involved in the hydrolytic
metabolism of epoxides, converting them into corresponding diol
compounds, thereby regulating the activity and stability of these
compounds (Václavíková et al., 2015). It has been demonstrated that
influencing EPHX1 activity or causing its dysregulation may lead to
the occurrence of gynecological disorders such as pre-eclampsia,
cervical cancer, and ovarian cancer. It is also suspected to be
involved in fetal valproate syndrome and diphenylhydantoin
toxicity (Yang et al., 2014; Václavíková et al., 2015). In an IVF/
ICSI program involving women undergoing infertility treatment,
serum vitamin K levels were found to predict embryo quality.

Furthermore, the polymorphism of the EPHX1 gene was found to
significantly impact oocyte quality and pregnancy chances, making it a
predictive criterion for assessing embryo quality (Khechumyan et al.,
2018). The function of the EPHX1 gene might be related to the
pathogenesis of endometriosis. The enzyme encoded by
EPHX1 participates in metabolizing endogenous and exogenous
substances, including hormones, lipids, and environmental pollutants.
Studies have revealed that certain genetic variations associated with
endometriosis could influence the expression or enzymatic activity of
EPHX1, thereby affecting the balance of estrogen metabolism and
inflammatory responses. An imbalance in estrogen metabolism and
inflammatory responses could lead to abnormal growth of endometriotic
tissue and exacerbation of inflammatory responses, ultimately
promoting the development and progression of the disease (Cheong
et al., 2009; Naidoo et al., 2016; Zhou et al., 2019; vanHoesel et al., 2021).

TABLE 2 An overview of the optimal combination of genes in the test group (five genes).

Gene set Genes AUC Model AUC Description

1 PCSK5 0.718 0.836 95% CI: 0.770–0.894 Subtilisin/kexin-like protease PC7

ADAT1 0.785 Adenosine Deaminase

DLGAP5 0.640 postsynaptic density-95-Associated Protein 5

EPHX1 0.625 associated with metabolic processes within the body

FOS 0.646 FBJ osteosarcoma virus (OSV-40) replicon
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The “Discs Large Homolog-Associated Protein 5,” (DLGAP5),
belongs to the DLGAP family and is encoded on human
chromosome 14q22.3. The protein encoded by this gene plays a
critical role in cell division, assembly of the mitotic spindle during
mitosis, and the formation of kinetochore fibres (K fibres)
(Schneider et al., 2017). DLGAP5 is considered an adverse
prognostic biomarker in certain diseases, particularly cancer. Its
aberrant expression may lead to abnormal cell division, promoting
tumour growth and metastasis (Shen et al., 2023; Tang et al., 2023).
In the context of endometriosis research, DLGAP5 may be involved
in cellular proliferation and differentiation processes, further
influencing the development and progression of the disease.
However, the precise connection between DLGAP5 and
endometriosis has not been fully elucidated to date, and the
specific molecular mechanisms require further research.

ADAT1 (Adenosine Deaminase tRNA-Specific 1), participates
in nucleic acid metabolism and protein synthesis processes. Current
research indicates no direct or known association between
ADAT1 and endometriosis. Genetic factors may play a role in
the occurrence of endometriosis. Therefore, researchers can
investigate whether gene variations or mutations associated with
endometriosis involve ADAT1 or related pathways. It is important
to emphasize that current literature has not reached definite
conclusions about the relationship between ADAT1 and
endometriosis. Further experimental evidence and clinical studies
are necessary to fully understand the potential role of ADAT1 in
endometriosis.

These research findings provide crucial insights for a deeper
understanding of the pathogenesis of endometriosis and the
development of related treatment strategies. Collectively, the
investigations into genes such as ADAT1, PCSK5, DLGAP5,
EPHX1, and c-FOS shed light on the molecular mechanisms
underlying this disorder and offer valuable information.
Furthermore, other potential vital genes have been identified, for
instance, rare variations in MMP7 are significantly enriched in
ovarian endometriosis and closely associated with specific clinical
features, as first discovered by Liu et al. (2022). Jiang et al. introduced
LGALS2 and EGR1 as potential new targets for risk prediction and
non-invasive diagnosis of endometriosis, providing the potential for
personalized medical treatment of EM patients (Jiang et al., 2023).
Additionally, TFF3 has been confirmed as a high-risk gene for
endometriosis. Recent research indicates that the TFF3-PAR2
inhibitor peptide effectively reduces TFF3 activity, thereby
inhibiting the occurrence and progression of endometriosis. This
innovative approach brings new hope for managing endometriosis
(de Curcio et al., 2018). These observed outcomes are consistent with
the endometriosis-associated genes identified in this study, which
may also serve as biomarkers for endometriosis.

The immune infiltration analysis results indicate that there are
alterations in the immune microenvironment between the disease
group and the healthy group. The two groups have specific
differences in the expression of T cell gamma delta, Monocytes,
and Macrophages M2. Correlation analysis reveals a close
association between diagnostic genes and immune-infiltrating
cells, consistent with the results of (Braun et al., 1996; Li et al.,
2021). Hence, the above five diagnostic genes have the potential to
serve as biomarkers for predicting immune therapy responses,
enabling personalized treatment to avoid undue burdens on

patients through inappropriate treatments. Finally, a list was
compiled of genes related to diagnostic genes associated with
completed clinical trials using the ClinicalTrials.gov website
(https://clinicaltrials.gov/), which serves as a comprehensive
database for clinical trial information (Supplementary Table S2).

Currently, the study of diagnostic biomarkers for endometriosis
has not yet fully matured, and single markers such as AXIN1, CA-
125, and CA-199 have become the focus of research in this area and
have shown considerable diagnostic potential. However, in the
dataset used in this study, the expression of CA-125 and CA-199
did not show statistical significance. The AUC value of the subject
operating characteristic curve (ROC) for AXIN1 was only 0.646,
indicating some diagnostic efficacy. The diagnostic ROC value of
this study based on the combination of FOS1, EPHX1, DLGAP5,
PCSK5, and ADAT biomarkers was 0.836. These findings further
emphasize that single markers may not be sufficient to provide
adequate diagnostic accuracy in diagnostic marker studies of
endometriosis, and that analysis of combinations of markers may
be more reliable.

The findings of this study contribute significant support for the
early diagnosis and treatment of endometriosis. By leveraging a
combination of various machine learning methods, potential
biomarkers were uncovered within extensive gene data, opening
new avenues for a deeper understanding of the disease’s
pathogenesis and the provision of personalized medical strategies.
However, due to limited data sources, the generalizability of these
results across different populations and clinical scenarios requires
further work. While the study results offer novel insights into the
early prediction, diagnosis, and treatment of endometriosis, their
application in clinical practice necessitates broader clinical trials and
validation to ensure their practical feasibility and efficacy.

5 Conclusion

In summary, this study extensively investigated the predictive
diagnosis of endometriosis, using a machine learning integration
approach. It was found that the combination of FOS, EPHX1,
DLGAP5, PCSK5, and ADAT1 biomarkers holds substantial
diagnostic value. Bioinformatic analysis combined with comprehensive
metrics provided a robust foundation for predicting endometriosis.
Furthermore, the exploration of immune cell infiltration revealed a
close interrelation between five diagnostic genes and the immune
system. These findings promise to offer novel avenues for the
diagnosis and treatment of endometriosis.
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