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Targeted genomic sequencing (TS) greatly benefits precision oncology by rapidly
detecting genetic variations with better accuracy and sensitivity owing to its high
sequencing depth. Multiple sequencing platforms and variant calling tools are
available for TS, making it excruciating for researchers to choose. Therefore,
benchmarking study across different platforms and pipelines available for TS is
imperative. In this study, we performed a TS of ReferenceOncoSpan FFPE (HD832)
sample enriched by TSO500 panel using four commercially available sequencers,
and analyzed the output 50 datasets using five commonly-used bioinformatics
pipelines. We systematically investigated the sequencing quality and variant
detection sensitivity, expecting to provide optimal recommendations for future
research. Four sequencing platforms returned highly concordant results in terms
of base quality (Q20 > 94%), sequencing coverage (>97%) and depth (>2000×).
Benchmarking revealed good concordance of variant calling across different
platforms and pipelines, among which, FASTASeq 300 platform showed the
highest sensitivity (100%) and precision (100%) in high-confidence variants
calling when analyzed by SNVer and VarScan 2 algorithms. Furthermore, this
sequencer demonstrated the shortest sequencing time (~21 h) at the sequencing
mode PE150. Through the intersection of 50 datasets generated in this study, we
recommended a novel set of variant genes outside the truth set published by
HD832, expecting to replenish HD832 for future research on tumor variant
diagnosis. Besides, we applied these five tools to another panel (TargetSeq
One) for Twist cfDNA Pan-cancer Reference Standard, comprehensive
consideration of SNP and InDel sensitivity, SNVer and VarScan 2 performed
best among them. Furthermore, SNVer and VarScan 2 also performed best for
six cancer cell lines samples regarding SNP and InDel sensitivity. Considering the
dissimilarity of variant calls across different pipelines for datasets from the same
platform, we recommended an integration of multiple tools to improve variant
calling sensitivity and accuracy for the cancer genome. Illumina and GeneMind
technologies can be used independently or together by public health laboratories
performing tumor TS. SNVer and VarScan 2 perform better regarding variant
detection sensitivity for three typical tumor samples. Our study provides a
standardized target sequencing resource to benchmark new bioinformatics
protocols and sequencing platforms.
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1 Introduction

Targeted genomic sequencing (TS) is an effective next-generation
sequencing (NGS) method that focuses on a panel of genes or targets
implicated in the pathogenesis or clinical relevance. It greatly benefits
precision oncology by rapidly detecting genetic variations, providing a
resource for clinicians to help them interpret genetic profiles, and
implement personalized anticancer recommendations. TS shows
better accuracy and sensitivity in identifying targeted variations
owing to greater sequencing depth at the same sequencing cost
and data burden when compared with whole-genome sequencing
(WGS) or whole-exome sequencing (WES) (Bewicke-Copley et al.,
2019). Thus, it allows for identifyingmutations presenting low variant
allele frequencies (VAFs) with high confidence, especially for low-
quality and fragmented clinical DNA samples. Clinical targeted
sequencing has revolutionized tumor surveillance and diagnosis
and facilitated the development of precision oncology (Nagahashi
et al., 2019; Tan et al., 2020a).

TruSight™Oncology 500 (TSO500, Illumina) is a comprehensive
target-sequencing panel covering more than eight cancer types and
523 cancer-related genes (1.94 Mb) to identify relevant genomic
variants and signatures in a single assay (Zhao et al., 2020). It uses
a hybridization capture-based target-enrichment strategy to detect
diverse variants with high specificity and sensitivity, including single
nucleotide polymorphisms (SNPs), InDels, copy number variations,
splice variants and gene fusions, especially for mutants with lowVAFs
via tactfully suppressing technical noise and excluding germline
variants (Zhao et al., 2020; Conroy et al., 2021). Notably,
TSO500 is also robust for tumor mutational burden (TMB)
detection with a relatively high concordance compared with WES
in different solid tumor samples (Wei et al., 2022).

Currently, TSO500 panel has been benchmarked and verified
against orthogonal validated NGS assays (such as WGS, WES) using
diverse clinical tissue specimens across different tumor types (Pestinger
et al., 2020; Sahajpal et al., 2020; Conroy et al., 2021; Ramos-Paradas
et al., 2021; Wei et al., 2022). The high concordance with the reference
methods demonstrates that the TSO500 assay is reliable for accurately
detecting gene alterations to support the precision therapeutics in
oncology. While NGS has revolutionized the understanding of
disease diagnosis and prediction, the magnitude of sequencing data
points toward the potential challenges for advancing large-scale
executions-the appropriate platform and bioinformatics pipeline
capable of handling these data efficiently in a timely and accurate
manner. In this regard, the need for benchmarking across different
sequencing platforms and bioinformatics analysis tools for TS
supporting precision diagnostics is imperative. Regrettably, the
systematical benchmarking studies of the TSO500 panel on different
sequencing platforms and bioinformatics pipelines are still blank. In
addition, the Twist Pan-cancer Reference Standard is a high-quality,
standardized control for researching and developing NGS-based liquid
biopsy assays, primarily used to track the quality of an NGS assay
workflow and assess the fidelity of the assay process (Cherry, 2022).
Besides our study has also included the published panel sequencing data
of six ovarian and breast cancer cell lines (Shi et al., 2022).

In this study, we comprehensively compared six commercially
available sequencers (NA: NovaSeq 6000, NS: NextSeq 550, MGI:
MGISEQ-2000, GL: GenoLab M, SF: SURFSeq 5000, and FS:
FASTASeq 300) and five commonly-used bioinformatics pipelines for

tumor variants detection. These pipelines were highly cited or could
detect low-frequency variation by adjusting the appropriate parameters.
HaplotypeCaller (HC) (McKenna et al., 2010) and Mutect2 (Benjamin
et al., 2019) were GATK-related tools. SiNVICT (Kockan et al., 2017)
and SNVer (Wei et al., 2011) with short release time and long release
time, respectively, and VarScan 2 (Koboldt et al., 2012) had been well
recognized with more than 4,500 citations (Supplementary Table S1).
The consistency and dissimilarity of different platforms and pipelines
were evaluated in terms of SNP, InDel and TMB calling. By comparing
with the truth set, we expected to provide objective insights into
platforms and variant callers to achieve higher sensitivity, which can
be crucial in cancer research and personalized medicine.

2 Materials and methods

2.1 Sample

The DNA sample used in this study is OncoSpan FFPE (Catalog
ID: HD832, Horizon Discovery, United States), a well-characterized,
cell line-derived Reference Standard containing 386 variants in
152 cancer genes (https://horizondiscovery.com/en/reference-
standards/products/oncospan-gdna). In this study, the mutation
cohort captured by the TSO500 panel theoretically includes
212 variants (194 SNPs and 18 InDels), with 24 confirmed by
droplet digital PCR (ddPCR). This dataset was designed as a
truth set for following benchmarking analyses. The VAF varies
between 1% and 100%. The cfDNA sample used is Twist Pan-cancer
Reference Standard (MineBio Life Sciences Ltd., Beijing, China),
covering 458 individual mutations with 132 clinically actionable
variants across 84 genes associated with cancer.

2.2 DNA extraction and quality assessment

WuXi Nextcode LTD. performed DNA isolation from
OncoSpan scroll using the SEQPLUS FFPE DNA Isolation Kit
following the manufacturer’s protocol. The DNA quality with
OD 260/280 value between 1.7 and 2.2 was qualified by a
Nanodrop spectrophotometer. The integrity and concentration of
the extracted DNA were confirmed by agarose electrophoresis and
Qubit dsDNA HS Assay (Thermo Fisher Scientific). About 40 ng
DNA sample was used for library preparation.

2.3 Library preparation and target
enrichment

The extracted DNA passing quality control (QC) was sheared on
the Covaris E220 evolution (Covaris Ltd., United States) to form
90–250 bp dsDNA fragments. The size of the fragments was chosen
via Tapestation 2200 (Agilent, Cheshire, UK) after shearing. Then,
the sequencing libraries were prepared and enriched using the
hybrid capture-based TSO500 library preparation kit (#20028213,
TruSight Oncology 500 DNA Kit, Illumina, San Diego, CA,
United States) following the manufacturer’s instruction.

In brief, the sheared DNA was treated with end repair and
A-tailing reagents to convert the 3′and 5′overhangs into blunt
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ends. UMI1 adapters containing unique molecular indexes were
ligated to identify the unique sequence. After cleaning up the
excessive ligation reagents and unligated adapters, the library
fragments were amplified using primers that added index
sequences for sample multiplexing. Next, the libraries were
enriched through two rounds of hybridization capture. A pool
of oligos specific to 523 genes (TSO500 panel) were used to
hybridize to the DNA libraries, which were later captured with
SMB (Streptavidin Magnetic Beads)-conjugated biotin probes.
Subsequently, the enriched libraries were amplified, quantified
with the Qubit dsDNA HS Assay Kit (#Q32854, Invitrogen,
United States), and bead-based normalized for sequencing. The
Twist cfDNA Pan-cancer Reference Standard was enriched by
TargetSeq One kit (iGeneTech, Inc, Beijing, China.) referred to a
previous study (Nie et al., 2021).

2.4 Sequencing, data preparation and
quality control

Before sequencing, the size distribution of the sequencing library
HD832 was characterized using Agilent Tapestation 4,200. WuXi
Nextcode LTD. carried out HD832 library preparation and
sequencing on Illumina NS and NA platforms in Shanghai.
Meanwhile, sequencing on the FS and GL platforms was
performed at the lab of GeneMind LTD. in Shenzhen. Besides,
Twist cfDNA was sequenced by SF, NA, and MGI at the lab of
GeneMind LTD. The sequencing mode is PE150 bp.

Raw data from FFPE, cfDNA, and cancer cell samples was
filtered by fastp software to trim sequencing adapters, and low-
quality reads with default parameters. The reads were filtered out if
the proportion of low-quality bases (<Q20) was higher than 15%.
The sequencing reads were mapped using to the human reference
genome (hg19) with default parameters via Burrows-Wheeler
Aligner (BWA v0.7.17-r1188)-Maximal Exact Match (MEM)
algorithm. Hereafter, the samtools and GATK “Mark Duplicates
(Picard)” module were used to implement the following processes,
including indexing, sorting, and duplicates removal in BAM files.
The deduplicated BAM files were subjected to different pipelines for
variant calling. Quality metrics were generated from these BAM files
by fastQC and bamdst tools.

2.5 Benchmarking analyses of variant calling
among five variant callers

The tumor mutations were called with five popular pipelines:
HC, Mutect2, SiNVICT, SNVer, and VarScan 2 with default
parameters. To reduce false-positive calls, eligible mutations
include only coding variants with VAF ≥5%, coverage ≥8 reads,
and allele read depth ≥3×. Next, the variants were annotated for
impact prediction with snpEFF software. Broadening to the whole
panel range, we calculated the somatic mutations through aligning
against four common population databases: Exome Aggregation
Consortium, 1000 Genomes Project, Database of Short Genetic
Variations, and Exome Sequencing Project v. 6500 to remove the
common germline variants (VAF >0.1%). Then, variants were
labeled germline if they were regarded as a benign or likely

benign variant in either the Human Gene Mutation Database or
ClinVar. In addition to these common frequency databases, the
depth of somatic variants required DP ≥ 100, AD ≥ 8 for SNVs, and
AD ≥ 5 for InDels (Tang et al., 2020b). TMBwas computed as a ratio
between the numbers of somatic mutations with the target region
size of the panel (Merino et al., 2020). We further implemented the
correlation analysis by comparing relative variant allele frequency
(r-VAF), defined as the ratio of detected value to the theoretical
value of the truth set, to excavate the concordance of 50 datasets.

2.6 Statistical analysis

All datasets were analyzed using the R statistics package (v4.1.2;
R: The R-project for statistical computing). The similarity of datasets
was calculated using pearson’s correlation coefficient. Precision,
recall (sensitivity), and F-score were calculated based on the true
sets of 212 mutations in the TSO500 panel, 442 mutations in
TargetSeq One, and true mutations in ovarian and breast cancer
cell lines referred to Pan et al., 2022. The following formulas
were used.

Precision � TP/ TP + FP( ).
Sensitivity � TP/ TP + FN( ).

F − score � 2*Sensitivity*Precision/ Sensitivity + Precision( ).

TP: true positive, FN: false negative, FP: false positive.

3 Result

3.1 Sequencing data summary

We aliquot the same DNA sequencing library
(HD832 captured by TSO500 panel) to each platform to avoid
the possibility of inconsistency caused by library construction
differences. After filtering, aligning and deduplicating,
10 datasets (FS 3, GL 3, NA 3, and NS 1) were subjected to
five analysis pipelines for variant calling: HC, Mutect2, SiNVICT,
SNVer and VarScan 2 (Supplementary Figure S1). FASTQ and
BAM quality statistics were calculated for the final 50 datasets, as
shown in Supplementary Table S2. Benchmarking showed that
results from GeneMind platforms (FS and GL) are compatible
with those using Illumina platforms (NA and NS) in terms of the
data yield and data quality. All sequencers presented comparable
high base quality (over Q20) base percentages, with an average of
96.49% (FS), 97.40% (NA), 97.01% (GL) and 94.05% (NS). Each
dataset from four sequencing platforms has a trustworthy average
depth, higher than 2000×. The short target sequence length and
great sequencing depth contributed to the high duplication. To be
compatible with relatively low coverage regions, we
downsampled data with a depth ≥4×, ≥10×, ≥30×, and ≥100×,
and the coverage at different levels for all datasets was over 97%.
The average depth for each gene across multiple sequencers
ranged from 31.56 to 4,823.42 × (Supplementary Table S3).
Overall, the datasets from four sequencing platforms returned
highly concordant quality, achieving the requirement of the high
depth of panel sequencing with approving uniformity.
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3.2 High-confidence variants calling
spanning four platforms and five pipelines

Subsequently, we investigated the SNP&InDel calling rate of
four platforms with five popular analysis algorithms at 2000×
depth by comparing with the truth set of the HD832 sample
captured by the TSO500 panel. As shown in Figures 1A, B, four
platforms presented nearly concordant results in terms of
SNP&InDel sensitivity under the same pipeline, albeit with
some minor differences in the InDel calling using SiNVICT
and Mutect2 callers. Encouragingly, the FS platform showed
perfect SNP&InDel calling (100%) using SNVer and
VarScan2 pipelines. For F-score and precision, SNVer and
VarScan2 pipelines also performed best on SNP&InDel calling
(Supplementary Table S4). Similarly, high agreement of variant
calling was observed when compared with the truth set validated
by ddPCR, especially under the SNVer and VarScan2 tools
(Figure 1C). For TargetSeq One panel, SNVer and
VarScan2 exhibited values close to 100% in the F-score, recall,
and precision of SNP&InDel (Supplementary Figure S2) under
the almost equal sequencing depth (Supplementary Table S5).
For panel sequencing of six breast cancer and ovarian cell lines
samples, all five tools performed flawlessly in three samples,
while, in the remaining three samples, the detection results of

SNVer and VarScan2 were closest to the true set
(Supplementary Table S6).

Pearson correlation coefficient (r) heatmap (Figure 1D) revealed
that under the same software, similar overall performance was
presented across-platforms, with slightly higher consistency from
SiNVICT with average r: 0.86 (0.68–0.97), SNVer with 0.86
(0.71–0.97), and VarScan2 with 0.90 (0.75–0.98) approaches.
Intriguingly, data from SiNVICT and SNVer pipelines showed high
correlation across all 50 datasets (average r: 0.84). Less accordance was
observed in data from five pipelines under the same platform, especially
for HC (average r: 0.71) and Mutect2 (average r: 0.78), consistent with
the variant calling results (Figures 1A–C). In addition, the data of three
technical replicates on the same platform indicated high correlation
except for a few outliers, such as FS_HC samples. Hereafter, we
combined three replicates to investigate the detection number of
high-confidence variants among tools and platforms (Figure 1E). Up
to 93.4% (198/212) concordance was obtained from all datasets, of
which, the FS platform performed better with more unique mutations,
particularly under the SNVer and VarScan2 callers, reproducing the
above-described results.

Overall, the results of SNP&InDel calling suggested that
software may have a greater impact on variant calling than
platform for the target sequencing datasets, and FS performed
better under SNVer and VarScan2 approaches.

FIGURE 1
Benchmarking analyses of variants calling performances comparedwith truth set. (A, B) The sensitivity of SNP (a) and InDel (b) calls generated by five
pipelines versus that from four platforms. (C) Comparison of SNP&InDel calls with variants validated by ddPCR. (D) Pearson’s correlation heatmap of all
50 datasets based on the relative VAF. (E) Venn diagram showed the number of variants mapped to the target region spanning four platforms and five
pipelines. The digital of petals represents the number of specificmutations detected in the corresponding dataset, and the flower center represents
the number of commonmutations detected in all datasets. (F, G) The radar charts compared the dissimilarity at different sequencing depths (FS platform)
in terms of variant calling time,memory usage, SNP and InDel detection sensitivity using SNVer (f) and VarScan2 (g) tools. The fastq files of different depths
were downsampled from different runs of the FS sequencer. FS, FASTASeq 300; NA, NovaSeq 6000; NS, NextSeq 550; GL, GenoLab M; HC, GATK_
HaplotypeCaller; Mutect2, GATK_Mutect2.
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3.3 Assessment of variant calling at different
sequencing depths

Sequencing to greater depths increases the reproducibility of variant
detection but at the expense of longer turnaround times, increased
computational complexity, and greater cost. Focusing on the best-
performed FS platform and the SNVer and VarScan2 pipelines, we
compared the differences in variant calling time, memory usage, SNP_
recall and InDel_recall with radar chart at different sequencing depths,
expecting to recommend a balance between sequencing depth and
variant detection sensitivity (Figures 1F,G). As expected, the calling
time and memory usage progressively increased with increasing depth
of coverage, from 250× to 2000×. Additionally, we saw no apparent
improvement in SNP&InDel recall percentage with increasing depth
from 500×. At the given depth of 250×, the SNVer pipeline identified a
median recall of 99.48% for SNPs and 99.44% for InDels comparedwith a
recall of 98.96% for SNPs and 100% for InDels using the
VarScan2 pipeline. It suggests that the lowest depth to discover all
high-confidence mutations within the truth set is 500× for the FS
datasets analyzed by the SNVer or VarScan2 pipeline. Concerning
turnaround time and memory usage, the VarScan2 performed better
than SNVer tool.

3.4 Concordance of annotated genes from
different datasets

To further explore the effects of gene annotation on different
platforms and software tools, we compared the concordance of the
annotated genes based on their rVAF. Supplementary Figure S3 showed
the visual difference between the VAF of all datasets and truth set, and
white represents no difference. The heatmap returned highly
concordant results for datasets analyzed by different pipelines, while
some perceptible differences can be noticed when using SNVer and
VarScan2 callers. Specifically, noticeable increases in rVAF were
observed by VarScan2, conversely, obvious decreases for the same
genes were detected by SNVer. Focusing on variants with low
mutation frequency (MET, KIT and NRAS genes), we were
delighted to find that SiNVICT, SNVer and VarScan2 approaches
were friendly to all platforms with high consistency, including the novel
FS platform. HC caller performed worst across different platforms with
more notable dissimilarity. Notably, for EGFR mutation with very low
VAF (4.5%), five platforms failed to discern it under HC and
Mutect2 pipelines. The absolute VAF (Supplementary Tables S7, S8)
also indicated high concordance for datasets compared to the truth set.

3.5 Benchmarking somatic mutations and
TMB distributing in the complete panel

Furthermore, we broadened to the global patterns of somatic
variations observed in the panel range to obtain comprehensive
insight. The common germline variants and benign variants were
filtered out when VAF >0.1%. Detailed information on the somatic
mutation spectrum in each dataset is represented as a waterfall plot
(Supplementary Figure S4). Overall, the driver somatic variants,
including missense, stop-gained, frame-shift, and splice mutations,
showed very high agreement among 50 datasets from different

platforms and pipelines. Nevertheless, HC pipeline exhibited more
discordance, such as genes NSD1, BRAF, STAT3, and GRM3. With
respect to TMB, all sequencers and pipelines returned comparable
concordance, with higher TMB number when using the SiNVICT and
VarScan2 tools, which may be explained by the higher number of the
somatic mutations (Supplementary Figure S5). The number of somatic
mutations from three technical replicates indicated that the highest
shared-variants for FS platformwere obtained fromVarScan2 (93.67%),
for GL platform from SiNVICT (92.33%), for NA platform from
SiNVICT (82.30%). In contrast, HC shared inferior proportion of
common variants for the FS (42.50%), consistent with the results
from waterfall plot. While Mutect2 performed worst for GL
(55.53%) and NA (28.13%) platforms. Need to note, we detected a
novel set of somatic variant sitesandgenes outside the truth set
published by HD832 through the intersection of our 50 datasets
(Table 1). These high-confidence variants were expected to be a
supplement to the published truth set of HD832, offering new
insights into the tumor variant research.

4 Discussion

NGS-based targeted sequencing has gained prominence in
assessing genetic alterations in cancer, influencing the ongoing
development of personalized medicine. Compared to WGS and
WES, TS could minimise manpower, running time, sequencing
data, storage space and computational demand by merely probing
into the interesting targets, thus being economical and cost-effective
(Bewicke-Copley et al., 2019). The excellent coverage depth is the icing
on the cake for its sensitivity and specificity. Whereas, an insufficient
clinical consensus on sequencing platforms and variant calling tools
confuses researchers and clinicians. We evaluated five variant calling
tools on four sequencing platforms to identify the possibilities and
limits of variant screening.

Turn-around-time and sensitivity are foundational to good
clinical diagnosis and essential to achieving optimal patient
outcomes. Specifically, early and reliable tests of genetic
biomarkers available in patients may decrease the use of more
invasive testing, under- and overtreatment, and reduces the
adverse events associated with inappropriately targeted therapies
(Singh et al., 2019; Wurcel et al., 2019). In this study, we observed
high concordance of mutation calling across different sequencers and
software tools generally, albeit with some outlier values and minor
differences (especially for HC and Mutect2 pipelines). Of note, the FS
platform showed higher sensitivity (100%) in high-confidence
variants calling than the other three platforms, when analyzed by
SNVer and VarScan 2 software algorithms (Figures 1A–C).
Considering the dissimilarity of variant calls across different
bioinformatics tools for datasets from the same sequencer (Figures
1D,E), we appraised that software appears to contribute greater to the
variant detection. In addition, comparing the sequencing time of four
platforms in this study, the FS platform shows dominance with the
shortest sequencing time (FS, ~21 h; NA, ~25 h; NS, ~26 h; GM,
~43 h) at the sequencing mode PE150.

Due to the high-depth nature of TS, special attention needs to
be taken to the relationship between the sequencing depth and
precision/sensitivity of mutation detection. However, there is no
consensus on the minimum required depth in a clinical setting
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TABLE 1 Novel somtaic variant genes identified in our study that are not included in the truth set published by HD832.

GRCh37 (hg19) Ref Alt Gene Variant type Cosmic ID (v97) Amino acid Sequence ontology term Average allele frequency (%) Depth (×)

Chr Location

chr1 36,933,199 T C CSF3R SNP COSV58970806 p.Thr640Ala missense_variant 29.05 809.66

chr2 99,154,426 G A INPP4A SNP COSV50811933 p.Val190Ile missense_variant 30.35 730.08

chr2 202,137,387 G A CASP8 SNP COSV51857659 p.Met205Ile missense_variant 30.56 532.12

chr3 49,936,300 C A MST1R SNP COSV56572804 p.Gln516His missense_variantandsplice_region_variant 31.82 538.80

chr3 187,446,153 C T BCL6 SNP COSV51656257 p.Ser512Asn missense_variant 30.31 658.08

chr5 39,002,766 A G RICTOR SNP p.Leu88Ser missense_variantandsplice_region_variant 13.74 346.00

chr6 111,983,012 T C FYN SNP COSV57622174 p.Tyr515Cys missense_variant 28.68 723.56

chr7 50,444,272 G A IKZF1 SNP COSV58792485 p.Gly68Arg missense_variant 21.94 708.74

chr8 93,017,471 G GT RUNX1T1 InDel p.Gln264fs frameshift_variant 13.71 780.74

chr10 90,767,575 A T FAS SNP COSV58239879 p.Arg105Ser missense_variant 23.66 575.32

chr12 6,709,179 C A CHD4 SNP splice_acceptor_variantandintron_variant 11.67 511.06

chr13 102,375,201 T C FGF14 SNP COSV65936716 p.Asn247Asp missense_variant 8.62 609.44

chr15 45,003,808 C T B2M SNP COSV62564195 p.Gln22* stop_gained 30.25 813.56

chr15 45,008,529 C T MIR10393 SNP COSV62562883 p.Arg117* stop_gainedandsplice_region_variant 10.32 360.76

chr15 66,782,085 A G MAP2K1 SNP COSV57235242, COSV57235143 p.Asp351Gly missense_variant 31.95 528.86

chr15 73,994,743 T C CD276 SNP COSV59205301 p.Val76Ala missense_variant 31.09 767.76

chr15 93,480,818 C CA CHD2 InDel p.Val175fs frameshift_variant 20.62 562.08

chr17 30,310,119 G T SUZ12 SNP p.Gly340Val missense_variant 31.03 449.58

chr19 36,214,360 G T KMT2B SNP COSV55867628 p.Cys1005Phe missense_variant 29.18 552.34

chr19 50,906,813 T C POLD1 SNP p.Phe401Leu missense_variant 11.40 747.88

chr20 31,379,499 G A DNMT3B SNP COSV52422156 p.Met302Ile missense_variant 23.90 593.92

chr20 3,9,751,901 G T TOP1 SNP p.Trp754Cys missense_variant 28.17 668.46

Note: These variants were not recorded in both ClinVar and GnomAD., Chr: Chromosome, Ref: Reference, Alt: Alteration.

Gene names are listed in italics.
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for TS. Previous studies attempted to leverage the power of
Illumina technologies to recommend an appropriate depth for
TS. Nevertheless, there is still no consistent standard presently,
ranging from 100× to 1,000× (Cortini et al., 2017; Bewicke-
Copley et al., 2019; Koboldt, 2020). Further studies are thus
needed to define the proper sequencing depth, especially for
novel platforms. For datasets sequenced on the FS platform and
called by SNVer and VarScan 2 algorithms, the sufficient
sequencing depth for the TSO500 panel was 500×, which
enables 100% detection of high-confidence variants
(Figures 1F,G).

Accurate variant calling in NGS data is well known to have a
critical impact on the downstream analysis and interpretation
processes, for which, a proper variant detection algorithm is
important for high sensitivity and specificity (Sandmann et al.,
2017). Through the benchmarking analysis of five popular
variant calling tools, we noted that the choice of software
algorithm represented an important factor for variant detection.
For example, SiNVICT, SNVer and VarScan 2 had high tool-specific
“unique” calls when compared with the truth set (Figure 1E), while
HC seemed to have the fewest concordant calls (Figures 1D,E).
However, focusing on the VAF of the annotated genes, we noticed
some perceptible differences between the truth set and the values
analyzed by SNVer and VarScan2 callers (Supplementary Figure S3).
These findings indicated that multiple analysis algorithms should be
used to obtain a consensus to reduce false-discovery when
diagnosing cancer-associated mutations.

While we provide a useful benchmark for the researcher to
choose sequencing platforms and analysis pipelines, there are some
limitations. Because of time and budget constraints, we only
analyzed two standard cancer samples (OncoSpan FFPE (HD832)
and Twist cfDNA Pan-cancer Reference Standard) with five
pipelines. Although these samples provide reliable variant
information, FFPE-based positive and negative patient samples
would generate more complete evaluations. To acquire a
comprehensive profile of sequencing platforms and pipelines,
multiple samples from the HD832 cell line and clinical cancer
FFPE samples should be enrolled for future research to enable
ultimate clinical applications of the sequencers and variant callers.

5 Conclusion

There was good concordance of variant calling across different
platforms and pipelines. FS platform showed highest sensitivity
(100%) in high-confidence variants calling when analyzed by
SNVer and VarScan 2 algorithms. Our study provides a
standardized target sequencing resource to benchmark new
bioinformatics protocols and sequencing platforms. Moreover,
the variant calling performances of five software on three typical
tumor samples provide a valuable reference for future tumor
variant research.
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