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Primary carnitine deficiency (PCD) caused by pathogenic variants in the solute carrier
family 22member 5 (SLC22A5) gene is a rare autosomal recessive disease that results
in defective fatty acid oxidation. PCD can be detected through tandem mass
spectrometry (MS/MS), but transplacental transport of free carnitine from mothers
may cause false negatives or positives during newborn screening (NBS). This study
aimed to analyze the genetic characteristics of SLC22A5 and estimate the prevalence
of PCD in the Chinese population, providing useful information for NBS and genetic
counseling. We manually curated SLC22A5 pathogenic or likely pathogenic (P/LP)
variants according to the American College of Medical Genetics and Genomics
(ACMG) guidelines and identified 128 P/LP variants. Based on the China Neonatal
Genomes Project (CNGP), the estimated PCD prevalence was 1:17,456, which was
higher than that in other populations. The genotype–phenotype association analysis
showed that patients carrying homozygous c.760C>T and c.844C>Tweremore likely
to present cardiomyopathy, whereas those carrying homozygous c.1400C>G were
more likely to be asymptomatic (all p-values < 0.05). We found that there was no
significant difference in initial C0 concentrations between patients and carriers, but
there was a significant difference in the second-tier screening of C0 concentration
between them (p-value < 0.05). We established a cost-effective variant panel
containing 10 high-frequency sites and developed a screening algorithm
incorporating gene panels with MS/MS, which could rescue one more patient
who was undetected from MS/MS. In conclusion, the prevalence of PCD in the
Chinese population is relatively high. The combination of conventional NBS with
genetic sequencing is suggested for early diagnosis of PCD.
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1 Introduction

Primary carnitine deficiency (PCD, OMIM #212140) is an
autosomal recessive carnitine transport defect caused by biallelic
pathogenic variants in the solute carrier family 22 member 5
(SLC22A5) gene, which encodes organic cation/carnitine transporter
type 2 (OCTN2) (Nezu et al., 1999; Tang et al., 1999; Picard, 2022).
OCTN2 is strongly expressed in the kidney, skeletal muscle, heart, and
placenta (Tamai et al., 1998), and its defect results in urinary carnitine
wasting and low serum carnitine levels, leading to defective fatty acid
oxidation. The clinical manifestations of PCD can vary widely with
respect to the age of onset, involved organs, and severity of symptoms. It
encompasses a broad clinical spectrum including metabolic
decompensation, cardiomyopathy, fatigability, or absence of
symptoms. Due to newborn screening (NBS), many asymptomatic
mothers have been given the diagnosis of PCD (Magoulas and El-
Hattab, 2012; Almannai et al., 2019). Recent research has shown a high
correlation between sudden death and untreated PCD, particularly in
females (Rasmussen et al., 2020). As a result, patients with PCD are at
risk for sudden death throughout their lifetime. Conversely, early
detection and carnitine therapy can prevent metabolic
decompensation and death, and the long-term prognosis is good.

The prevalence of PCD varies in different countries: 1:20,000–1:
70,000 in the United States (Gallant et al., 2012), 1:40,000 in Japan
(Shibata et al., 2018), and 1:120,000 in Australia (Webster et al.,
2003). The highest prevalence is 1:300 in the Faroe Islands
(Rasmussen et al., 2014). In China, the prevalence of PCD varies
among diverse regions, ranging from 1:8,938 to 1:45,000 (Lin et al.,
2020; Yang et al., 2021). The overall PCD prevalence of Chinese
population remains elusive.

There is a correlation between genotype and carnitine levels. It has
been reported that patients with a homozygous nonsense mutation of
SLC22A5 had lower carnitine levels than those withmissense mutations
or heterozygous nonsense mutations. In addition, the closer the
truncation is to the C-terminal domain, the lower the level of
carnitine is (Rose et al., 2012; Shibbani et al., 2014). However,
carnitine levels do not indicate severity of phenotypic presentation.
No clear correlation could be established between the genotype and
severity of clinical presentation or age of onset, suggesting that
environmental factors such as drugs, fasting, or infection were
responsible for the wide variability in phenotypic expression in PCD
(Lamhonwah et al., 2002; Ying, 2023).

With the advent of expanded NBS, infants with PCD can be
identified based on low free carnitine (C0) levels using tandem mass
spectrometry (MS/MS). However, carnitine can transfer from the
mother to the fetus through the placenta during pregnancy, which
may lead to a false C0 level affected by the maternal concentration.
In addition, secondary carnitine deficiency can be caused by a
variety of reasons, such as malnutrition, malabsorption, and
several inherited metabolic disorders including fatty acid
oxidation disorders and organic acidemias (Almannai et al.,
2019). Therefore, the definite diagnosis of PCD relies on the
genetic analysis of SLC22A5 gene or the measurement of
carnitine transport activity in fibroblasts. The China Neonatal
Genomes Project (CNGP) includes 98 hospitals, spanning the
entire country (Wu et al., 2021; Xinran Dong et al., 2022). In
this study, we assessed 278 SLC22A5 variants recruited from the
CNGP and public database, and identified 128 pathogenic/likely

pathogenic (P/LP) variants. We found that different populations had
different pathogenic hotspots in SLC22A5. We estimated the
prevalence of PCD in the Chinese population, reviewed the
published cases to further understand the genotype–phenotype
correlation, and discussed a suitable screening algorithm for PCD
diagnosis in China.

2 Materials and methods

2.1 Collection of Chinese population data

This study was approved by the Ethics Committee of Children’s
Hospital of Fudan University (CHFudanU_NNICU11). Neonates in
the CCGT database who underwent genetic tests from August
2016 to December 2021 were all included. The detailed
processing steps were described in our previous study (Xiao
et al., 2021; Xiao et al., 2022). In brief, counseling was conducted,
and informed consents were obtained from the parents of patients.
Each individual underwent whole-exome sequencing (WES) or
clinical exome sequencing (CES), with both covering the exon
region and exon–intron splicing junction region (deep intron to
15bp) of SLC22A5 gene. Both tests were sequenced on the Illumina
HiSeq X10 with 150 bp pair-end. Infants with genetic positive results
were followed up in the 3rd month after hospital discharge and
recalled for examination of the MS/MS test, liver ultrasonography,
and heart color ultrasound. Diagnostic decisions were made based
on the confirmatory test results (C0 in the lower limit, which was
10 μmol/L in our laboratory).

2.2 Literature search of PCD-related studies

PubMed and Web of Science were searched using the following
terms: “primary carnitine deficiency,” “carnitine transport defect,”
“carnitine uptake defect,” “SLC22A5mutation,” “SLC22A5 variant,”
“OCTN2 mutation,” and “OCTN2 variant” between 1999
(pathogenic variant was first described) and December 2022
(Nezu et al., 1999). Studies meeting the following inclusion
criteria were selected: 1) case reports in which the nomenclature
of mutation sites meets the requirements of HGVS (den Dunnen
et al., 2016), 2) the sites of the case reports were evaluated as P/LP
according to the American College of Medical Genetics and
Genomics (ACMG) guidelines, and 3) the study was included in
SCI (represents high-quality literature). Exclusion criteria included
1) lack of information of mutation sites or the nomenclature of
mutation sites, 2) lack of clinical information, 3) complex cases with
more than two P/LP variants, and 4) repeated cases. According to
those criteria, a total of 881 articles were found, of which 53 were
finally included in this study and 293 published articles of PCD
patients were collected for genotype–phenotype association studies.

2.3 Curation of P/LP variants in SLC22A5
gene

We included reported pathogenic variants of the SLC22A5 gene
from ClinVar (level P or LP), HGMD (level DM or DM?), and PCD-
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related literature mentioned earlier. No new variants were reported
in the CNGP database. These variants were curated by two clinical
geneticists back-to-back according to the ACMG guidelines. After
manual inspection, 128 out of 281 variants were curated at the P/LP
level.

2.4 Collection of public SLC22A5 variant
frequency

ChinaMAP was introduced as an external database of the
Chinese population. It is based on cohort studies across diverse
regions and ethnic groups with metabolic phenotypic data in China,
and analysis of the whole-genome sequencing data in 10,588 healthy
individuals (Cao et al., 2020).

The allele frequency (AF) of SLC22A5 gene in other populations
was available from the gnomAD database. AFR, AMR, ASJ, FIN,
NFE, SAS, and EAS populations in gnomAD were included.

2.5 Estimation of PCD prevalence in the
Chinese population

We estimate the PCD prevalence using three strategies as described
in our previous studies (Ni et al., 2022). Samples identified or suspected
of PCD were excluded, and PCD prevalence was estimated using three
methods. Method 1 was based on the carrier frequency of individuals,
which was calculated by the Hardy–Weinberg principle. Method 2 was
based on the principle of permutation and combination in
mathematics. In this strategy, the hypothesis is to calculate the
probability of an affected child by randomly choosing a male
individual carrying a P/LP variant in the SLC22A5 gene and a
female individual also carrying a P/LP variant in the SLC22A5 gene.
Method 3 was based on the Bayesian framework with the gnomAD
allele count dataset, where 95% confidence interval could be estimated
(Schrodi et al., 2015).

2.6 Data acquisition and processing for the
study of the genotype–phenotype
relationship

We collected the genetic information and clinical characteristics of
PCD patients from PCD-related literature mentioned earlier to study
genotype–phenotype relationships. After manual inspection, 293 out of
447 PCD patients were included. Here, 16 common manifestations
were inferred fromGeneReviews. The variants were further grouped by
their site, mutation type, and zygosity. Fisher’s exact test and Chi-
squared test were applied to testify whether one phenotype was over-
represented in one type of mutations compared with others.

2.7 Statistical analysis

All statistical analyses were performed by R version 4.0.3. Chi-
squared test (λ2.test) was used by default. When the conditions were
not met, Fisher’s exact test was used; p-values were adjusted by the
“fdr” strategy for multiple tests.

3 Results

3.1 Curation of SLC22A5 pathogenic variants
and allele frequency analysis

After pathogenicity assessment of 278 SLC22A5 variants
collected from the CNGP, Human Gene Mutation Database
(HGMD), ClinVar, Web of Science, and PubMed, 128 pathogenic
or likely pathogenic (P/LP) variants were identified (Figure 1A;
Supplementary Table S1). All P/LP variants were scattered on exons
(91.40%, 117/128) and flanking introns (8.59%, 11/128) (Figure 2A).
The most common affected exons were exon 1 (20.31%, 26/128) and
exon 8 (18.75%, 24/128) (Figure 2B), and the most common affected
functional domain was the non-transmembrane domain (58.59%,
74/128) (Figure 2C). Themutation types includedmissense (51.56%,
66/128), frameshift (22.66%, 29/128), nonsense (14.84%, 19/128),
splicing (8.59%, 11/128), in-frame indel (1.56%, 2/128), and start
loss (0.78%, 1/128) variants (Figure 2D).

Among the 128 P/LP variants, 53 had documented AF in general
populations from public databases (Figure 3A; Supplementary Table
S2). Altogether, eight P/LP variants (c.51C>G, c.338G>A, c.760C>T,
c.797C>T, c.865C>T, c.1195C>T, c.1400C>G, and c.497+1G>T) had
significantly higher AF in the Chinese population than in non-East
Asian populations, whereas two variants (c.136C>T and c.424G>T) had
significantly lower AF value in the Chinese population. The most
frequent P/LP site in the gnomAD-TOTAL (all populations in
gnomAD) was c.136C>T (1:1,965 or 0.00051), which was also the
most frequent site in Ashkenazi Jewish (ASJ, 1:1,661 or 0.00060) and
non-Finland European populations (NFE, 1:1,094 or 0.00091),
consistent with the previous study (Magoulas and El-Hattab, 2012).
The most common variant site in the Chinese population was
c.1400C>G (ChinaMAP: 1:243 or 0.0041, CNGP: 1:239 or 0.0042),
and it has not been reported in non-East Asian populations. The other
high-frequency pathogenic sites in the Chinese population were
c.51C>G (ChinaMAP: 1:833 or 0.0012, CNGP: 1:1,275 or 0.00078)
and c.760C>T (ChinaMAP: 1:1,512 or 0.00066, CNGP: 1:1,322 or
0.00076), both of which have not been reported in non-East Asian
populations. These results suggested that the Chinese population had
special characteristics in SLC22A5 variants.

3.2 Estimation of PCD prevalence in the
Chinese population

In the CNGP cohort, we enrolled a total of 17,881 neonates. To
estimate PCD prevalence, we excluded neonatal patients identified
or suspected of PCD, leaving 17,864 (7,333 males and
10,531 females) neonates (Figure 1B). The number of individuals
carrying P/LP SLC22A5 variants was 269 (144 males and
125 females). Based on the carrier frequency, the estimated PCD
prevalence was 1:17,641 in the CNGP. By the permutation and
combination method, the estimated prevalence was 1:17,161. By the
Bayesian framework, the estimated prevalence of PCD was 1:17,576
(95% confidence interval: 1:22,551–1:14,001). In general, the
estimated prevalence of PCD in the Chinese population is 1:
17,456 by averaging all the above results (Table 1).

For the result of PCD prevalence estimation by the Bayesian
framework in other gnomAD populations, the prevalence is 1:
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1,134,461 (95% confidence interval: 1:2,300,325–1:650,711) in
African American (AFR) population, 1:148,320 (95% confidence
interval: 1:314,155–1:82,852) in admixed American (AMR)
population, 1:921,025 (95% confidence interval: 1:28,837,593–1:
211,888) in ASJ population, 1:1,964,440 (95% confidence interval:
1:13,880,667–1:645,273) in Finnish in Finland (FIN) population, 1:
282,613 (95% confidence interval: 1:413,709–1:202,688) in NFE
population, 1:84,707 (95% confidence interval: 1:404,329–1:
31,975) in South Asian (SAS) population, and 1:16,375 (95%
confidence interval: 1:41,410–1:8,272) in East Asian (EAS)
population (Figure 3B). Based on these results, we found the
PCD prevalence in the Chinese population was much higher
than that in other populations, especially higher than that in FIN
population.

3.3 Analysis of the genotype–phenotype
relationship in PCD patients

We collected genetic and clinical information of 293 PCD patients
from the literature review (Supplementary Table S3). For infants and
children, cardiomyopathy (71/194, 36.5%) was the dominant
phenotype. Other common phenotypes included hypoglycemia (32/
194, 16.5%), hyperammonemia (22/194, 11.3%), hepatomegaly (33/194,
17.0%), and elevated ALT (31/194, 15.9%). Most adult patients were
asymptomatic or experienced only fatigue (88/97, 90.7%). We analyzed
the relationship between the phenotype and variant site, mutation type,
and zygosity. For each variant–phenotype analysis, we found that
patients carrying homozygous c.760C>T and c.844C>T were more
likely to present cardiomyopathy than those with a combination of

other variant sites (OR = 10.5 in c.760C>T and OR = +∞ in c.844C>T,
both p-value < 0.05), whereas those carrying homozygous c.1400C>G
were more likely to be asymptomatic than those without these variants
(OR = +∞, p-value < 0.05; Supplementary Table S4). Mutation types of
all variants in the 293 PCD patients were classified into the following:
missense, frameshift, nonsense, splicing, in-frame indel, and start loss
variants. Two missense variants were the most common mutation type
combination in PCD patients (177/293, 60.4%), then were two
nonsense variants (43/293, 14.6%), and a combination of one
nonsense variant and one missense variant (34/293, 11.6%). For
mutation type–phenotype analysis, we found that patients carrying
two frameshift variants and patients carrying two nonsense variants
were more likely to present cardiomyopathy (OR = 10.8 in frameshift
variants and OR = 7.1 in nonsense variants, both p-values < 0.05),
whereas patients carrying two missense variants were more likely to be
asymptomatic (OR = 3.8, p-value < 0.05; Supplementary Table S5). For
zygosity–phenotype analysis, patients carrying compound heterozygous
pathogenic variants were more likely to be asymptomatic (OR = 4.2,
p-value < 0.05), whereas patients carrying homozygous pathogenic
variants were more likely to present cardiomyopathy (OR = 4.0,
p-value < 0.05) and cardiac failure (OR = 13.7, p-value < 0.05;
Supplementary Table S6).

3.4 Patients in CNGP cohort and discussion
of a screening algorithm

Seventeen neonates were diagnosed as genetically positive
cases of PCD in the CNGP cohort, including 16 compound
heterozygous neonates (heterozygous mutation in each allele)

FIGURE 1
Flow diagram of the study. (A)Workflow for curation of pathogenic variants in SLC22A5 gene. (B)Workflow for PCD identification and estimation of
PCD prevalence in the Chinese population. HGMD, Human Gene Mutation Database; P, pathogenic; LP, likely pathogenic; DM, disease-causing
mutation; ACMG, American College of Medical Genetics and Genomics; VUS, versus uncertain significance; LB, likely benign; B, benign; CNGP, China
Neonatal Genomes Project; PCD, primary carnitine deficiency; 95% CI, 95% confidence interval.
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and one homozygous. Fifteen of them were diagnosed through
NBS, whereas two patients had normal initial C0, suggesting that
a proportion of cases (11.7%, 2/17) were missed by
conventional NBS.

The initial NBS results were available in 72 heterozygote carriers,
and 10 of them had low C0 levels (Supplementary Table S4). During
the follow-up period, one carrier developed growth retardation and
the remaining carriers were asymptomatic. In comparison, the
initial C0 concentrations in neonatal carriers (n = 10) and
patients (n = 17) with low C0 levels were 6.47 and 5.27 μmol/L,
respectively (Figure 4A). Without carnitine therapy, the second-tier
screening of C0 concentrations in carriers (n = 3) increased to
9.01 μmol/L, whereas the C0 concentrations in patients (n = 9)
decreased to 4.28 μmol/L. After L-carnitine supplementation, the
C0 concentrations in carriers (n = 4) and patients (n = 6) increased
to 18.61 and 20.21 μmol/L, respectively.

To establish a cost-effective variant panel for PCD diagnosis, we
identified 10 high-frequency sites, namely, c.1400C>G, c.760C>T,
c.51C>G, c.797C>T, c.338G>A, c.1195C>T, c.497 + 1G>T,
c.865C>T, c.696C>T, and c.844C>T (Figure 4B). These variants were

the top 10 variants in the CNGP cohort and covered approximately 90%
of Chinese patients. Coupling the screening panel on initial MS/MS, we
developed a screening algorithm for PCD (Figure 4C). The algorithm
could identify 15 (15/17, 88.2%) newborns as positive in the first-tier test,
whereas another two (2/17, 11.8%) newborns would be identified as
suspected carriers and needed second-tier testing and follow-up. One
patient undetected from MS/MS could be benefitted from the
implementation of gene panels as a first-tier screening test.

4 Discussion

The SLC22A5 gene is located on the chromosome 5q31 and
contains 10 exons, encoding 557 amino acid polypeptides (Saito
et al., 2002). In this study, we curated 281 SLC22A5 variants
recruited from the CNGP and public databases and identified
128 P/LP variants. A few ethnic-specific variants have been
reported in several populations. For instance, c.95A>G is the
founder variant of the Faroe Islands (Rasmussen et al., 2014),
c.136C>T is the most frequent mutation in the United States of

FIGURE 2
Genetic spectrum of pathogenic variants in the SLC22A5 gene. (A) Distribution of P/LP variants in the 10 exons of SLC22A5 gene. (B) Proportion of
different exons in P/LP variants. (C) Proportion of different functional domains in P/LP variants. (D) Proportion of different mutation types in P/LP variants.
E, exon; TM, transmembrane; P, pathogenic; LP, likely pathogenic.
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America (Frigeni et al., 2017), and c.396C>T and c.1400C>G are
common variants in Japan (Koizumi et al., 1999). In our study, we
found that c.1400C>Gwas the most prevalent variant in the Chinese
population, followed by c.51C>G and c.760C>T, which is consistent
with previous studies (Lin et al., 2019; Lin et al., 2020). Some studies
indicated that c.760C>T was the most frequent variant in Chinese
patients, but the sample size was relatively limited (Han et al., 2014;
Lin et al., 2019; Lin et al., 2022). It has been reported that the variants
presented different geographic distributions in China (Lin et al.,
2022). For instance, c.760C>T, a severe mutation with very low
residual OCTN2 transporter activity, was common in southern

China but rarely detected in northern China (Lin et al., 2019;
Yang et al., 2020; Zhang et al., 2021; Lin et al., 2022). In
contrast, c.1400C>G with a residual function that may result in a
mild phenotype was common in both southern and northern China
(Lin et al., 2020; Yang et al., 2020; Zhang et al., 2021; Lin et al., 2022).

PCD is the most common fatty acid metabolic disorder in China.
Recruiting newborns from 98 hospitals across different regions, this
study estimated that the prevalence of PCD in the Chinese population
was 1:17,456, which is similar to the prevalence recently reported in
Ningbo (1:16,595) (Yang et al., 2021), Guangzhou (1:13,345) (Huang
et al., 2020), and Quanzhou (1:11,189) (Lin et al., 2022). The PCD

FIGURE 3
Allele frequency and estimated PCD frequency in different populations. (A) Allele frequency comparison for 53 pathogenic variants in different
populations. (B) Estimated PCD affected the frequency of different populations by the Bayesian framework. CNGP, China Neonatal Genomes Project;
AFR, African American; ASJ, Ashkenazi Jewish; NFE, non-Finland European; FIN, Finnish in Finland; AMR, admixed American; SAS, South Asian; EAS, East
Asian. (A) Red triangles indicate variants with higher AF in the Chinese population than in non-East Asian populations, and blue triangles indicate
variants with a significantly lower AF value in the Chinese population. (B)We employed scientific notation to express numbers, whereas in the main text,
we present them as fractions. It is important to note that these representations are equivalent, that is, 9.27e-06 is equivalent to 1:107,875, 6.04e-05 is
equivalent to 1:16,556, and 1.21e-04 is equivalent to 1:8,264.

TABLE 1 PCD prevalence estimation in the CNGP cohort with estimated affected frequency by three methods.

CNGP cohort

Total number 17,864

Gender (female/male) 7,333/10,531

Carrier with P/LP variants (female/male) 125/144

Carrier frequency 1:66

Method 1: carrier frequency 1:17,641

Method 2: permutation and combination 1:17,161

Method 3: Bayesian framework (95% CI) 1:17,576 (1:22,551–1:14,001)

Average 1:17,456

P/LP, pathogenic or likely pathogenic; CNGP, China Neonatal Genomes Project; CI, confidence interval.
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prevalence in the Chinese population is higher than that in other
populations, especiallymuch higher than that inCaucasian populations.

The genotype–phenotype correlation suggests that frameshift and
nonsense variants aremore likely to be associated with cardiomyopathy,
which is the main phenotype of PCD, whereas missense variants are
more common in asymptomatic individuals. This is consistent with
previous studies demonstrating that nonsense and frameshift variants in
SLC22A5 are typically associated with lower carnitine transport,
whereas missense variants may result in proteins with retained
residual carnitine transport activity (Rose et al., 2012; Shibbani et al.,
2014). As for phenotype–variant site correlations, c.760C>T and
c.844C>T were identified to be related with cardiomyopathy, and
c.1400C>G was related with asymptomatic individuals. Our results
confirmed the previous conclusion and gave a clue to the
genotype–phenotype association of PCD.

PCD has been included in the NBS plan in China based onMS/MS,
which is critical for PCD diagnosis and cannot be replaced. However,
the current NBS faces challenges because C0 in days 2–3 has poor

sensitivity and a positive predictive value (Wilson et al., 2019). As
carnitine can be transported through the placenta, newborns with PCD
can have a carnitine supply from their mother, which causes false-
negative results. On the other hand, babies born to mothers with PCD
can have a low free C0 level, which causes false-positive results. WES
and genome sequencing are promising candidates for the genomic
sequencing test, but their use as a universal screening test in clinical
applications is hindered by their high cost. As PCD is a disorder with
relatively high prevalence in China and can be fatal if left untreated, we
designed a cost-effective variant panel containing 10 high-frequency
sites. Coupling the screening panel on initial MS/MS as a first-tier
screening, we established a screening algorithm for PCD, which could
identify one more patient undetected by MS/MS. Incorporating gene
panels with biochemical NBS is a low-cost approach and could largely
reduce the time and expenditure from positive screen to case closure.
However, it is noteworthy that the improvement in sensitivity comes at
the expense of increased carrier identification. Newborns with only one
variant detected need long-term follow-up, and further genetic analysis

FIGURE 4
Establishment of the screening algorithm for the Chinese population. (A) Primary screening C0, follow-up C0, and post-treatment
C0 concentrations in dried blood spots from carriers and PCD patients. (B) Estimated incidence based on P/LP variants from the CNGP cohort. Rapid
detection of the top 10 high-frequency sites (c.1400C>G, c.760C>T, c.51C>G, c.797C>T, c.338G>A, c.1195C>T, c.497 + 1G>T, c.865C>T, c.696C>T, and
c.844C>T) may cover approximately 90% of Chinese pediatric patients. (C) Designed screening algorithm for PCD in the Chinese population.
Primary screening is performed at 48–72 h after birth; if C0 is higher than the cut-off value (10 μmol/L in our laboratory), newborns with two, one, and no
SLC22A5mutations can be suspected as patients, carriers, and negatives, respectively. If C0 is lower than the cut-off value, newborns withmore than two
mutations can be diagnosed as patients. In other cases, a duplicate retest on the birth dried blood spot is performed. PCD, primary carnitine deficiency;
CNGP, China Neonatal Genomes Project; MS/MS, tandem mass spectrometry.
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is requiredwhen they have persistently lowC0 levels. Large-scale studies
are needed to optimize the workflow and to evaluate the cost-
effectiveness of this screening approach.

There are some limitations to note about our study. First, the main
criterion for inclusion was the identification of P/LP variants in the
SLC22A5 gene. Therefore, the false-positive rate of conventional NBS is
unclear. Second, as PCD has been included in NBS in many countries,
the patients accepted carnitine supplementation before the phenotypes
occurred, which was good for patients but introduced many missing
values in the genotype–phenotype analyses. Third,most published cases
only reported the chief symptoms and did not mention whether the
patients had other phenotypes, resulting in non-significant results.
More comprehensive records of patients would help to clarify the
genotype–phenotype relationship of PCD.

5 Conclusion

The prevalence of PCD is higher in the Chinese population than
in Caucasian populations, and c.1400C>G, c.51C>G, and c.760C > T
are hotspots of SLC22A5 in the Chinese population. Frameshift and
nonsense variants are associated with cardiomyopathy, whereas
missense variants are more common in asymptomatic
individuals. The combination of conventional NBS with genetic
sequencing is suggested for early diagnosis of PCD.
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