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Introduction: Body measurement traits are integral in cattle production, serving as
pivotal criteria for breeding selection. Wenshan cattle, a local breed in China's
Yunnan province, exhibit remarkable genetic diversity. However, the molecular
mechanisms regulating body measurement traits in Wenshan cattle remain
unexplored.

Methods: In this study, we performed a genome-wide association method to
identify genetic architecture for body height body length hip height back height
(BAH), waist height and ischial tuberosity height using the Bovine 50 K single
nucleotide polymorphism Array in 1060 Wenshan cattles.

Results: This analysis reveals 8 significant SNPs identified through the mixed linear
model (MLM), with 6 SNPs are associated with multiple traits and 4 SNPs are
associated with all 6 traits. Furthermore, we pinpoint 21 candidate genes located in
proximity to or within these significant SNPs. Among them, Scarbl, acetoacetyl-
CoA synthetase and HIVEP3 were implicated in bone formation and rarely
encountered in livestock body measurement traits, emerge as potential
candidate genes regulating body measurement traits in Wenshan cattle.

Discussion: This investigation provides valuable insights into the genetic
mechanisms underpinning body measurement traits in this unique cattle breed,
paving the way for further research in this domain.

KEYWORDS

Wenshan cattle, body measurement traits, SNPs, genome-wide association study, genetic
selection

1 Intruduction

The nutritional value of beef, characterized by its high-quality animal protein content,
underscores its significance in the meat market (Wu G, 2020). With an escalating demand for
beef due to the increased consumption, understanding and enhancing the economic traits
associated with beef cattle have become paramount (MacDonald, 2003). Body measurement
traits, such as body length (BL), body height (BH) and back height (BAH), are widely used as
important indicators for selection criterion to improve the production of the beef cattle
(Gritsenko et al, 2023). According to previous study, these body measurement traits have
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demonstrated correlations with various other economically significant
characteristics, such as reproductive traits (Bessa et al., 2021; Shin et al,,
2021), longevity (Forabosco et al, 2004; Setati et al, 2004), feed
efficiency (Benfica et al, 2020), carcass traits (Munim, et al., 2013)
and growth traits (Naserkheil et al, 2020). Furthermore, body
measurement traits can also be used to predict cattle’s health status
(Schmidtmann et al., 2023). In the past few decades, the improvement
of beef cattle body measurements has relied on conventional breeding
techniques. Body measurement traits, as a kind of quantitative traits
which are controlled by a few major genes and numerous minor genes,
are also influenced by various environmental variables, such as diet,
prenatal conditions and living environment (Larson et al, 2023;
Dawson et al,, 2022). Thus, the efficacy of traditional methods is
constrained (Ring et al,, 2019). Fortunately, due to the reduction in
sequencing costs, the completion of the cattle genome sequence, and the
continuous improvement of the genetic evaluation methods, molecular
marker-assisted breeding has become an effective and reliable way to
improve beef cattle’s body measurement traits (Naserkheil et al., 2020).

Wenshan cattle, colloquially referred to as Wenshan-humped yellow
cattle, represent a distinctive beef cattle breed primarily found in the
Wenshan Zhuang and Miao Autonomous Prefecture of Yunnan
has excellent features like
adaptation to rough feed, stress resistance capacity, early mature

Province in China. Wenshan cattle

(China National Commission of Animal Genetic Resources, 2011),
tolerance to hot and humid environments (Liu et al, 2022; Yan
et al,, 2022), superior meat quality, and a wealth of genetic diversity
(Nie et al., 1999; Chen et al., 2020), and has important value of research.
Chen, Zhi et al. (2019)showed that the contents of fat, myristic acid,
palmitic acid and palmitoleic acid in the longissimus muscle of 1-year old
Wenshan bull were higher than those of Simmental cattle. However, akin
to other beef cattle breeds, Wenshan cattle have their inherent
limitations. As to 18-month old cattle, the average body weight of
Wenshan cattle was significantly lower than Simmental cattle (p =
0.0004) (Li et al,, 2019). The growth performance and carcass traits of
Wenshan cattle were also lower than those of Yunling cattle and
Simmental cattle, respectively (Fan et al, 2020). At 12 months,
Wenshan cattle display notably smaller body measurements,
including withers height, body slanting length, chest circumference,
and hip and rump length, compared to Yunling cattle and Simmental
cattle (p < 0.05) (Meng et al,, 2020). These deficiencies, such as smaller
size, long growth cycle and lower growth rate, along with diminished
meat production performance and higher feeding costs in comparison to
widely used breeds, which restrict its further development. Therefore,
improvement in the growth traits is the key to the development of
Wenshan cattle industry.

With the rapid development of single nucleotide polymorphism
(SNP) arrays and the reduction of the genotyping costs, genome-wide
association study (GWAS) has been widely used to identify genomic
regions that control economic traits in domestic animals (Zhang et al,,
2019; Song et al., 2023). GWAS employs thousands of SNP markers to
efficiently associate economic traits in beef cattle, such as body
measurement traits, and many candidate genes has been identified in
recent years (van den Berg et al,, 2022; Niu et al., 2021; Bouwman et al,,
2018). In a recent study, 463 Wagyu beef cattles were genotyped by 770K
SNP array to identify candidate genes for body measurement traits, and
18, 5and 1 SNPs associated with hip height, body height and body length
were detected respectively through GWAS (An et al, 2019).
Vanvanhossou et al. (2020) detected that PIK3R6 and PIK3R1 had
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direct functional associations with height and body size for 4 Beninese
indigenous cattle breeds. Terakado, et al. (2018) identified that the gene
TMEM68 had associated with yearling height in Nelore cattle using
GWAS based on the Illumina BovineHD BeadChip. Recently, An et al.
(2020) conducted GWAS on 1,217 Chinese Simmental beef cattle to
study the changes of body size traits such as heart size (HS), abdominal
size (AS), body height (BH), body length (BL), hip height (HH) and
cannon bone size (CS) at three different growth stages (6, 12 and
18 months). In the above research, Illumina Bovine HD 770 K BeadChip
was used through GWAS, and revealed 58 significant SNPs compatible
with 21 genes correlated to body size in Simmental beef cattle. Due to the
difficulty in collecting phenotype data and the high cost of large
population sequencing, studies on the molecular mechanisms of body
size traits in beef cattle remain limited. However, GWAS analyses face a
significant challenge in controlling false positives and false negatives that
may arise due to population structure and kinship. To solve this
problem, mixed linear models (MLMs) were frequently used, which
incorporate covariates for population structure and principal component
analysis (PCA). Linkage disequilibrium (LD) serves as the foundation of
GWAS, which provided insight in identifying genomic regions to
improve economically important traits (McKay et al, 2007; Porto-
Neto et al,, 2014). LD is mainly determined by the physical distance
between markers, and may also be influenced by several other
demographic and evolutionary factors including genetic bottleneck,
population stratification, selection, inbreeding, genetic drift, effective
population size, migration, mutation, and recombination rate (Reich
etal, 2011; Karimi et al,, 2015; Singh et al,, 2021). Consequently, GWAS
is suitable for studying body measurement traits.

In this study, the GWAS was conducted using the Bovine 50K SNP
Array to identify significant SNPs associated with six body measurement
traits of 1060 Wenshan cattles, including body height (BH), body length
(BL), hip height (HH), back height (BAH), waist height (WH) and
ischial tuberosity height (ITH). To enhance the accuracy of our analysis
and control for population structure, we employed the Mixed Linear
Model (MLM) and used population structure as covariates. The primary
objective of this study was to map significant SNPs, with a particular
focus on common SNPs, and to identify candidate genes that play a role
in body measurement-related traits. Besides, Mixed Linear Model
(MLM) was used for GWAS analysis, and population structure was
used as covariates. The objective of this study was to map significantly
associated SNPs, especially common SNPs, and to identify candidate
genes involved in body measurement related traits. This study represents
the first
measurement-related traits in Wenshan cattle, with the aim of

comprehensive genome-wide investigation of body
identifying candidate genes and potential markers. The findings of
this research provide valuable insights and pave the way for further
exploration of the genetic mechanisms underlying body measurement
traits in Wenshan cattle. This study offers valuable insights for the
further investigation of potential genetic mechanism of body

measurement traits in Wenshan cattle.

2 Materials and methods

2.1 Ethics statement

All of the animals employed in this research were handled

following the guidelines established by the Ministry of
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Agriculture and Rural Affairs of China for use of experimental
animals. The ethics committee of Yunnan Agricultural University
(YNAU, Kunming, China) approved of the entire research.

2.2 Animals, phenotypic collection and
statistical analysis

According to the date of birth, 1,060 Wenshan cattles (900 females
and 160 males) aged around 12-monthold (+15 days) were collected
from Yunnan Guduo Agriculture and Animal Husbandry Co., Ltd. in
Yunnan Province, China. These cattles were reared under the
homologous management conditions and similar environments. In
this study, 6 phenotypic traits including BH, BL, WH, BAH, ITH and
HH were measured simultaneously for each individual by the method
as in Ref. (An et al,, 2020). Ear tissue samples were collected from the up
1,060 Wenshan cattles, and were stored at —80°C.

SPSS25 software was used to make descriptive statistics,
including the number, minimum, maximum, mean, standard
6 body
measurement traits in Wenshan cattle. Phenotypic correlations

deviation, and coefficient of variation for our
among the body measurement traits were calculated within the R
statistical environment and used to determine whether they reflected

the relationships between the GWAS results.

2.3 Genotyping and quality control

Ear samples of 1,060 Wenshan cattle were used to extract the
DNA using the Tissues Genomic DNA (Omega Bio-Tek,
Norcross, GA, United States) kit according to the
After that, the DNA was
quantified and genotyped using the Bovine 50K SNP Array

manufacturer’s instructions.
and the PLINK v1.90 Software was used for quality control
(Purcell et al., 2007). Briefly, The raw genotypic data were
controlled according to call rates >0.95 and markers with call
rates >0.95, minor allele frequency (MAF) > 0.01, and
Hardy-Weinberg (HWE) p > 107 were retained. All markers
located on sex chromosomes or in unmapped regions were
excluded. Missing genotypes were imputed using the Beagle
2009). After that,
46,284 high-quality SNPs were used for subsequent analyses.

software (Browning and Browning,

2.4 Population structure

To investigate population structure of Wenshan cattle,
population stratification was detected using eigenvalues and
eigenvectors calculated by GCTA software (Li et al., 2016) based
on principal component analysis (PCA). The SNPs density
distributions plot was drawn using the R package “CMplot” (Yin,
L. et al,, 2021).

2.5 Association analysis
To test for normality, the Shapiro test was performed on our

phenotypic data of 6 body measurement traits. Since the original
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TABLE 1 Descriptive statistics of 6 body measurement traits in Chinese
Wenshan cattle.

Traits Mean SD MAX MIN CV%
BL 101.58 9.725 128.00 69.00 9.6
BH 104.33 8.375 142.00 63.00 8.0
WH 104.30 7.979 133.00 62.00 7.7
ITH 92.23 7.289 156.00 56.00 7.9

BAH 100.63 7.799 132.00 60.00 7.8
HH 88.44 6.868 117.00 54.00 7.8

SD, Standard Deviation; C.V, Coefficient of Variation.

data are not normally distributed, a log transformation was
performed to normalize it. The normalized data on the 6 body
measurement traits were then subjected to a one-way analysis of
variance (ANOVA), followed by post hoc Fisher’s least significant
difference (LSD) test using the Agricolae package (Steel and Torrie,
1997) in R 4.2 (https://www.R-project.org/). The log-transformed
phenotypic data were eventually used in the GWAS analysis. The
single variable mixed linear model (MLM) of GEMMA software
(Zhou and Stephens, 2012) was employed for association analysis
between body measurement traits and filtered SNP markers (n =
46,284). The first three principal components of principal
component analysis were used as covariables to conduct
association analysis. The univariate linear mixing model is as
follows:

y=yPca+XB+Za+Wu+e

Where y is the phenotypic value vector; y is the regression
coefficient; PCA is a covariate vector; P is the fixed effect vector of
birth year, birth month and sex; a is SNP effect value vector; y is the
residual polygenic effect value vector, which follows the [a~MVN(0,
A o2 )] distribution, and A represents the molecular affinity matrix. e
is the residual effect value vector, following the [e ~ MVN(0, I 62)]
distribution, I represents the unit vector; X, Z and W are the
correlation matrices of B, a and y, respectively.

Using the Bonferroni correction, the genome-wide significant
thresholds and suggestion threshold were set as p < 0.05/N, p < 1/N,
respectively, where N was the number of SNPs tested in the analyses.
Genome-wide significant and suggestive levels were set as
0.0546,284 = 1.08 x 10° and 1/46,284 = 2.16 x 107,
respectively. Finally, the manhattan and Quantile-Quantile (Q-Q)
plots of GWAS were drawn using the R package “qqman”.

2.6 Candidate gene selection and functional
annotations

Candidate genes were selected within 0.25 Mb upstream or
downstream of the significant SNPs based on LD value for
Wenshan cattle population. The major genome browser, Ensembl
(https://uswest.ensembl.org/index.html), was used to annotate the
significant SNPs identified for the 6 body measurement traits in
Wenshan cattle. Candidate genes were then selected according to
their biological function.
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TABLE 2 Correlation coefficients of 6 body measurement traits in Chinese
Wenshan cattle.

Traits (cm) BL BH WH ITH BAH HH

BL
BH 0.678**
‘WH 0.676** 0.920**
ITH 0.603** 0.791%* 0.829**
BAH 0.670** 0.961** 0.935%* 0.804**
HH 0.629** 0.802** 0.841** 0.922** 0.818*

*p < 0.01.

3 Results

3.1 Phenotype data statistics

The statistical information on the six body measurement traits is
shown in Table 1. The mean values for BL, BH, WH, ITH, BAH and
HH were 101.58 cm, 104.33 cm, 104.30 cm, 92.23 cm, 100.63 cm and
88.44 cm, respectively. Coefficients of variation for the 6 body
measurement traits were 9.6, 8.0, 7.7, 7.9, 7.8 and 7.8, respectively.

The phenotypic correlation coefficients for the 6 body
measurement traits were shown in Table 2. The results revealed
that significant positive correlations were found between all of these
6 traits (p < 0.01), ranging from 0.603 to 0.961. The highest
correlation was found between BH and BAH (r = 0.961, p < 0.001).

10.3389/fgene.2023.1318679

3.2 Population structure

After elimination of the monomorphic loci and loci with minor
allele frequency (MAF) below 1%, from the total of 63,791 SNP
markers, 46,284 SNPs remained for associations with body
measurement of Wenshan cattle. The density distributions of the
filtered SNPs are shown in Figure 1. The highest number of markers
was on chromosome 1 (3,168 SNPs), and the lowest number of
markers was on chromosome 28 (824 SNPs). SNPs were found in
almost all of the non-overlapping 1 Mb regions of the genome,
indicating the reliability of the data.

In our study, in order to investigate the genetic structure of
1,060 Wenshan cattle, quality-controlled SNP markets were utilized
for principal component analysis (PCA). The analysis revealed that
there were no distinct genetic clusters among the samples, as shown
in Figure 2A. Furthermore, the heatmap and dendrogram of the
kinship matrix confirmed the absence of clear clusters in the
population, indicating that the Wenshan cattle population in
present study is irrelevant to family (Figure 2B).

3.3 GWAS of body measurement related
traits

In total, 8 SNPs (listed in Table 3) were identified with the
p-value ranging from 1.48 x 107> (Affx-277,062,550) to 2.3 x 107
(Affx-41,315,554), and the MAF ranging from 0.012 (Affx-
113,744,044 and Affx-106,521,055) to 0.401 (Affx-277,062,550).

The number of SNPs within 1Mb window size

18Mb 36Mb 54Mb 72Mb

90Mb

108Mb 126Mb 144Mb  158Mb

cor [ T T N
Coroe Y | T VT 1
Coree I N T T T T

FIGURE 1

0
1
17
33

.49
65
81
97
113
129
>129

The filtered SNPs density distributions on chromosomes. The horizontal axis (x-axis) shows the chromosome length (Mb). Color index indicates the

number of labels.
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FIGURE 2
Population structure analysis. (A) The principal component analysis (PCA) for the third principal component (PC3) against the first principal
component (PC1) and the second principal component (PC2). (B) The hierarchical clustering and heat map of the pairwise kinship matrix values.

TABLE 3 Significant SNPs identified for 6 body measurement traits in Chinese Wenshan cattle.

SNP* Chr Position MAF SNP Effects
(bp)
HH  WH
Affx- 2 87,133,202 0.012 2.07E-05 = 557E-06 = 8.09E-06 1.27E-05 972 -851  -9.65 938
106521055
Affx- 3 104,290,872 0401 | 8.56E-06 4.18E-05 | 1.04E-05 791E-06 = —2.55 191  -221 -2.28
277062550
Affx- 13 5,348,767 0.071 | 1.53E-64 | 3.05E-45 5.89E-63 3.48E-65 3.17E-62 6.79E-65 17.85 | 1506 1434 1683 1492 16.68
257095832
Affx- 16 9,148,784 0012 | 2.33E-05 11.13
113744044
Affx- 17 50,965,063 0.032 | 5.05E-23 | 6.84E-19 422E-23 225E-24 102B-26 7.03E-24 1568 | 14.13 1279 1518 1438 14.96
115873673
Affx- 17 52,029,736 0.066 = 1.06E-67 | 158E-45 252E-64 6.26E-68 896E-64 230E-68 1890 | 1564 1501 1777 | 1563 17.70
41315554
Affx- 22 39,829,835 0075 | 123E-61 | 161E-41 7.40E-57 7.53E-61 165B-56 151E-61 1682 1392 1318 1570 1374 1568
43208349
Affx- 24 11,204,777 0.081 2.00E-05 ~4.39
106517222

For BH trait, a total of 6 SNPs were detected, with two located on
chromosome 17 and the others on chromosomes 3, 13, 16 and 22,
respectively. Among them, the most significant SNP was Affx-
257,095,832 (p = 1.53 x 107**), which located on BTAI13:
5,348,767 bp. For BL trait, a total of 6 SNPs were detected, with
two located on chromosome 17 and the others on chromosomes 2,
13, 22 and 24, respectively. Among them, the most significant SNP
was Affx-41,315,554 (p = 1.58 x 107*), which located on BTA17:

Frontiers in Genetics

52,029,736 bp. For HH, WH and BAH trait, 6 identical SNPs were
detected for every one of them, with two located on chromosome
17 and the others on chromosomes 2, 3, 13 and 22, respectively. For
HH, WH and BAH, Affx-41,315,554 was the most significant one
among their selected SNPs, which located on BTA17: 52,029,736 bp,
and the p-values were 2.52 x 107, 6.26Ex10™® and 2.3 x 107,
respectively. For ITH trait, a total of 4 SNPs were detected, with two
located on chromosome 17 and the others on chromosomes 13 and
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FIGURE 3

Manhattan plots and QQ plots for six body measurement traits
using MLM. (A) BL, (B) BH, (C) ITH, (D) WH, (E) BAH, (F) HH. Negative
log10 p-values of the filtered high-quality SNPs were plotted against
their genomic positions. The solid lines of orange and blue
correspond to the Bonferroni-corrected thresholds of p = 2.16 X 10~°
and p = 1.08 x 107°, respectively.

22, respectively. Among them, the most significant SNP was Affx-
41,315,554 (p = 8.96 x 10°%), which located on BTA17:
52,029,736 bp.

The GWAS results for the 6 body measurement traits were
illustrated by Manhattan plots and Quantile-Quantile (Q-Q) plots in
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Figure 3. QQ plots of BH, BL, WH, BAH, ITH and HH traits showed
no evidence of population stratification in our study.

3.4 Common significant loci shared by three
traits

Particularly, we found that 4 significant SNPs including BTA13:
5348767bp, BTA17:50965063bp, BTA17:52029736bp and BTA22:
39829835bp were associated with all the 6 body measurement traits
(Table 3; Figure 4). BTA3:104290872bp was associated with BH,
WH, BAH and HH, respectively. BTA2:87133202bp was associated
with BL, WH, BAH and HH, respectively.

3.5 Identification of candidate genes

To identify candidate genes associated with the 6 body
measurement traits of Wenshan cattle, we searched for genes
within a 0.5 Mb of the identified SNPs using the UCSC genome
browser. In total, 21 genes were identified within or overlapping the
candidate regions of 8 SNPs (Table 4). And, 1, 6, 13 and 1 genes were
mapped  for  Affx-257,095,832,  Affx-115,873,673,  Affx-
41,315,554 and Affx-277,062,550, respectively. Affx-106,521,055,
Affx-113,744,044, Affx-43,208,349 and Affx-106,517,222 did not
map any gene. Among these genes, 20 genes were associated with
all the 6 traits, and mainly distributed on BTA13, 17 and 22.
HIVEP3, which located on BTA3, was associated with WH,
BAH, BH and HH, respectively. Through reviewing relevant
research reports, we found that Scarbl, AACS and HIVEP3 as
candidate genes for body measurement traits according to their
biological functions.

4 Discussion

Population stratification is a crucial factor to consider in GWAS,
as it can lead to an increased rate of false positives (Devlin and
Roeder, 1999; Price et al., 2006; Kang et al., 2010; Zhou and
Stephens, 2012; An et al, 2019). Many studies have indicated
that adding population stratification to GWAS models can
significantly improve the accuracy of analysis results (Devlin and
Roeder, 1999; Price et al., 2006; Kang et al., 2010; An et al., 2019).
MLM with principal component analysis (PCA) model was widely
used to simulate population structure, kinship, and family structure,
which is currently the most effective method to reduce population
stratification (Price et al., 2006; Zhang et al., 2010). In the study of a
commercial broiler chicken population, Mebratie, Wossenie et al.
(2019) conducted GWAS using MLM approach, and found that
using models that account for the population structure may reduce
bias and increase accuracy of the estimated SNP effects in the
association analysis. From the QQ plots (Figure 3), it can be seen
that using the MLM model in our study can effectively reduce the
impact of population stratification. Meanwhile, one of the major
challenges in GWAS is multiple hypothesis testing (Joo et al., 2016).
GWAS involves the assessment of millions of statistical tests, and as
such, the p-value threshold for statistical significance must be
adjusted to control the overall false positive rate. In order to
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FIGURE 4

Venn diagram representation of the common significant loci in 6 body measurement traits for Chinese Wenshan cattle.

control false positives or ensure the accuracy of analysis results, the
Bonferroni correction approach which may be a little strict, and is
often applied in GWAS (Al-Mamun et al., 2015; Puglisi et al., 2016;
Abdalla et al., 2021). In the study for body measurement traits in
Chinese Holstein cattle based on GWAS, 11 significant SNPs were
identified using the Bonferroni correction approach, and identified
6 related genes (Abdalla et al., 2021). Thus, the Bonferroni was used
as multiple hypothesis testing in this study and mapped
8 significant SNPs.

Body measurement traits in cattle are not only indicators of their
physical development and size but are also important for assessing
breed quality and production performance, such as weight. We
observed a strong positive correlation among various body
measurement traits, which is consistent with findings from other
related studies. GUO et al. (2023) recently found Jinnan cattle
exhibit a high positive correlation in body measurement traits
(0.47-0.96), with a correlation of about 0.93 between WH and
BH, which was aligns with our study (0.92). A study conducted
by Afolayan et al. (2007) found that correlations between body
measurements including HH and BL, at 400 days of age in
Australian, and reported the values for phenotypic correlations
were also highly positive (0.56-0.78). Another study (Kamprasert
et al,, 2019) found that the correlation between HH and BL of
Brahman cattle at 400 days (0.80) was higher than our correlation of
0.629, but fell to 0.64 at 600 days, which indicated that the
correlation between body measurement traits was influenced by
both genetics and environment. Considering the strong correlation
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between multi body measurement traits, their genetic regulatory
mechanisms should also have some similarities. In this study, we
identified 8 significant SNPs, of which 6 appeared in more than one
of the 6 body measurement traits, which was uniform with their
phenotype correlations.

More importantly, sample size is the most critical factor that
affects statistical power and limited sample size is hence a major
hurdle in GWAS for traits that are difficult or expensive to measure
(Gebreyesus et al., 2019). In this study, 1,060 Wenshan cattle were
used for the GWAS of body measurement traits, with a much larger
sample size than other similar studies in beef cattle (Buzanskas et al.,
2014; AnJ. etal,, 2019; Zepeda-Batista et al., 2021), thus ensuring the
accuracy of our results. In this study, we identified three important
genes including Scarbl, AACS and HIVEP3, which have been
indicated to be related to bone metabolism, but there have been
no previous studies on their association with livestock body
measurement traits. These results indicate that those three genes
may be specific to body measurement traits in Chinese Wenshan
cattle and have high research value.

Scavenger receptor type I (Scarbl) on BTA17 was related to all
the 6 body measurement traits. Scarbl produced by the SCARBI
gene, is the major receptor for high-density lipoprotein (HDL). The
role of Scarbl in bone formation has been the subject of conflicting
findings in recent research. Martineau et al.(2014a; 2014b; 2014c)
reported that Scarbl knockout (KO) mice have increased trabecular
bone and with no changes in osteoclasts parameters. In contrast,
Tourkova et al. (2019) showed that Scarbl KO mice was osteopenic
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TABLE 4 List of candidate genes associated with 6 body measurement traits in Chinese Wenshan cattle.

Gene Chr Position (bp) Related SNPs Associated traits
HIVEP3 3 104,538,208-104,671,493 Affx-277,062,550 BH, HH, WH, BAH
BTBD3 13 5,455,770-5,474,367 Affx-257,095,832 BH, BL, HH, WH, BAH, ITH

AACS 17 50,718,350-50,773,650 Affx-115,873,673

BRI3BP 50,813,518-5,0834,720

DHX37 50,838,143-50,868,907

SNORA71 50,869,224-50,869,321

UBC 50,887,544-50,892,468

SCARBI 50,929,375-51,022,457

CCDCY2 51,757,127-51,793,408

DNAHI10 51,794,311-51,952,067
ATP6V0A2 51,954,039-51,993,763

TCTN2 51,998,677-52,027,811 Affx-41,315,554

GTF2H3 52,029,878-52,050,145

EIF2BI 52,050,315-52,061,227

DDX55 52,061,347-52,079,100

RILPLI 52,111,245-52,153,382

SNRNP35 52,157,896-52,161,635

RILPL2 52,178,861-52,205,415

U6 52,194,968-52,195,079
KMT5A 52,211,310-52,228,130
SBNOI 52,247,385-52,289,589

relative to the wild type. Morever, osteoblast and osteoclast-related
mRNAs of KO mice greatly decreased compared to WT mice,
Scarbl is
differentiation. More strangely, the latest research from Palmieri
M et al. (2023a; 2023b) reported that bone mass was not affected in
Scarbl KO mice and thought Scarbl did not contribute to bone
homeostasis. However, it is established that HDL, via its main

suggesting  that required for normal bone

protein component apolipoprotein Al, is essential for normal
bone formation by affecting osteoblast (Blair et al, 2016;
Papachristou et al., 2017). Then, as the major receptor for HDL,
we speculate that Scarbl may play an important role in bone
formation, and relevant molecular mechanism needs further
research.

HIVEP3, also known as Schnurri-3 (SHN3), is a big zinc finger
protein and an essential regulator of bone formation. Jones C et al.
(2006) found that HIVEP3™”~ mice reveled osteosclerosis due to
increased osteoblast activity and increased bone mass. Further
research found that, HIVEP3 regulated the bone mass by
controlling the protein levels of Runx2 which was the principal
transcriptional regulator of osteoblast differentiation (Otto et al.,
1997; Jones et al., 2006; Jones et al., 2007). Further investigation into
the role of HIVEP3 in osteoblasts has revealed that HIVEP3
functions as a dampener of ERK (extracellular signal-regulated
kinase) activity, particularly downstream of WNT signaling in
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osteoblasts. Mutations in the HIVEP3 gene can disrupt this
interaction, leading to abnormal activation of ERK and
hyperactivity of osteoblasts in vivo (Shim et al, 2013). A
genome-wide analysis populations
suggested that the HIVEP3 gene might be potentially correlated
with Femoral Neck Bone Mineral Content (BMC) and Hip
Geometry (Hu et al.,, 2020). By searching related researches, this
study was the first to find that the HIVEP3 gene had a potential
relationship with BH, HH, WH, and BAH in the livestock
population, especially in beef cattle. Thus, HIVEP3 can be
regarded as a candidate gene for Wenshan cattle body
measurement traits.

The acetoacetyl-CoA synthetase (AACS) gene is known for the
synthesis of biologically important lipogenic substances (Endemann

association in  Chinese

etal,, 1982). Previous reports have suggested that high level of serum
lipids can trigger bone metabolic disorders (Bredella et al., 2013;
Alsahli et al., 2016). In 1999, Mundy et al. (1949) found that statins
are powerful cholesterol lowering medications that can improve new
bone formation in rodents. Another study (Hasegawa et al., 2012)
demonstrated that knockdown of AACS in vivo decreases
peroxisome proliferator-activated receptor y (PPARy) and
CCAAT/enhancer binding protein o (C/EBP a), which can
enhance bone resorption and have a critical role in relationship
between obesity and bone loss (Motyl et al.,, 2011; Akune et al,
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2004). In obesity, AACS was highly expressed in the differentiated
osteoclasts, but did not in osteoblast differentiation (Yamasaki et al.,
2016). In situ hybridization, AACS was observed in several regions of
the embryo, including the backbone region (especially the somite)
and adult femur epiphysis. Collectively, these findings indicated that
AACS may be involved in bone homeostasis through its impact on
adipogenic transcription factors such as the C/EBP family and
PPARy. Then, we speculate that AACS plays an important role
associated with the bone homeostasis, which is worthy of further
study and can be selected as a candidate gene for body measurement
traits.

5 Conclusion

To sum up, 8 SNPs were detected to be associated with 6 body
measurement traits. Interestingly, 6 of these SNPs were detected in
more than one of our 6 body measurement traits, which was
consistent with their phenotype correlations. Meanwhile, we
found 21 candidate genes located nearby or within the associated
SNPs. Among them, Scarbl, AACS and HIVEP3 have been indicated
to be related to bone formation and are also discovered rarely in
livestock body measurement traits, which can be used as candidate
genes for Wenshan cattle. This study offers valuable insights for the
further investigation of potential genetic mechanism of body
measurement traits in Wenshan cattle.
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