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Increasing evidence indicates that mutations and dysregulation of long non-
coding RNA (lncRNA) play a crucial role in the pathogenesis and prognosis of
complex human diseases. Computational methods for predicting the association
between lncRNAs and diseases have gained increasing attention. However, these
methods face two key challenges: obtaining reliable negative samples and
incorporating lncRNA-disease association (LDA) information from multiple
perspectives. This paper proposes a method called NDMLDA, which combines
multi-view feature extraction, unsupervised negative sample denoising, and
stacking ensemble classifier. Firstly, an unsupervised method (K-means) is
used to design a negative sample denoising module to alleviate the imbalance
of samples and the impact of potential noise in the negative samples on model
performance. Secondly, graph attention networks are employed to extract multi-
view features of both lncRNAs and diseases, thereby enhancing the learning of
association information between them. Finally, lncRNA-disease association
prediction is implemented through a stacking ensemble classifier. Existing
research datasets are integrated to evaluate performance, and 5-fold cross-
validation is conducted on this dataset. Experimental results demonstrate that
NDMLDA achieves an AUC of 0.9907and an AUPR of 0.9927, with a 5-fold cross-
validation variance of less than 0.1%. These results outperform the baseline
methods. Additionally, case studies further illustrate the model’s potential in
cancer diagnosis and precision medicine implementation.
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1 Introduction

Non-coding transcripts, particularly lncRNAs that do not encode proteins, constitute
the majority of the genome (Maher, 2012). Typically, lncRNAs are transcripts that exceed
200 nucleotides in length. Noteworthy examples of lncRNAs such as H19 (Brannan et al.,
1990) and Xist (Brockdorff et al., 1992) were first implicated in epigenetic regulation in the
early 1990s. Numerous functional examples have also demonstrated the involvement of
lncRNAs in various human physiological processes, including embryonic stem cell
pluripotency, cell cycle regulation, and complex diseases (Rinn and Chang, 2012).

OPEN ACCESS

EDITED BY

Yuan Zhou,
Peking University, China

REVIEWED BY

Ke Han,
Harbin University of Commerce, China
Jianwei Li,
Hebei University of Technology, China

*CORRESPONDENCE

Dengju Yao,
ydkvictory@hrbust.edu.cn

†These authors have contributed equally to
this work

RECEIVED 02 November 2023
ACCEPTED 22 December 2023
PUBLISHED 09 January 2024

CITATION

YaoD, Zhang B, Li X, Zhan X, Zhan X and Zhang B
(2024), Applying negative sample denoising and
multi-view feature for lncRNA-disease
association prediction.
Front. Genet. 14:1332273.
doi: 10.3389/fgene.2023.1332273

COPYRIGHT

© 2024 Yao, Zhang, Li, Zhan, Zhan and Zhang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 09 January 2024
DOI 10.3389/fgene.2023.1332273

https://www.frontiersin.org/articles/10.3389/fgene.2023.1332273/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1332273/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1332273/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1332273/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1332273&domain=pdf&date_stamp=2024-01-09
mailto:ydkvictory@hrbust.edu.cn
mailto:ydkvictory@hrbust.edu.cn
https://doi.org/10.3389/fgene.2023.1332273
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1332273


Therefore, exploring the relationship between lncRNAs and
complex human diseases will contribute to a better
understanding of disease pathogenesis and the development of
lncRNA-based pharmacology.

In the past decade, extensive studies have identified many types
of lncRNAs that can serve as promising biomarkers for cancer
diagnosis and targeted therapy. For instance, LINC01608 has been
identified as a promising prognostic biomarker for hepatocellular
carcinoma (Liu et al., 2022), NALT1 promotes the targeting of
PEG10 via sponge microRNA-574-5p to advance colorectal cancer
progression (Ye et al., 2022), and RNA demethylase
ALKBH5 promotes lung cancer progression (Shen et al., 2022).
However, traditional biological experiments used to identify the
association between lncRNA and diseases, such as PCR (Heid et al.,
1996) and microarray analysis (Zhai et al., 2015), have always been
limited by high costs and lack of specificity in exploring and
understanding lncRNA.

With advances in computer technology and its ability to handle
vast amounts of data, computational method has been explored to
validate LDA and has yielded promising results. The first LDA
prediction model (called LRLSLDA) was proposed by Chen et al.
(Chen and Yan, 2013), utilizing the Laplace regularized least square
method to predict LDA. This model is built on the hypothesis that
similar diseases are associated with similar lncRNAs (Chen and Yan,
2013). Chen et al. (Chen et al., 2015) enhanced LRLSLDA by
introducing a fusion method for lncRNA functional similarity.
Although these methods did not achieve excellent prediction
performance, they sparked further interest in studying the
association between lncRNAs and diseases.

To capture comprehensive association information between
lncRNAs and diseases, several LDA prediction methods based on
similarity network feature fusion have been proposed. For example,
Wei et al. proposed the iLncRNAdis-FB model for data fusion
through feature blocks (Wei et al., 2021), Chen et al. proposed
the iLDMSF model based on KNN for nonlinear multi-similarity
fusion (Chen et al., 2021a), and Fan et al. proposed the GCRFLDA
framework that integrates the conditional random field layer and the
attention mechanism to fuse various similarities between lncRNAs
and diseases in a linear manner as auxiliary features of nodes (Fan
et al., 2022).

Moreover, Data sets in Bioinformatics usually present a high
level of noise (Miranda et al., 2009). The noisy training data set
increases the training time and complexity of the model.
Consequently, identifying noisy instances and then eliminating or
correcting them are useful techniques in data mining research
(Nematzadeh et al., 2020). Chen et al. found that the presence of
noisy samples can significantly impact the predictive performance of
the LDA model (Chen et al., 2021b) Some papers (Yao et al., 2020;
Wei et al., 2021; Kang et al., 2022; Lu and Xie, 2023) have used
random sampling to create balanced datasets by including an equal
number of unknown and positive samples in an attempt to mitigate
the impact of unbalanced datasets. However, this approach may
introduce potentially noisy data into the negative sample set. Lan
et al. proposed an LDA prediction model based on an improved
graph convolution network with Top-K negative sampling (Lan
et al., 2021). Another method by Peng et al. involved screening
reliable negative samples through a graph autoencoder (Peng et al.,
2022). He et al. proposed two similarity-based negative sampling

methods, one based on the Euclidean distance calculation between
unlabeled samples and positive samples, and the other by reducing
the number of unlabeled samples based on the functional similarity
between lncRNAs (He et al., 2023).

Although existing methods have achieved good performance in
predicting LDA, there still needs to be more potential in utilizing the
association information between diseases and lncRNAs.
Additionally, constructing the negative sample set may introduce
latent LDA as noise, leading to reduced predictive accuracy of the
model. This paper proposes a predictive model to construct a more
accurate LDA model that combines multi-view feature extraction,
an unsupervised negative sample denoising module, and a stacking
ensemble classifier to uncover the associations between lncRNAs
and diseases. The main contributions of this paper are as follows:

1. To mitigate the impact of sample imbalance and potential
noise in negative samples on the model’s performance, a
negative sample denoising module is designed using an
unsupervised method (K-means (Hartigan and Wong,
1979)). By simultaneously clustering positive and negative
samples using K-means, this module not only improves the
model’s performance but also provides potential solutions for
mitigating sample imbalance and achieving negative sample
denoising in LDA.

2. To construct a more precise LDA model, we use graph
attention networks (Veličković et al., 2017) to obtain multi-
view features. These features are then combined with an
unsupervised negative sample denoising module and a
stacked ensemble classifier. Experimental results consistently
demonstrate the outstanding performance of the proposed
LDA prediction model. This model has potential
applications in cancer diagnosis and can contribute to the
advancement of precision medicine.

2 Materials and methods

The research flowchart of this paper can be divided into three
steps, as illustrated in Figure 1 (Ⅰ) data preprocessing (Ⅱ)
construction of the NDMLDA model by incorporating multi-
view feature extraction, an unsupervised negative sample
denoising module, and a stacking ensemble classifier, and (Ⅲ)
utilization of the NDMLDA model to make predictions regarding
the association between unknown lncRNAs and diseases.
Furthermore, in Figure 1 section (Ⅰ), DSS (disease semantic
similarity network), DCS (disease cosine similarity network),
DGS (disease gaussian interaction profile kernel similarity
network), LSES (lncRNA sequence similarity network), LGS
(lncRNA gaussian interaction profile kernel similarity network),
LFS (LncRNA functional Similarity network) represent six similarity
networks, respectively.

2.1 Materials

2.1.1 Data source
The data utilized in this research were obtained from five

databases: Lnc2Cancer 3.0 (Gao et al., 2021), LncRNADisease
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v2.0 (Bao et al., 2019), RNADisease v4.0 (Chen et al., 2022),
NONCODE v6.0 (Zhao et al., 2021) and lncTarD 2.0 (Zhao
et al., 2023). The Lnc2Cancer 3.0 database comprises
9,254 associations between lncRNAs and diseases, involving
2,659 lncRNAs and 216 diseases (Gao et al., 2021).
LncRNADisease v2.0 collects 205,959 lncRNA-disease
associations, encompassing 19,166 lncRNAs and 529 diseases
(Bao et al., 2019). RNADisease v4.0 compiles
11,525 experimentally validated lncRNA-disease associations,
encompassing 11,490 lncRNAs and 1,002 diseases (Chen et al.,
2022). The NONCODE database includes a total of 96,411 pieces
of information regarding non-coding RNA sequences (Zhao et al.,
2021). The lncTarD database recruits 8,360 key lncRNA-target

regulations associations with 419 disease subtypes,
1,355 lncRNAs, 506 miRNAs, 1,743 protein-coding genes and
286 biological functions.

To gain a more comprehensive understanding of the correlation
between lncRNAs and diseases, we merged and manually curated
the LDA data from three databases: Lnc2Cancer, LncRNADisease,
and RNADisease (see supplementary for details). As a result, we
obtained a total of 8,334 lncRNA-disease associations involving
629 lncRNAs and 511 diseases, which were stored in matrix A.
Subsequently, we retrieved the sequence information of all lncRNAs
in matrixA from the NONCODE database. Additionally, we applied
the same preprocessing method to process the data from lncTarD,
resulting in 504 lncRNA-disease associations between 103 diseases

FIGURE 1
Research flowchart.
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and 212 lncRNAs. No further data manipulation was performed
besides this.

2.1.2 Disease semantics similarity
We use the method proposed by Wang et al. (2010) to calculate

the semantic similarity of diseases which is given by the
following formula:

DSS di, dj( ) � ∑d∈Di∩Dj
SCdi d( ) + SCdj d( )( )
SVdi + SVdj

Where, d represents disease; D represents ancestors’ nodes of d; ∩
represents intersection; SC and SV represent the semantic contribution
value and semantic value of disease, respectively.

2.1.3 Disease cosine similarity
The cosine similarity between two diseases can be calculated

using the following formula:

DCS di, dj( ) � A i, :( ) · A j, :( )
A i, :( )‖ ‖ × A j, :( )���� ����

Where, vector A(i, : ) represents the set of elements in the ith
row in matrix A. The length of this vector is denoted as ‖A(i, : )‖.

2.1.4 Disease (lncRNA) Gaussian interaction profile
kernel similarity

We utilize the algorithm presented by van Laarhoven et al.
(2011) to calculate the similarity of gaussian interaction profile

kernel similarity for disease (lncRNA), which is given by the
following formulas:

DGS � exp −γd A i, :( ) − A j, :( )���� ����2( )
LGS � exp −γl A : , i( ) − A : , j( )���� ����2( )

Where, DGS and LGS represents disease (lncRNA) gaussian
interaction profile kernel similarity; γ represents the normalized
kernel bandwidth.

2.1.5 LncRNA functional similarity
We adopt the method proposed by Sun et al. (2014) to calculate

the functional similarity of lncRNAs(LFS). The formula is as follows:

LFS li, lj( ) � ∑1≤ i≤ nDi
SS di, Di( ) +∑1≤ i≤ nDj

SS dj, Dj( )
nDi + nDj

Where d represents a disease associated with a lncRNA l; D
represents a group of diseases associated with l and nD represents
the total number of diseases in this group; SS(d,D) represents the
maximum semantic similarity between d and D.

2.1.6 LncRNA sequence similarity
We are inspired by Li et al. (2020) to introduce lncRNA sequence

similarity (LSES), which is calculated using the following formula:

LSES li, lj( ) � cost li, lj( )
len li( ) + len lj( )

FIGURE 2
The construction process of NDMLDA comprises three parts: (A) multi-view feature extraction; (B) negative sample set denoising; (C) training and
prediction of the stacking ensemble classifier.
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Where len(l) represents the length of the sequence l; cost(li, lj)
is used to measure the minimum cost required to transform the
sequence of li into the sequence of lj by performing three types of
operations: insertion, deletion, and replacement (with insertion or
deletion cost being 1, and replacement cost being 2).

2.2 Methods

The construction process of NDMLDA is shown in Figure 2,
which mainly consists of three steps (A) multi-view feature
extraction; (B) negative sample set denoising; (C) training and
prediction of the stacking ensemble classifier.

2.2.1 Multi-view feature extraction
The Graph Attention Network (GAT) has demonstrated

significant potential in predicting LDA as a primary approach for
multi-view feature extraction (Shi et al., 2021; Liang et al., 2022;
Zhao et al., 2022) Following the guidance of previous literature
(Forster et al., 2022), we developed a GAT-based module for multi-
view feature extraction, as depicted in Figure 3. To begin with, we
transformed the similarity networks of various views (including
DSS, DCS, DGS, LFS, LGS, and LSES) into edge list format, where
each row represents the source, target, and weight. Subsequently, for

each input network, we constructed an encoder by concatenating
three GAT layers, as illustrated in Figure 3. This encoding process
enables the learning of high-order neighborhood features for the
specific input networks using dedicated encoders. Next, by
employing feature aggregation and random loss processing, a
unified disease (or lncRNA) feature H is generated. Finally, all
node features were arranged in a matrix F. Through multiple
experiments, we fixed the length of this feature to 64 (see
supplementary material for details).

GAT A,H( ) � σ αHWT( )
Where α represents the attention coefficient, H represents the

features of nodes in A, W represents the trainable weight
parameters, T represents the transpose operation, and σ

represents the non-linear activation function LeakyReLU (Maas
et al., 2013).

To enhance the quality of feature extraction, we decode and
reconstruct the unified feature matrix F, which has learned the
lncRNA (or disease). Our objective is to minimize the discrepancy
between the reconstructed network FT and the original input
network. The process of network reconstruction after decoding is
exemplified below.

A � F · FT

The loss function in this process can be defined as follows:

Loss � 1
n2

∑
N

j

bj ⊙ A − Aj( ) ⊙ bTj
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣2F

Where, n represents the total number of nodes in the input
network, bj represents the node mask in input network j, Aj

represents the adjacency matrix corresponding to input network
j, ⊙ represents the inner product and ‖ · ‖F represents the F-norm.

2.2.2 Negative sample set denoising
The process of the negative sample set denoising is shown in

Figure 4 Firstly, the positions of elements with values 1 and 0 in the
LDA matrix are recorded separately. Then, the unified feature
vectors of corresponding diseases and lncRNAs are retrieved
based on these positions. These two feature vectors are directly

FIGURE 3
The encoding process of a specific input network.

FIGURE 4
The denoising process of negative sample set.
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concatenated, with diseases preceding lncRNAs, to form a sample.
The complete sample set (All Samples) is obtained by concatenating
the features of all positions. Next, the number of clusters K is
determined by calculating the silhouette coefficient. The silhouette
coefficient (SC), which ranges from −1 to 1, is a commonly used
indicator in previous studies for evaluating the effectiveness of
clustering algorithms (Rousseeuw, 1987).

SC usually follows the trend of K-value changes. When the
silhouette coefficient approaches 1, the K-value also approaches the
ideal value. SC can be calculated as follows:

SCi � Cb i( ) − Ca i( )
maximum Ca i( ), Cb i( )( )

Where, Ca(i) represents the average distance
between sample i and the other samples in its cluster, while
Cb(i) represents the minimum average distance between sample
i and the samples in different clusters. In this study, we set
K as 3.

We used the K-means algorithm (Hartigan and Wong, 1979) to
perform 10 rounds of clustering on the entire sample set. The
complete description of the negative sample denoising process is
as follows:

Let P represent the known positive sample set,
P � p1, p2, . . . , pm{ }, where each sample pi represents a known
lncRNA-disease association. Let U represent the unknown sample
set, U � u1, u2, . . . , un−m{ }. Assuming that the samples in U that are
similar to P are noise samples, we take the following steps
to denoise U:

First, we cluster the entire sample set using the K-means
algorithm, which results in cluster divisions C � C1, C2, . . . , Ck{ },
where each cluster Ci is a set. For each cluster Ci, we calculate the
proportion of positive samples and denote it as r(Ci).

Then, we repeat the following steps 10 times:

1. Cluster the sample set using the K-means algorithm to obtain
cluster divisions C′ � C1

′, C2
′, . . . , C′

k{ }.
2. For each clusterC′

i , calculate the proportion of positive samples
and denote it as r′(C′

i).
3. Find the cluster C′

i with the highest r′(C′
i) and denote its

unknown sample set as U′.

4. Save U′.

Finally, we take the intersection of the noise sample sets obtained
from these 10 clustering iterations, Unoise � U1

′ ∩ U2
′ ∩ . . .∩ U10

′, and
remove these samples from U. The final denoised unknown sample
set is represented as Ureliable � U − Unoise. The unknown samples in
Ureliable represent the denoised negative samples.

2.2.3 Training stacking ensemble classifier
To overcome the limited predictive capabilities of individual

classifier, we draw inspiration from previous research (Li et al., 2021;
Liang et al., 2022). The training process of the stacking ensemble
classifier is illustrated in Figure 5. Five decision tree-based classifiers,
including CatBoost (Dorogush et al., 2018), ExtraTrees (Geurts
et al., 2006), LightGBM (Ke et al., 2017), RandomForest
(Breiman, 2001), and XGBoost (Chen and Guestrin, 2016), are
employed as base classifier, with LogisticsRegression (Cramer,
2002) serving as the meta-classifier. This framework creates a
stacked ensemble LDA prediction model (refer to the
supplementary material for the training process of the ensemble
classifier). We conduct a five-fold cross-validation on 80% of the
samples from the reconstructed new dataset (details can be found in
the supplementary material), while the remaining 20% of samples
are used as an independent dataset to evaluate the trained classifiers.
Finally, we select the classifier with the best performance for the final
LDA prediction.

3 Results

3.1 Experimental settings

The performance evaluation of NDMLDA is conducted using
five performance metrics: accuracy (ACC), Matthew’s correlation
coefficient (MCC) (Harald, 1946), F1-score, area under the receiver
operating characteristic curve (AUC), and area under the precision-
recall curve (AUPR). The calculation formulas for these metrics are
as follows:

ACC � TN + TP

TN + TP + FN + FP

FIGURE 5
The training process of a stacking ensemble classifier.
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MCC � TP × TN − FP × FN��������������������������������������������
TP + FN( ) × TP + FP( ) × TN + FN( ) × TN + FP( )√

F1 − score � 2 × Precision × Recall

Precision + Recall

Precision � TP

TP + FP

Recall � TP

TP + FN

In the context of the confusion matrix, TP, TN, FP, and FN are
variables that represent the four different types of prediction
situations.

3.2 Comparison results with other methods

We conducted a comparative analysis of several LDA prediction
methods, including MAGCNSE (Liang et al., 2022), MCHNLDA
(Zhao et al., 2022), VGAELDA (Shi et al., 2021), CapsNet-LDA
(Zhang et al., 2022), LDAformer (Zhou et al., 2022), and SSMF-
BLNP (Xie et al., 2023).

MAGCNSE (Liang et al., 2022) employs a two-step approach,
first utilizing GCN to extract the multi-view representation of
lncRNA and diseases, and then employing CNN to obtain the
final representation. The integrated classifier is then used for
prediction (Zhao et al., 2022).

TABLE 1 Comparison of the performance of NDMLDA with other LDA prediction methods.

Model AUC AUPR MCC F1 ACC

NDMLDA 0.9907 ± 5.2e-8 0.9927 ± 2.2e-8 0.9249 ± 9.6e-6 0.9631 ± 2.3e-6 0.9624 ± 2.4e-6

NDMLDA*1 0.9683 ± 2.9e-7 0.9718 ± 2.7e-7 0.8229 ± 2.2e-5 0.9135 ± 4.9e-6 0.9114 ± 5.3e-6

MAGCNSE 0.9665 ± 4.8e-6 0.9773 ± 1.26e-5 0.8729 ± 9.4e-5 0.9462 ± 1.4e-4 0.9357 ± 1.2e-7

VGAELDA 0.9212 ± 3.1e-4 0.7469 ± 1.2e-4 0.6872 ± 5.3e-4 0.6514 ± 8.9e-4 0.9806 ± 1.4e-6

CapsNet-LDA 0.9634 ± 1.5e-5 0.7452 ± 1.2e-5 0.6764 ± 9.9e-5 0.6843 ± 8.2e-5 0.9836 ± 9.5e-7

LDAformer 0.9452 ± 9.3e-4 0.2439 ± 1.2e-2 0.1844 ± 5.5e-3 0.1034 ± 1.2e-3 0.9403 ± 7.4e-4

SSMF-BLNP 0.8251 ± 1.1e-5 0.1535 ± 3e-5 0.1815 ± 2e-5 0.4339 ± 2e-5 0.9255 ± 1.4e-5

1NDMLDA*

Stands for negative sample denoising not being executed.

TABLE 2 Comparison of the performance of NDMLDA with other LDA prediction methods on lncTarD dataset.

Model AUC AUPR MCC F1 ACC

NDMLDA 0.9479 ± 1.5e-4 0.9635 ± 1.6e-4 0.7852±1e-3 0.8917 ± 4.7e-4 0.8928 ± 2.4e-4

MAGCNSE 0.9492 ± 1.9e-5 0.7314 ± 9.36e-4 0.6439 ± 8.6e-4 0.6279 ± 1e-3 0.9857 ± 9.7e-7

VGAELDA 0.9337 ± 3.9e-4 0.7779 ± 1.5e-3 0.7825 ± 9.6e-4 0.7637 ± 1.3e-3 0.9903 ± 1.5e-6

CapsNet-LDA 0.9058 ± 3e-4 0.7367 ± 1.2e-3 0.7312 ± 1e-3 0.7262 ± 1e-3 0.9896 ± 9.5e-7

LDAformer 0.8115 ± 1.1e-3 0.2574 ± 5e-4 0.1937 ± 7.5e-5 0.0415 ± 2.9e-5 0.8527 ± 3e-3

SSMF-BLNP 0.9303 ± 1.1e-5 0.5738 ± 1e-4 0.3791 ± 3.1e-5 0.7936 ± 5.3e-5 0.943 ± 2.4e-4

TABLE 3 The performance comparison between individual classifiers and stacked ensemble classifiers.

Classifier AUC AUPR MCC F1 ACC

Stacking 0.9907 ± 5.2e-8 0.9927 ± 2.2e-8 0.9249 ± 9.6e-6 0.9631 ± 2.3e-6 0.9624 ± 2.4e-6

LogisticsRegression 0.9825 ± 9.6e-9 0.9845 ± 1.2e-8 0.8721 ± 1.3e- 0.9372 ± 3.9e-7 0.9360 ± 3.5e-7

RandomForest 0.9890 ± 3.3e-7 0.9914 ± 1.1e-7 0.9178 ± 5.9e-6 0.9597 ± 1.4e-6 0.9590 ± 1.5e-6

ExtraTrees 0.9891 ± 3.3e-7 0.9912 ± 1.9e-7 0.9251 ± 6.9e-6 0.9579 ± 1.4e-6 0.9625 ± 1.7e-6

XGB 0.9904 ± 2.4e-7 0.9924 ± 1.2e-7 0.9143 ± 9.7e-6 0.9582 ± 2.2e-6 0.9571 ± 2.4e-6

LGBM 0.9907 ± 1.4e-7 0.9924 ± 5.4e-8 0.9096 ± 1.2e-5 0.9559 ± 2.9e-6 0.9548 ± 3.1e-6

MLP 0.9887 ± 1.5e-6 0.9907 ± 1.5e-6 0.9006 ± 9.9e-5 0.9536 ± 1.8e-5 0.9503 ± 2.4e-5

SVM 0.9855 ± 5.4e-8 0.9882 ± 1.8e-8 0.8914 ± 6.2e-7 0.9465 ± 1.7e-7 0.9456 ± 1.7e-7
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VGAELDA (Shi et al., 2021) proposes a LDA prediction method
that combines variational inference and graph autoencoders.

CapsNet-LDA (Zhang et al., 2022) presents a prediction method
that leverages capsule networks and stacked autoencoders.

LDAformer (Zhou et al., 2022) introduces a LDA prediction
method based on topological feature extraction and
Transformer encoding.

As shown in Table 1, NDMLDA achieved higher AUC and AUPR
by 2.5% and 1.6%, respectively, compared to the second-best
MAGCNSE. Furthermore, the overall performance of NDMLDA
(with all metrics above 92%) is superior to other comparative methods.

MAGCNSE and CapsNet-LDA mitigate the impact of sparse
features on the model through a multi-view approach, achieving
good performance (overall performance higher than 0.8). However,
they are affected by negative sample noise, resulting in suboptimal
performance. Additionally, as shown in Table 1, our model, despite
having a decrease in performance in five evaluation metrics without

sample reconstruction, still outperforms methods such as SSMF-
BLNP and CapsNet-LDA. This indicates that our negative sample
denoising module is effective in mitigating the impact of negative
sample noise on the model.

LDAformer proposed a method for LDA prediction based on
topological feature extraction and Transformer encoder. By enhancing
feature extraction, the performance of complex models is improved.
Compared to our method, without using the sample denoising module,
we obtain multi-view features through GAT and achieve better overall
performance in LDA using a simple stacking model. This indicates that
our multi-view feature processing method is effective.

Meanwhile, to further demonstrate the generalization ability of
our method, we conducted comparative experiments on an
independent dataset lncTarD. The experimental results are shown
in Table 2. It can be observed that our proposed method still
outperforms the comparative methods in four main indicators,
indicating the robustness of NDMLDA.

3.3 Ablation studies

3.3.1 The influence of negative sample set
denoising on the predictive performance
of NDMLDA

When the negative sample set denoising module is integrated
into NDMLDA (as depicted in Figure 6), all five performance
measures exhibit superior results compared to the state without
the module. Notably, the addition of the module improves the
AUC by 2.3%, AUPR by 2.2%, MCC by 12.4%, F1-score by 5.4%
and ACC by 5.6%. These findings suggest that incorporating the
negative sample set denoising module enhances the prediction
performance of NDMLDA. We visualized the distribution of
samples before and after denoising using t-SNE (Maaten and
Hinton, 2008). Figure 7 shows the visualization results.
Comparing Figures 7A,C, it can be observed that our
proposed method for denoising the negative sample set
successfully removes the noisy samples.

FIGURE 6
The influence of negative sample set denoising module on the
predictive performance of NDMLDA.

FIGURE 7
Comparison of sample distribution before and after negative sample denoising. (A) represents the original distribution of samples, with red dots
indicating positive samples and green dots indicating unknown samples; (B) uses gray dots to represent noisy samples in the unknown samples; (C)
represents the distribution of samples after denoising.
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3.3.2 Classifier selection
Table 3 demonstrates that among the five metrics, the stacked

ensemble classifier attained optimal results for three of them. While
the stacked ensemble classifier’s performance in terms of MCC and
ACC is slightly lower than that of ExtraTrees (with a maximum
difference of 0.02%), it surpasses ExtraTrees in the more significant
evaluation metrics of AUC and AUPR (with improvements of 0.16%
and 0.15% respectively). These results indicate that the inclusion of
the stacked ensemble classifier can enhance the predictive
performance of NDMLDA.

3.3.3 Combination of different views
According to Figure 8, the performance of the model is

influenced by the combination of different views (AUC:
0.9709–0.9907; AUPR: 0.9818–0.9927). Furthermore, increasing
the number of combined views leads to an improvement in the
model’s performance. To construct a more precise LDA prediction
model, we have chosen to utilize fusion features from lncRNA,
which include lncRNA gaussian interaction profile kernel similarity
(LGS), lncRNA functional similarity (LFS), and lncRNA sequence
similarity (LSES), as well as fusion features from diseases, which

FIGURE 8
AUC and AUPR corresponding to different combinations of views.

TABLE 4 Top 30 lncRNAs related to breast cancer predicted by NDMLDA.

No. LncRNA Evidence No. LncRNA Evidence

1 TUNAR P&R&D 16 SNHG3 P*&R&C&D

2 SLC26A4-AS1 P&R&D 17 DLX6-AS1 P*&R&C&D

3 LINC00665 P*&R&C&D 18 LINC00319 P&R

4 HAR1B P&R&D 19 NEAT1 P*&R&C&D

5 SNHG15 P*&R&C&D 20 MCM3AP-AS1 P&R&D

6 KCNQ1OT1 P*&R&C&D 21 DLEU1 P&R&C&D

7 DPP10-AS1 P&R&D 22 HMMR-AS1 P&R&C&D

8 LINC00461 P*&R&C&D 23 SNHG7 P*&R&C&D

9 FEZF1-AS1 P*&R&C 24 LINC00339 P&R&D

10 HOXA11-AS P*&R&C&D 25 MIR7-3HG P&R&D

11 SNHG4 P&R&D 26 ZFAS1 P*&R&C&D

12 FAS-AS1 P*&R&C 27 OIP5-AS1 P*&R&C&D

13 FENDRR P&R&C&D 28 GNG12-AS1 P&R&C&D

14 ST8SIA6-AS1 P*&R&C&D 29 LINC01234 P*&R&D

15 FOXC2-AS1 P&R&C&D 30 PAX8-AS1 P&R&D

We systematically validated the top 30 lncRNAs, associated with each specific type of cancer by cross-referencing three important databases: LncRNADisease v2.0, Lnc2Cancer v3.0, and

RNADisease v4.0 (Bao et al., 2019; Gao et al., 2021; Chen et al., 2022), as well as consulting relevant literature records.
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include disease semantic similarity (DSS), disease gaussian
interaction profile kernel similarity (DGS), and disease cosine
similarity (DCS).

3.4 Case studies

To further validate the performance of NDMLDA in predicting
the association between specific diseases and lncRNA, we conducted
case studies on six prevalent cancers: breast cancer, cervical cancer,
colon cancer, esophageal cancer, lung cancer, and stomach cancer.
In each case study, we utilized all samples related to cancer as the
testing set, while the remaining samples served as the training set.
Subsequently, we trained NDMLDA on the training set and
employed it to evaluate the samples in the testing set.

The validated lncRNAs related to breast cancer and cervical cancer
are summarized in Table 4 and Table 5, respectively. In the evidence
column, “C” denotes candidate lncRNAs corroborated by the
Lnc2Cancer database. “D” denotes candidate lncRNAs supported by
the LncRNADisease database. “P” denotes candidate lncRNAs supported
by a single literature source. “R”denotes candidate lncRNAs corroborated
by the RNADisease database. “P*” denotes candidate lncRNAs supported
by multiple published literature sources. Further details regarding the
predictions of NDMLDA for lncRNAs associated with four other cancers
can be found in the supplementary materials.

4 Discussion

The NDMLDA method utilizes the negative sample
denoising module to obtain negative sample data that closely

approximates the real distribution. Instead of introducing a new
clustering method, our approach focuses on integrating the
multi-view similarity network with the negative sample
denoising technique. To achieve this, we adopt the K-means
algorithm, a well-established clustering algorithm, as the core
algorithm for negative sample denoising.

The NDMLDA model demonstrates good performance by
combining stacked classifiers. However, we have also noticed
that several single classifiers used for comparison have AUC and
AUPR values around 0.99. On one hand, this is because we
balanced the positive and negative samples during classifier
evaluation. On the other hand, it is due to the relatively small
number of known lncRNA-disease associations, which results in
an insufficient number of samples for performance evaluation.
However, considering the increasing complexity of data in
future model applications, we have chosen the stacked
ensemble classifier as our final classifier to ensure the
competitiveness of our model.

However, our proposed model (NDMLDA) still has some
limitations. Although we obtained a large number of known
LDAs (8,334) by merging multiple databases, the comparison
with the huge number of unknown samples (313,085) is still
very sparse. At the same time, the dataset only includes a limited
number of lncRNA-disease pairs, which is only a small fraction
of the real-world scenarios. Therefore, in the future, we will
attempt to further expand the number of LDAs in the dataset to
address the constantly changing real situations. We also
recognize that there is still a possibility that some reliable
negative samples may be discarded in the process. To
mitigate this, we plan to conduct further research and
improvements in our future work.

LncRNAs have been established as pivotal regulators of gene
expression, playing a significant role in a wide range of
biological functions and disease processes, including cancer.
This study presents a model known as NDMLDA, which
integrates multi-view feature extraction, unsupervised
negative sample denoising, and stacked ensemble classifier.
The experimental results demonstrate that the proposed
prediction method achieves exceptional performance across
five metrics (including AUC, AUPR, MCC, F1-score and
ACC). Additionally, the accuracy and reliability of NDMLDA
in the prediction process for LDA are further substantiated
through six case studies (involving breast cancer, cervical
cancer, colon cancer, esophageal cancer, lung cancer, and
gastric cancer).

5 Conclusion

This article introduces an LDA prediction model (NDMLDA)
that combines negative sample denoising and multi-view network
feature extraction. The experimental results demonstrate that our
method outperforms the six recent base models, achieving excellent
performance in five metrics (including AUC, AUPR, and MCC).
Additionally, the results of six case studies (breast cancer, cervical
cancer, colon cancer, esophageal cancer, lung cancer, and gastric
cancer) further validate the accuracy and reliability of NDMLDA in
LDA prediction tasks.

TABLE 5 Top 30 lncRNAs related to cervical cancer predicted by NDMLDA.

No. LncRNA Evidence No. LncRNA Evidence

1 SNHG8 P&R&C&D 16 PCGEM1 P&R&C&D

2 LINC00665 P&R 17 LINC01503 P*&R&C&D

3 TDRG1 P*&R&C&D 18 ZFAS1 P*&R&C&D

4 GAS5-AS1 P&R&C&D 19 OIP5-AS1 P*&R&C&D

5 FEZF1-AS1 P*&R&C 20 PAX8-AS1 P*&R&D

6 HOXA11-
AS

P*&R&C&D 21 BDNF-AS P&R

7 SNHG4 P&R&C&D 22 LINC01139 P&R&C&D

8 FENDRR P&R&D 23 MIR22HG P*&R&C&D

9 SNHG3 P&R&C&D 24 TUSC8 P*&R&C&D

10 DLG1-AS1 P&R&C&D 25 FOXD2-
AS1

P*&R&C&D

11 DLX6-AS1 P* & R & C &D 26 CYTOR P* & R & D

12 LINC00319 P&R&C&D 27 MALAT1 P*&R&C&D

13 NEAT1 P*&R&C&D 28 PCAT6 P*&R&C&D

14 DLEU1 P&R&C&D 29 SOX2-OT P*&R&D

15 SNHG7 P*&R&C&D 30 PVT1 P*&R&C&D
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