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Decades of overconsumption of antimicrobials in the treatment and prevention of
bacterial infections have resulted in the increasing emergence of drug-resistant
bacteria, which poses a significant challenge to public health, driving the urgent need
to find alternatives to conventional antibiotics. Bacteriophages are viruses infecting
specific bacterial hosts, often destroying the infected bacterial hosts. Phages attach
to and enter their potential hosts using their tail proteins, with the composition of the
tail determining the range of potentially infected bacteria. To aid the exploitation of
bacteriophages for therapeutic purposes, we developed the PhageTailFinder
algorithm to predict tail-related proteins and identify the putative tail module in
previously uncharacterized phages. The PhageTailFinder relies on a two-state hidden
Markov model (HMM) to predict the probability of a given protein being tail-related.
The process takes into account the natural modularity of phage tail-related proteins,
rather than simply considering amino acid properties or secondary structures for
each protein in isolation. The PhageTailFinder exhibited robust predictive power for
phage tail proteins in novel phages due to this sequence-independent operation. The
performance of the prediction model was evaluated in 13 extensively studied phages
and a sample of 992 complete phages from the NCBI database. The algorithm
achieved a high true-positive prediction rate (>80%) in over half (571) of the studied
phages, and the ROC value was 0.877 using general models and 0.968 using
corresponding morphologic models. It is notable that the median ROC value of
992 complete phages is more than 0.75 even for novel phages, indicating the high
accuracy and specificity of the PhageTailFinder. When applied to a dataset containing
189,680 viral genomes derived from 11,810 bulkmetagenomic human stool samples,
the ROC value was 0.895. In addition, tail protein clusters could be identified for
further studies by density-based spatial clustering of applications with the noise
algorithm (DBSCAN). The developed PhageTailFinder tool can be accessed either as
a web server (http://www.microbiome-bigdata.com/PHISDetector/index/tools/
PhageTailFinder) or as a stand-alone program on a standard desktop computer
(https://github.com/HIT-ImmunologyLab/PhageTailFinder).
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1 Introduction

Bacteriophages are obligatory viral parasites of microorganisms
such as bacteria, actinomycetes, spirochetes, and mycoplasmas (Gan
et al., 2022). These viruses were first observed by Frederick Twort in
England in 1915 (Twort, 1915) and were isolated and named by a
French-Canadian microbiologist Felix D’Herelle in 1917 (D’Herelle,
2007).While bacteriophages target a narrow and specific population of
bacteria, penicillin, discovered by Alexander Fleming in 1928, and
other antibiotics affect a broader range of microbes (Salmond and
Fineran, 2015). This wider spectrum and strong antibacterial activity
of antibiotics resulted in the decrease of phage research, with only the
former Soviet Union and some eastern European countries exploring
the therapeutic utility of bacteriophages. However, the emergence of
bacterial resistance, particularly during the last 2 decades, brought
considerable challenges to the clinical treatment of infectious diseases.
Managing multidrug-resistant bacterial infections in the future
requires the development of new antibacterial drugs, finding new
bacterial targets, and identifying ways of inactivating bacterial
antibiotic-resistance genes. However, these approaches have high
research and development costs and long research cycles, so they
are unlikely to solve the growing problem of bacterial resistance in the
short term. Thus, there is renewed interest in phage therapy (Zhou
et al., 2022). Bacteriophages are often very specific, with some infecting
only a single bacterial species, resulting in greater specificity and lower
side effects than conventional antibiotics. In addition, phages can also
be used for gene editing and surface display in bacteria, due to their
rapid reproduction, high specificity, and easy transformation (Lin
et al., 2017).

Based onmorphologic features, bacteriophages can be divided into
13 families, and the most common of these is Caudovirales. Most of
the phages are contained in 15 genera of three families (Bao et al.,
2019). A typical bacteriophage usually has an icosahedral head, a
hollow needle-like structure, and a tail. The latter typically consists of
an outer sheath and a base that can be further subdivided into a tail
wire and a tail needle (Maciejewska et al., 2018). Caudovirales are
divided into Siphoviridae, Myoviridae, and Podoviridae, depending on
whether their tails are long and non-shrinking, long and shrinking, or
short (Dion et al., 2020). Phages are also classified depending on
whether they lyse bacteria. While virulent phages (lysogenic phages)
destroy their hosts, temperate phages (lysogenic phages) do not
(Nobrega et al., 2018). The action of lysogenic phages follows a
predetermined sequence. After the phage is adsorbed on the
bacterial surface, enzymes in the tail structure penetrate the
peptidoglycan layer of the host. This is followed by the penetration
of the inner membrane, allowing the release of nucleic acid content
into bacteria. The phage tail protein can also act to inhibit the phage
nucleic acid being excreted. After the phage nucleic acid integrates
with the host nucleic acid content, it undergoes extensive replication.
These de novo synthesized nucleic acid strands can be reassembled
with the simultaneously produced phage shell proteins, resulting in a
new progeny of infectious particles. Finally, due to the action of
cytolytic enzymes and/or perforin, the infected bacteria are lysed,
releasing progeny phages to infect additional surrounding hosts
(Chevallereau et al., 2022). This self-propagating infectious cycle
can be safely used to treat bacterial infections without harming the
organism carrying the bacteria.

Structures necessary for a phage to bind to the bacterial surface
during the adsorption phase are collectively referred to as receptor

binding proteins (RBPs). They can hydrolyze bacterial surface
structures to assist the injection of nucleic acid. A single phage
particle can have multiple RBPs, affecting the specificity of
adsorption and influencing the range of hosts that can be
infected. Although most RBPs are either tail spines, tail fiber
proteins, or substrates in the tail structure, these components
show a high degree of diversity and exhibit unexpectedly low
sequence conservation. These factors make predicting tail motifs
and the role of a given sequence extremely challenging. Several
computational tools have been developed to deal with the
complex task of predicting phage tail proteins. To create
iVIREONS, Seguritan et al. (2012) trained artificial neural
networks using amino acid frequency and isoelectric points as
features to classify the phage tail proteins. The more recently
developed VIRALpro tool (Galiez et al., 2016) used a support
vector machine (SVM) model, considering average amino acid
composition and average secondary structure composition to
predict the phage tail proteins. Subsequently, DeepCapTail (Abid
and Zhang, 2018) proposes a deep neural network using k-mer
frequency as features to predict capsid and tail phage proteins.
More recently, Cantu et al. trained an artificial neural network,
PhANNs (Cantu et al., 2020), using amino acid composition and
instability index as features to predict the capsid and tail phage
proteins. However, these tools are limited to the prediction of well-
characterized proteins, and their performance is extremely poor
when attempting to characterize proteins with no previously
described homologous structures. In addition, some of the
algorithms run rather slowly, as they also take into consideration
secondary structures and other features. Furthermore, as genes with
related functions tend to cluster together in the viral genome, the
algorithms generally only predict whether the protein is part of the
tail, while ignoring the modularity of the larger structure.

Here, we describe the development of a novel tool, the
PhageTailFinder, to predict phage-related proteins using a two-state
hidden Markov model (HMM). This approach is based on a
probabilistic algorithm (Mor et al., 2021), detecting putative phage

TABLE 1 13 well-defined phage genomes used in the validation process.

Phage Phage_Genome_ID Phage_Species

Bacillus virus phi29 EU771092.1 Podoviridae

Salmonella virus P22 BK000583.1 Podoviridae

Enterobacteria phage T3 NC_003298.1 Podoviridae

Enterobacteria phage T5 NC_005859.1 Siphoviridae

Bacteriophage SPP1 NC_004166.2 Siphoviridae

Enterobacteria phage lambda NC_001416.1 Siphoviridae

Lactobacillus phage LL-H EF455602.1 Siphoviridae

Salmonella phage SSU5 NC_018843.1 Siphoviridae

Escherichia phage T2 MH751506.1 Myoviridae

Escherichia virus T4 NC_000866.4 Myoviridae

Escherichia phage Mu AF083977.1 Myoviridae

Listeria phage A511 DQ003638.2 Herelleviridae

Salmonella phage Det7 NC_027119.1 Ackermannviridae
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modules by density-based spatial clustering of applications with the noise
algorithm (DBSCAN) (Ester et al., 1996). The developed PhageTailFinder
tool can be run either as a web server (http://www.microbiome-bigdata.
com/PHISDetector/index/tools/PhageTailFinder) or as a stand-alone
version on a standard desktop computer (https://github.com/HIT-
ImmunologyLab/PhageTailFinder).

2 Materials and methods

2.1 Creation of custom phage tail-related
protein databases

2.1.1 Training and test sets
Phages were collected from the Millard Laboratory database

(Chibani et al., 2019). Only the entries indicating “complete
genome” in the DEFINITION field were included. The final
number of phage genomes in the training set was 6,287
(Supplementary Table S1) and included 1,763 Myoviridae,
3,461 Siphoviridae, and 1,063 Podoviridae. Additional
992 complete genome sequences covering the three possible tail
types were downloaded from the NBCI nucleotide database (http://
www.ncbi.nlm.nih.gov/nuccore/) in November 2020 (Supplementary
Table S2) as a test set to evaluate the performance of the model. Details
of the taxonomic distribution of the phages in the training and test
datasets can be found in Supplementary Figure S1.

2.1.2 Tail and non-tail profiles
First, we defined keywords that could be used for identifying tail-

related proteins. Bacteriophages with well-defined tail structures

reported in the scientific literature were manually curated
(Table 1). By analyzing the occurrence and frequency of keywords
used in the NCBI annotations and counting the functional domains
predicted by RPS-BLAST identified 10 keywords describing tail
proteins. These were “tail,” “tube,” “sheath,” “fibre,” “spike,”
“baseplate,” “needle,” “tape,” “Terms,” and “TermL.” Next, we used
these keywords to search the entire training set to detect the tail state.
These terms were also supplemented by functional domain
annotation. The training set used to teach the algorithm to define
the tail state consisted of 840 characterized domains (Supplementary
Table S3). To define the non-tail state, domains without significant
sequence similarity to tail sequences (Pfam domain similarities with
E-value <1e-4) were selected. The final training set consisted of
3,412 characterized non-tail domains (Supplementary Table S4).

2.2 General phage tail-related protein
prediction workflow

2.2.1 Tail-related protein annotation
The protein annotation algorithm for the detection of tail regions

is a two-state HMM, where one hidden state corresponds to tail
protein clusters (tail state), while a second hidden state represents the
rest of the genome (non-tail state). To construct this two-state HMM,
we converted all training set phage genomes into protein sequences
and represented these as contiguous protein family (Pfam) domains.
These were used to train the initial probability, transition probability
matrix, and emission probability matrix of the HMM. Initial
probability was derived by counting the number of the two
domains in the training set. This indicated 0.2039 tail state and

FIGURE 1
Three examples of clustering using the DBSCAN algorithmwith the parameters: Eps = 6 andminpts = 4. (A) All tail proteins are clustered into one cluster.
(B) Tail proteins are clustered into two clusters. (C) Proteins is too discrete to be clusters.

TABLE 2 Statistical results of cluster density analysis of 961 phages.

Morphology Phage number One cluster Two clusters Three clusters Four clusters

Podoviridae 26 22 (84.6%) 1 (3.8%) 0 0

Siphoviridae 293 181 (61.7%) 15 (5.1%) 1 (0.37%) 0

Myoviridae 642 479 (74.6%) 234 (36.4̂) 77 (11.9%) 25 (3.8%)
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0.7961 non-tail state probabilities. The transition probability
represents the likelihood that the state of the next domain would
be tail or non-tail, once the state of a current domain is known. In the
training set, the transfer probability from tail state to tail state was
0.1712, from tail state to non-tail state was 0.8288, from non-tail state
to tail state was 0.0203, and from non-tail state to non-tail state was
0.9797. For each hidden state, their emission probability indicates the
likelihood that they belong to a given Pfam. The domain structure of
each protein was annotated by comparing with the previously
established tail and non-tail HMM database using HMMscan. The
domain with a smallest e-value was assigned if multiple domains were
annotated to one protein. The emission probability matrix was
generated by counting the frequency of each Pfam in the tail and
non-tail latent states in the training set. In addition to this
comprehensive model trained using all phages, we separately
trained corresponding models for the three morphologic classes of
phages.

2.2.2 Tail-related protein module detection
The tail module of a phage consists of a cluster of tail-related

proteins. In this study, we used the DBSCAN algorithm to cluster
predicted tail-related proteins. The distance between proteins was
defined based on protein spacing instead of nucleotide distance
spacing to eliminate the bias that could be caused by differences in
protein length. DBSCAN is a clustering algorithm based on density
space. The difference between this algorithm and K-means algorithm
is that instead of using predetermined clusters, the algorithm infers the
number of clusters based on data. The number of proteins in the phage
tail module is generally indeterminate; therefore, the use of this
algorithm is appropriate. DBSCAN relies on two key parameters,
the value radius of the adjacent area around a certain point (eps) and

the number of points at least contained in the adjacent area (minpts).
Optimization of these parameters in DBSCAN was achieved by
iteratively performing density clustering on tail proteins in the
training set.

2.3 Evaluation criteria

The prediction performance of the PhageTailFinder was evaluated
using the receiver operating characteristic (ROC) curve by plotting the
false-positive rate (1—specificity) against the true-positive rate
(sensitivity) based on the threshold change for phage tail protein
prediction. The area under the ROC curve (AUC) is modeled
independent of the prediction score threshold. Sensitivity (true-
positive rate) and specificity (true-negative rate) are used as
accuracy metrics to evaluate predictions. Moreover, precision is
also used to evaluate the performance of the PhageTailFinder.

3 Results and discussion

3.1 Modularity of the phage tail

The phage tail is composed of a series of proteins that cooperate
with each other. In well-studied phages, such proteins appear to be
encoded adjacent to each other within the genome. To explore
whether this was also true in less well-characterized examples, we
conducted a cluster analysis of tail proteins. Although well-defined
phages invariably contain only one tail cluster, there is still
considerable uncertainty about the organization of the phage tail
module throughout the 13 families of bacteriophages. Therefore,

FIGURE 2
Flowchart of the PhageTailFinder. Flowchart illustrating the three-step tail module identification pipeline. (A) Annotating proteins in the phage genome
and converting protein sequences into a string of Pfam domains. (B) Calculating posterior probabilities of the tail and non-tail hidden states to predict tail-
related proteins. (C) Clustering the tail module using DBSCAN.
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TABLE 3 True-positive rate (TPR) of tail protein prediction models trained with a reducing number of phages.

Phage number TPR = 1 (%) TPR >0.8 (%) TPR >0.6 (%) Tail PRAM number

6287 35 58 84 840

2000 30 50 80 440–600

1000 33 57 81 539–595

500 30 55 83 416–480

100 20 42 70 215–265

FIGURE 3
Comparison of the predictive power of the PhageTailFinder for 992 complete phages using four models. (A) ROC curve showing the predictive power of
four models in the 992 complete phages, with the AUC values of 0.968, 0.956, 0.954, and 0.921. (B). Precision values per morphology using corresponding
models. (C)ROC curve showing the predictive power of a novel phage based on taxonomy. (D)ROC curve showing the predictive power of novel phage based
on morphology.
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TABLE 4 Comparison of the PhageTailFinder (PTF) with other prediction tools.

PTF VIRALpro DeepCapTail PhANNs

Last updated 2022 2016 2018 2020

Input type FASTA/GenBank FASTA FASTA FASTA

Timing ~20s >2 min ~1 min ~40s

Stand-alone Yes Yes Yes Yes

Tail protein prediction Yes Yes Yes Yes

Tail module prediction Yes No No No

FIGURE 4
Comparisons of the performance of the PhageTailFinder with VIRALpro, DeepCapTail, and PhANNs. (A) ROC curve showing the predictive power of four
tools when analyzing a test set consisting of 992 complete phage genomes. The resulting AUC values were 0.877, 0.643, and 0.501. (B). Distribution of the
AUC values per phage using four tools. (C) Bootstrap test on ROC between PhageTailFinder and DeepCapTail. (D) Bootstrap test on ROC between
PhageTailFinder and PhANNs.
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we used the DBSCAN algorithm to cluster potential tail components
rather than pre-specifying the number of the clusters.

The radius of the adjacent area around a given point (eps) and the
number of points contained in the adjacent area (minpts) are the two
key parameters used by the DBSCAN algorithm. Combining these
parameters, points can be divided into three categories: core points,
border points, and outliers. We assigned points into these categories
according to the following process: 1) a given point was selected
arbitrarily (neither assigned to a cluster nor specified as an outlier),
and its neighborhood (NBHD) (eps and minpts) was calculated to
detect core points. If a point was determined to be a core point, it was
used to build a cluster around it. Other points were set as outliers. 2)
This process was repeated with neighboring points until a cluster was
established. The directly density-reachable points were added to the
cluster first, and then the density-reachable points. If points marked as
peripheral are added, their state was reset to the edge point. Steps 1 and

2 were repeated until all points were classified as core points, edge
points, or outliers.

Through the iterative running of the algorithm until convergence,
we established that setting the eps and minpts parameters at 6 and 4,
respectively, resulted in the most reliable clustering, with the outcome
mostly in line with the characteristics of tail protein distribution. Based
on this clustering, most phages could be classified into three categories:
1) those where all or the vast majority of tail proteins formed a single
cluster, with no or only few proteins being encoded elsewhere; 2) those
where the tail proteins were clustered into two or three areas with a few
discrete protein points; and 3) those where the number of proteins was
too small or where the proteins were located too far apart to form a
cluster (Figure 1).

A total of 961 phages were analyzed for tail modularity, including
642 Myoviridae, 293 Siphoviridae, and 26 Podoviridae family members.
The results of this density clustering analysis are shown in Table 2. As

FIGURE 5
Performance of the PhageTailFinder in predicting phage protein inMGVs. (A) Taxonomy distribution of items detected as phage inMGVs. (B)Morphology
distribution of items detected as phage in MGVs. (C) ROC curve showing the predictive power of models in the MGV set, with the AUC value of 0.895. (D)
Distribution of the AUC values per phage using the PhageTailFinder.
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indicated in the table, in 479 (74.6%) Myoviridae, 181 (61.7%)
Siphoviridae, and 22 (84.6%) Podoviridae tail-related proteins were
encoded in a single cluster. In contrast, 234 (36.4%) Myoviridae, 15
(5.1%) Siphoviridae, and only one (3.8%) Podoviridae phages had two-tail
protein clusters. Phages containing three clusters were even less common,
and four clusters were only detected in a small number of Myoviridae,
with 25 (3.8%) phages organized in this manner. These results are in line
with previous observations that tail proteins show strong clustering, with
the majority of phages only containing one such cluster, demonstrating
the feasibility of our approach to predict tail-related proteins based on the
natural modularity. Nonetheless, more than one tail cluster was detected
in some phages, a phenomenon potentially caused by horizontal transfer.

3.2 The PhageTailFinder algorithm detects
tail-related proteins

HMM is a statistical model, named after the Russian mathematician
AndreyAndreyevichMarkov, used to describe aMarkov processwith hidden
unknown parameters. The basis of HMM is the Markov chain. A Markov
chain is a stochastic process in state space, where transitions occur from one
state to another, and theprobability distributionof thenext state is determined
by the current state. With the help of hidden state analysis, HMM estimates
patterns in future observations. Since from the perspective of the
PhageTailFinder tool, bacteriophage proteins are either tail proteins or
non-tail proteins with natural modularity, the use of HMM is a
promising potential approach for predicting whether a given protein is a
tail component or not.

The challenge in optimizing this model lies in determining the implicit
parameters of the process based on observable parameters. Proteins are
functional units in biology, while domains are structural subunits necessary
to maintain the structural integrity of a protein. Thus, domains belong to a
level between secondary and tertiary structures in protein conformation,
exhibit specific spatial conformation, and contribute to biological function
indirectly. Typically, proteins consist of multiple domains, and
protein–protein interactions occur between specific domains. It is
important to note that while proteins with similar function may have
widely different sequences, their domain level organization tends to show
remarkable similarity. Such marked sequence differences in functionally
related proteins pose considerable challenges in phage tail protein
prediction. To overcome this issue, PhageTailFinder converts protein
sequences into a string of contiguous Pfam domains by HMMScan
(e-value < 1e-4). Probabilities are then calculated based on the domain
frequency in the tail and non-tail training sets and the relationship between
adjacent domains. TheHMMfor phage tail predictionwas trained based on
three important parameters: the transition probability matrix, emission
probability matrix, and initial probability. This framework is illustrated in
Figure 2. First, initial probabilities were constructed based on the frequency
of tail and non-tail Pfam domains in the training set, resulting in a
0.2039 initial tail probability and 0.7961 initial non-tail probability.
Next, the transition probability was calculated. These calculations
indicated a probability of 0.0203 for a non-tail-to-tail transition and
0.9797 for a non-tail-to-non-tail transition. Finally, emission
probabilities were determined based on the frequency of Pfam domains
in the tail or non-tail hidden state. Since the PhageTailFinder solely relies on
Pfam domain frequencies, it exhibits relatively little training bias and is
capable of identifying new tail modules effectively.

The predictive power of the PhageTailFinder is primarily influenced by
two parameters: the accuracy of HMM construction and the reliability of

tail protein and the non-tail protein Pfamdatabases. The robustness of these
key factors is heavily dependent on the number and representative nature of
the phages included in the training set. To explore whether the domain
feature was overfit due to the large number of phages in the training set, we
tested the effect of reducing the size of the training set. While the initial
training set contained 6,287 phages, this number was reduced to 2,000,
1,000, 500, and 100 in a stepwise fashion, randomly selecting 50 alternative
training sets. It is important to note that as the number of phages present in
the Myoviridae, Siphoviridae, and Podoviridae families is different.
Therefore, the random training sets were selected to preserve the
proportional representation of these phage families present in nature.
Finally, we measured the performance of the models trained on these
limited sets by calculating true-positive (TP) and false-positive (FP) rates
(Supplementary Figure S2; Table 3). Somewhat surprisingly, as the number
of tail-related Pfam present in the database decreased with the training sets
getting smaller, the decrease in TP tail predictions was not particularly
drastic. While the initial training set of 6,287 phages contained 840 tail
Pfams, this was reduced by approximately 75% when the training set was
limited to 100 phages. Yet, the corresponding TP rate only dropped by
about 10%. This observation demonstrated the advantage of using Pfam as
the observation feature since they can sufficiently represent tail domains
even when the number of phages used in the training set was small.

3.3 Evaluation of the performance of the
PhageTailFinder

To assess the reliability of PhageTailFinder predictions, we quantitatively
evaluated the performance of the tool using a test set that consisted of
992 phage genomes and analyzing the rate of TP predictions, where real tail
proteins were identified correctly, and FP rates correspond to actual non-tail
proteins being classified as tail proteins. In this context, TP andFP indicate the
accuracy and specificity of the algorithm. As shown in Supplementary Figure
S3, the PhageTailFinder performed well in predicting the majority of phage
proteins. Out of the 992 phages in the test set, the algorithm produced more
than 80% accurate predictions in 570 phage genomes, accounting for more
than half of the phages in the validated set. In addition, only about 10% of the
phages had an FP rate of more than 10%, indicating the specificity achievable
using the PhageTailFinder.

To evaluate the performance of themodel in identifying tail proteins in
phages with specific morphological features, we subdivided the 992 phages
in the test set into datasets containing only Myoviridae, Siphoviridae, or
Podoviridae. Predictions were carried out in each morphology group, and
we plotted the corresponding ROCs and calculated the AUC area and
precision score. As shown in Figure 3, the best results were achieved when
the predictions weremade on phages within the samemorphologic groups.
Here, the AUC of predictions inMyoviridae, Siphoviridae, and Podoviridae
reached 0.956, 0.968, and 0.954, respectively, the distribution of AUC per
phage is illustrated in Supplementary Figure S4. When predictions were
made across morphology groups, the performance of themodel was higher
when it was trained using the entire training set, containing all phage
families. Under these circumstances, the AUC reached 0.8 (Figure 3A). The
corresponding precision is shown in Figure 3B.

To evaluate the ability of themodel to predict novel phage tail proteins,
we created two additional dataset pairs. One pair consisted of 868 phage
genera in the training dataset, referred to as previously “experienced”
phages. In contrast, the other, “novel,” group consisted of 124 phage
genera that were not present in the “experienced” dataset. The other
dataset pair was divided based on morphologic features. It included
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801 phages in the “experienced”—previously encountered—training set
and 191 “novel” phages excluded from the training. By randomly sampling,
“experienced” and “novel” phages of comparable sizes of 100 times, tail
proteins were predicted in the “novel” subsets. The median values of novel
tail AUC were 0.88 and 0.78, which could be achieved among previously
“experienced” phages, where the prediction accuracy was 0.95 (Figures 3C,
D; Supplementary Figure S4). Therefore, our method exhibits strong
predictive ability for phage tail proteins, even in “novel” phages that
have not previously appeared during model training.

3.4 Comparisons with other methods

Wealso conducted a comparison between thePhageTailFinder and other
currently available protein analysis tools, comparing their precision and
specificity in predicting phage tails in 13 extensively characterized phages.
It is important to note that most published tools were not designed to
discriminate between tail and non-tail proteins, so this could not be included
in the comparison. Furthermore, while the VIRALpro, DeepCapTail, and
PhANNs tools can identify tail proteins, these algorithms analyze phages at
protein rather than the protein domain level. Therefore, we only compared
the accuracy of phage protein annotation.

Phages with well-defined tail structures (phi29, SPP1, lambda, T3, T5,
T7, T2, T4, LL-H, A511, Det7, SSU5, and P22) were used for validation
purposes, and the TP and FP rates were used to assess algorithm
performance. The TP rate achieved by the PhageTailFinder was
consistently above 80%, PhANNs was 72%, DeepCapTail was 70%,
while VIRALpro produced a TP rate below 50%. In addition, the FP
rate achieved by the other algorithms was also high. Therefore, the
PhageTailFinder showed higher precision and lower error rate in the
identification of tail-related proteins. In addition, the average computing
time of VIRALpro was over 2 min, while the PhageTailFinder did not
exceed 1min, a significant time advantage (Table 4). On the test dataset, the
PhageTailFinder also showed significantly better performance, the AUC of
PhageTailFinder achieves 0.877, while DeepCapTail and PhANNs are
lower than 0.7 (Figures 4A, B), and the bootstrap test on ROC with
p-value <2.22e-16 (Figures 4C, D).

3.5 Case study 1: Prediction of phage tail
proteins for human gut virus

The gut contains a complex microbial ecosystem with an important role
in humanhealth and development. Although often overlooked, phages are an
abundant part of this microbiome (Reyes et al., 2010; Ogilvie et al., 2013) and
may even be associated with the development of human diseases (Gogokhia
et al., 2019). Bacteriophages represent the majority of viral particles in the gut
(Ma et al., 2018). Despite their ubiquity, our understanding of viral genome
diversity in the microbiome is limited. Stephen et al. performed large-scale
viral genome characterization of bulk metagenomic data of human stool
samples based on 61 previously published studies (Nayfach et al., 2021). The
resulting metagenomic enterovirus (MGV) catalog contains 189,680 draft
viral genomes, of which >50% appears to be complete, representing
54,118 candidate virus species. It is estimated that 92% of these MGVs
are not represented in existing databases. These viruses aremainly distributed
in Firmicutes, Bacteroides, and Actinobacteriota, and half of them are
annotated as Caudoviricetes (Figures 5A, B).

Despite the annotation of potential host, bacterial species and
predictions of host–virus relationships, the tail proteins, which are

critical for designing phage therapeutics, have not been analyzed in
detail. Thus, we attempted to identify the tail proteins in the cataloged
189,680 viral genomes using the PhageTailFinder. We used the tail and
non-tail domains to annotate phage proteins using relatively conservative
criteria (e-value < 1e-10) and subsequently used the PhageTailFinder to
predict tail proteins based on the annotation results. We were able to
identify 132,196 tail proteins, representing approximately 70% of viruses
in the MVG catalog. The plotted ROC indicated an AUC area of 0.895
(Figures 5C, D). In summary, the PhageTailFinder could be successfully
used to predict tail proteins from virally derived contigs in large datasets.

4 Conclusion

The vast majority of bacteriophages is currently uncultured and
unclassified, and their specific hosts and infection strategies remain
unknown. This population of organisms is often referred to as “viral
dark matter” (Fitzgerald et al., 2021). Understanding the biology of these
viruses is likely to bring major breakthroughs in medicine and basic
sciences. Identifying phage tail module proteins is a key step in the
process of understanding phage biology, as these proteins are essential
during phage adsorption to the host. Recently, some computational tools
have been devised to aid the prediction of the structural role of phage
proteins. However, these methods exclusively rely on identifying sequence,
structural, or physicochemical similarities to known phage proteins. Given
themarked sequence variability of phage proteins and the relatively limited
number of phages identified so far, the performance of such methods is
greatly limited. In this study, we used the DBSCAN clustering algorithm to
analyze known phage tail proteins. This work highlighted that phage tail
proteins are modular. Based on this property, we proposed the
PhageTailFinder, a novel tool that uses a two-state HMM to infer
whether a protein in a phage is a tail or non-tail protein, independent
of known sequence properties. We validated the performance of this
algorithm on 13 extensively characterized phages and a selection of
992 phages collected from NCBI databases. In comparison, the
PhageTailFinder outperformed previously devised algorithms in the
accuracy and specificity of predicting phage tail proteins. We were also
able to show that the PhageTailFinder had a better performance in
identifying tail proteins not present in the training set. Finally, we
annotated the tail proteins of 189,680 human enteroviruses, achieving
correct tail annotation in 132,196 genomes (about 70%). Thus, the
PhageTailFinder is a promising tool to support research in the potential
therapeutic uses of phages. In addition, the novel algorithm is also
significantly faster than the alternatives, making it suitable for high-
throughput data analysis. We provide both a web server and a stand-
alone version of the tool to users to allow flexibility in its use, according to
the needs of the scientific community.
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PhageTailFinder) for general users to study individual inputs or as a
stand-alone version (https://github.com/HIT-ImmunologyLab/
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