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Cross-sectional data allow the investigation of how genetics influence health at a
single time point, but to understand how the genome impacts phenotype
development, one must use repeated measures data. Ignoring the
dependency inherent in repeated measures can exacerbate false positives and
requires the utilization of methods other than general or generalized linear
models. Many methods can accommodate longitudinal data, including the
commonly used linear mixed model and generalized estimating equation, as
well as the less popular fixed-effects model, cluster-robust standard error
adjustment, and aggregate regression. We simulated longitudinal data and
applied these five methods alongside naïve linear regression, which ignored
the dependency and served as a baseline, to compare their power, false
positive rate, estimation accuracy, and precision. The results showed that the
naïve linear regression and fixed-effects models incurred high false positive rates
when analyzing a predictor that is fixed over time, making them unviable for
studying time-invariant genetic effects. The linear mixed models maintained low
false positive rates and unbiased estimation. The generalized estimating equation
was similar to the former in terms of power and estimation, but it had increased
false positives when the sample size was low, as did cluster-robust standard error
adjustment. Aggregate regression produced biased estimates when predictor
effects varied over time. To show how the method choice affects downstream
results, we performed longitudinal analyses in an adolescent cohort of African
and European ancestry. We examined how developing post-traumatic stress
symptoms were predicted by polygenic risk, traumatic events, exposure to sexual
abuse, and income using four approaches—linear mixed models, generalized
estimating equations, cluster-robust standard error adjustment, and aggregate
regression. While the directions of effect were generally consistent, coefficient
magnitudes and statistical significance differed across methods. Our in-depth
comparison of longitudinal methods showed that linear mixed models and
generalized estimating equations were applicable in most scenarios requiring
longitudinal modeling, but no approach produced identical results even if fit to
the same data. Since result discrepancies can result from methodological
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choices, it is crucial that researchers determine their model a priori, refrain from
testing multiple approaches to obtain favorable results, and utilize as similar as
possible methods when seeking to replicate results.

KEYWORDS

longitudinal analysis methods, repeatedmeasures, simulation study, polygenic risk scores,
post-traumatic stress disorder, longitudinal method comparison

1 Introduction

Cross-sectional studies have been the driving force behind
developments in genome research, having given rise to the
genome-wide association study (GWAS) and analogous methods,
such as phenome-wide or environment-wide association studies
(Hall et al., 2016). However, they have limited capability to evaluate
genetic influences on the development of complex diseases as cross-
sectional data lack the information necessary to model change
(Singer and Willett, 2003). However, data with repeated
phenotype measures over time not only allow the assessment of
how the genome affects the phenotype at a given time point but can
also describe how the trait progresses over time and how genetic risk
alters this trajectory (Singer and Willett, 2003). Repeated measures,
or longitudinal data, are clustered data, wherein a “cluster” is an
individual with repeated measurements. It is expected that repeated
measures within a sample will be correlated (dependent) (Gibbons
et al., 2010), which violates the independence assumption of
commonly used linear or logistic regression models. Ignoring this
violation by analyzing clustered data without accommodating
dependency could inflate the false positive rate (FPR). For
instance, Musca et al. (2011) found that applying a t-test to
dependent data produced an FPR of above 50% even if the
dependency was low to moderate (Musca et al., 2011).

Many methods for analyzing longitudinal data exist, but the
currently favored approaches are linear mixed models (LMMs) and
generalized estimating equations (GEEs) (Gibbons et al., 2010;
Garcia and Marder, 2017; Woodard, 2017). LMMs represent
dependency by modeling “fixed” and “random” effects (i.e., the
intercept or slope parameters defined in a regression equation)
(McNeish et al., 2017). “Fixed” effects are shared by all clusters
and can be thought as population-level effects (McNeish et al., 2017).
A “random” effect is cluster-specific and allows each cluster to
deviate uniquely from the fixed effects (McNeish et al., 2017),
thereby accommodating the similarity from correlated repeated
measures. LMMs are advantageous because they model time-
invariant and time-variant predictors, treat time as a continuous
variable, can represent two or more levels of clustering, and have less
strict missingness assumptions (Gibbons et al., 2010; Garcia and
Marder, 2017; Woodard, 2017). Nevertheless, they have many
assumptions regarding the distribution of predictors, random
effects, and residuals (McNeish et al., 2017), violations of which
could negatively affect analytical performance (Dieleman and
Templin, 2014). Generalized LMM extensions to analyze
noncontinuous outcomes are also computationally expensive
(Garcia and Marder, 2017; McNeish et al., 2017). Furthermore,
they estimate additional parameters—the variance–covariance of
random effects—that usually are not of interest to the researcher
(McNeish et al., 2017). GEEs also model time-varying predictors and

continuous time but have fewer assumptions than LMMs (Gibbons
et al., 2010; Garcia and Marder, 2017; McNeish et al., 2017;
Woodard, 2017). Instead, GEEs compute population-average
coefficient estimates while separately estimating group
dependency via a working correlation matrix that is used to
correct parameter estimates (Gibbons et al., 2010; Garcia and
Marder, 2017; McNeish et al., 2017; Woodard, 2017). Some
limitations of GEEs are their decreased tolerance of missing data
and use of quasi-likelihood, rather than maximum likelihood,
estimation (Gibbons et al., 2010; Garcia and Marder, 2017;
McNeish et al., 2017; Woodard, 2017). Popular likelihood-based
measures or tests—the likelihood ratio test (LRT), Akaike
information criterion, etc.—cannot be applied to GEEs because
they are quasi-likelihood methods. Furthermore, open-access
implementations of GEEs in R and Python also do not specify
more than two levels of clustering (Halekoh et al., 2006; Seabold and
Perktold, 2010; Carey et al., 2022).

Other approaches applicable to longitudinal data analysis are
cluster-robust standard errors (CRSEs), fixed-effects (FE) models,
and aggregate regression (AGG). CRSEs adjust coefficient standard
errors to reflect dependency and make fewer assumptions than
LMMs and GEEs (McNeish et al., 2017; Bauer et al., 2020). A linear
or logistic regression model is fit to the dependent data, and then
standard errors are re-calculated using the CRSE approach, which
incorporates the dependency within clusters into the standard error
estimation. CRSEs accommodate two levels of clustering and, as they
only adjust the standard errors, they require that the regression
model is correctly specified to ensure unbiased coefficient estimates
(McNeish et al., 2017). The FE model accommodates group
dependency by adding cluster membership to the regression
model as a dummy-encoded covariate (Bauer et al., 2020). In FE
models, inference cannot be done at the group level since all
between-group differences are adjusted out of the model after
including cluster membership as a covariate. However, FE
models are conceptually simple, easy to implement, and
outperform LMMs in situations with few groups (Dieleman and
Templin, 2014; McNeish and Stapleton, 2016). AGG consolidates
repeated measurements on an individual into a single value by
averaging them over time (Aarts et al., 2014). This reduces clusters to
single independent data points, and the new dataset can be analyzed
with traditional methods that assume independence. However, the
AGG approach necessarily precludes investigation into how a trait
develops over time.

Previous GWASs have analyzed longitudinal traits with LMMs
(Smith et al., 2010;Wendel et al., 2021) or GEEs (Honne et al., 2016).
However, many GWASs opted to simplify the repeatedly measured
phenotype into a single measure for analysis with methods assuming
independence (Cousminer et al., 2013; Hoffmann et al., 2018; Alves
et al., 2019; Tan et al., 2021). Longitudinal studies incorporating
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polygenic risk scores (PRSs) have been performed, using a wide
variety of techniques. The most prevalent approaches are the LMM
(Liu et al., 2021; Choe et al., 2022; Machlitt-Northen et al., 2022;
Segura et al., 2022; Tomassen et al., 2022), GEE (Ihle et al., 2020;
Tsapanou et al., 2021; Tomassen et al., 2022), and, for dichotomous
outcomes, time-to-event analysis (Paul et al., 2018; Khera et al.,
2019; Ihle et al., 2020; Liu et al., 2021; Ajnakina et al., 2022). Time-
to-event analysis is used to investigate whether and when a change in
phenotype status occurs, such as a switch from control to case status
(Singer andWillett, 2003). However, time-to-event data have unique
characteristics that require analysis by methods other than LMMs,
GEEs, etc., and, as such, are not the focus of this study [for an
overview, see Le-Rademacher and Wang, 2021; Schober and Vetter,
2018; Le-Rademacher and Wang, 2021; Schober and Vetter, 2018)].
Aggregate regression has also been used in longitudinal PRS studies,

as by Waszczuk et al. (2022), who found various significant
associations between various mental health PRSs and average
post-traumatic stress disorder (PTSD) symptoms over time
(Waszczuk et al., 2022). However, they complimented this
approach with a latent trajectory analysis to show whether the
PRSs also predicted the PTSD trajectory class (Waszczuk
et al., 2022).

In this study, we investigated various longitudinal modeling
approaches to determine how they compare when analyzing
trajectory changes of a continuous, repeatedly measured
phenotype. We evaluated the power, FPR, and estimation
accuracy/precision of LMMs, GEEs, CRSEs, AGG, and FE models
alongside naïve linear regression (NLR) with a simulation study. For
this simulation study, not all methods explicitly modeled trait
development over time. The AGG and NLR approaches always

TABLE 1 Simulation parameters and values for (A) primary simulation, (B) limited simulation without time-varying effects, and (C) limited simulation with a
correctly specified cluster-robust standard error (CRSE) model.

Parameters Values

(A) Time-varying
effects

(B) No time-varying
effects

(C) Time-varying effects + correctly
specified CRSE

Intraclass correlation
coefficient (ICC)

0.1, 0.5, and 0.9 0.5 0.1, 0.5, and 0.9

σ2g: σ
2
e 1:9, 5:5, and 9:1 5:5 1:9, 5:5, and 9:1

# Clusters (i) 50, 75, 100, 200, and 500 50 and 100 50 and 100

# Time points (t) 4 4 4

Time increment 1 unit 1 unit 1 unit

Intercept (β0) 1 1 1

Fixed effects (β1 , β2 , β3) 0, 0.05, 0.1, and 0.3 0 and 0.3 0, 0.1, and 0.3

Response linearity Linear, exponential, and
parabolic

Linear and exponential Linear and exponential

Predictor (X) type Bin(n, 0.5), N (0,1) N (0,1) N (0,1)

Time-invariant and time-variant Time-invariant and time-variant Time-invariant and time-variant

Response-generating variables X, Time, X × Time X, Time X, Time,X × Time

TABLE 2 Variables from the longitudinal cohort examining post-traumatic stress disorder.

Variable Description Time-
variant

Post-traumatic stress disorder (PTSD)
symptoms

Self-report from the Comprehensive Trauma Interview (Shenk et al., 2016). Symptom counts summed for the
total score

Yes

PTSD-polygenic risk score (PTSD-PRS) PRS for PTSD. Separate scores calculated for African-ancestry and European-ancestry strata. Higher scores
indicate greater ostensible genetic vulnerability to PTSD

No

Child sexual abuse (CSA) Participants with CSA were recruited within 1 year of the substantiation of abuse. Unexposed individuals who
experienced CSA during the study were excluded from our analysis

No

Income Ordinal categorical variable denoting household income. Twelve levels No

Age Time difference between the date of birth and visit date for data collection Yes

Potentially Traumatic Event (PTE) Count of self-reported PTEs from the Comprehensive Trauma Interview (Shenk et al., 2016). At visit 1, the
participant reported on all previous PTEs. For visits 2 and 3, the participant reported on any intervening PTEs

Yes
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ignored changes in the dependent variable but were included to
emphasize the differing results one may observe when discounting
changes over time. NLR did not include any adjustments to account
for modeling time or dependency and, as such, served as the baseline
to which all other methods could be compared.

Using the simulation results, we applied the most accurate
methods to a longitudinal cohort of African and European
ancestry to examine the genetic and environmental influences on
PTSD symptoms over time. The results showed that the analytical
strategy and model design greatly influence results and
interpretation. In our simulation, NLR and FE approaches had
inflated false positive rates when analyzing a predictor that was
fixed over time (e.g., genetics), whereas the viability of all other
methods depended on the characteristics of the dataset being
studied. In our longitudinal cohort, African-ancestry and
European-ancestry participants showed different associations with
PTSD symptoms over time. Researchers interested in genetic
longitudinal studies need to consider the trade-offs between

power, false positives, and estimation and accommodate potential
time-varying effects in their analysis to procure accurate,
reliable results.

2 Materials and methods

2.1 Simulation study comparing longitudinal
data analysis methods

To compare the performance of longitudinal data analysis
(LDA) methods, we designed a simulation study which generated
longitudinal data and applied six methods in statistical
hypothesis tests. The simulated longitudinal data consisted of
repeated measures on individuals and disregarded higher levels
of clustering. We simulated fixed effects and random effects in
each longitudinal dataset to produce group dependency (fixed
and random effects describe effects shared between groups and

FIGURE 1
Power to detect the effect of the Bin(n,0.5) predictor. The x-axis indicates the number of clusters. The y-axis indicates the power. The shaded gray
region indicates where power reaches or exceeds 80%. The panel columns correspond to the simulation linearity and the intraclass correlation
coefficient (ICC) of the data. The panel rows correspond to whether the predictor was time-variant and the true effect size (β). Each method has a power
trajectory, color-coded according to the legend. NLR, naïve linear regression; CRSE, cluster-robust standard error; AGG, aggregate regression; FE,
fixed effects; LMM, linear mixed model; GEE, generalized estimating equation.
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group-specific effects, respectively). The methods studied were
NLR, CRSE, AGG, FE, LMM, and GEE.

To implement the simulations, we wrote R functions to
generate data and apply the chosen analytical methods. These
functions are stored in a custom package, LDA simulations,
available on GitHub (https://github.com/HallLab/
ldasimulations). We used base R functions to randomly
generate variables. The fitting of models used various
statistical R packages. The stats general linear model function
was used to implement NLR and AGG models. For the CRSE
approach, we first fit linear regression, and then the CRSE
adjustment was applied to the output. CRSE calculations were
provided by lmtest (Zeileis and Hothorn, 2002) and the cluster-
robust variance estimator from the sandwich package (Zeileis,
2004; Zeileis, 2006; Zeileis et al., 2020); CRSEs utilized the
default degrees of freedom and applied an HC1 sample-size
correction. LMMs were implemented using lme4 (Bates et al.,
2015) alongside lmerTest for the calculation of p-values

(Kuznetsova et al., 2017). GEEs were implemented using
geepack (Halekoh et al., 2006). All simulations were run in R
version 4.1.

2.1.1 Simulation of longitudinal datasets and
application of LDA methods to the simulated data

Phenotype trajectories can be described by their initial value and
their change over time. The rate of change of the phenotype is
necessarily a function of time but can also be altered by other
variables, which is often of interest to the researcher (e.g., does
greater polygenic risk increase the rate of change of body weight?).
To examine situations where phenotype change over time is affected
by a predictor X, we simulated longitudinal data consisting of a
response Y, whose trajectory was determined by the effects of X,
Time, and a time-varying effect X × Time. The trajectory of Y was
also affected by a cluster-specific random intercept (RI) and residual
error. We varied multiple parameters of the simulated longitudinal
data to compare method performance across different sample sizes,

FIGURE 2
Power to detect the effect of an N(0, 1) predictor. The x-axis indicates the number of clusters. The y-axis indicates the power. The shaded gray
region indicates where power reaches or exceeds 80%. The panel columns correspond to the simulation linearity and the ICC of the data. The panel rows
correspond to whether the predictor was time-variant and the true effect size (β). Each method has a power trajectory, color-coded according to the
legend. NLR, naïve linear regression; CRSE, cluster-robust standard error; AGG, aggregate regression; FE, fixed effects; LMM, linear mixed model;
GEE, generalized estimating equation.
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effect sizes, strengths of dependency, predictor types, and response
linearity (examples of simulated data are given in Supplementary
Figure S1). The datasets had i individuals measured at t = 4 time
points, where i ranged from 50 to 500 (Table 1A). The predictor X
could be fixed over time (“time-invariant”) or vary across time
(“time-variant;” Table 1A). If time-invariant, then the value of X
was the same for all observations within a cluster. Alternatively, for
a time-variant predictor, the values of X were independently
generated for individual i at time t and could vary within the
cluster. To reflect different variable types found in natural data, X
was either drawn from (1) a binomial distribution with a 50%
probability of “exposure” or (2) a standard normal distribution
(Table 1A). The final simulated predictor was the interaction
X × Time. This term indicates that the effect of X varies over
time, affecting the rate of change of the response trajectory. The
true effects between X, Time, and X × Time and the response Y
were described by β1, β2, and β3, respectively. These coefficients
were all equal and were set to {0, 0.05, 0.1, and 0.3} (Table 1A). The

datasets where β � 0 were null datasets used to assess false positive
rates. To simulate dependency within the data, a RI was generated
for each cluster. This produced similarity between the observations
on an individual. The RI was drawn from a normal distribution
centered at zero with a variance of σ2g, the between-group variance.
A residual error (e) was generated uniquely for every observation
in the simulated dataset. The residuals came from a normal
distribution with a mean of zero and variance σ2e . The strength
of dependency within the dataset was determined by the ratio of σ2g
to σ2e . Higher σ2g relative to σ2e indicates greater dependency as the
total variance comprises more between-cluster variation. The
proportion of variation due to between-group differences can be
used to calculate a measure of dependency, the intraclass
correlation coefficient (ICC), with the formula
ICC � σ2g/(σ2g + σ2e). The ICC ranges from 0 to 1, where ICC =
0 means data are independent, while ICC = 1 means all values are
identical within a cluster. We arbitrarily set the sum of σ2g and σ

2
e to

10 and then generated the RI and e terms to meet ICCs of 0.1, 0.5,

FIGURE 3
Power to detect the effect of Time and X × Time in simulations with a Bin(n,0.5) predictor. The x-axis indicates the number of clusters. The y-axis
indicates the power. The shaded gray region indicates where power reaches or exceeds 80%. The panel columns correspond to the simulation linearity
and the ICC of the data. The panel rows correspond to whether the predictor was time-variant and the true effect size (β). Each method has a power
trajectory, color-coded according to the legend. Solid lines denote the power of Time, while dashed lines denote the power of X × Time. FE, fixed
effects; LMM, linear mixed model; GEE, generalized estimating equation.

Frontiers in Genetics frontiersin.org06

Passero et al. 10.3389/fgene.2024.1203577

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1203577


and 0.9 (Table 1A). The values of X, Time, X × Time, RI, and e
were first generated for each individual i at time t, and then the
values were summed with their appropriate effect sizes to produce
the response Y. As all methods under consideration assume a
linear relationship between the predictors and response, we
simulated a relationship that was linear (Eq. 1, exponential Eq.
2, or parabolic Eq. 3; Table 1A). The latter cases (Eqs 2–3) produce
data with a nonlinear relationship to investigate how methods
compare when all are disadvantaged by assumption violations. The
nonlinearity of the predictor–response relationship in Eqs 2–3 was
likely to induce estimate bias by the applied methods. All response-
generating formulas (Eqs 1–3) had an intercept term β0, which was
set to 1.

Yit � β0 + β1Xit + β2Timeit + β3XitTimeit + RIi + eit , (1)
Yit � β0 + eβ1Xit+β2Timeit+β3XitTimeit + RIi + eit , (2)

Yit � β0 + β1Xit + β2Timeit
2 + β3 XitTimeit( )2 + RIi + eit . (3)

In total, there were 720 possible combinations of parameters
(Table 1A); each was generated 1,000 times. After a dataset was
generated, the six methods—NLR, CRSE, AGG, FE, LMM, and
GEE—were applied. The resulting coefficient estimates and p-values
were extracted for comparison. NLR was fit with the model
Y � β0 + β1X, and CRSEs were also applied a linear regression fit
with Y � β0 + β1X. Before the AGG model was applied, the terms Y
andX were averaged by group; then, the model �Y � β0 + β1 �Xwas fit
with the newly summarized data. The FE model was fit as Y � β0 +
β1X + β2Time+ β3X × Time + β4Group2 . . . + βi+4Groupi. Both
the LMM and GEE were fit with the model
Y � β0 + β1X + β2Time + β3X × Time. The LMM assumed a
random intercept per cluster. The working correlation structure
assumed by the GEE was “exchangeable,” in which each pair of
observations within a cluster is equally correlated. The implemented
NLR, AGG, and CRSE models were underparameterized regarding
the true data-generating model (Eqs 1–3) as they did not model
Time or X × Time explicitly. Thus, they could not assess phenotype

FIGURE 4
Power to detect the effect of Time and X × Time in simulations with a N(0, 1) predictor. The x-axis indicates the number of clusters. The y-axis
indicates the power. The shaded gray region indicates where power reaches or exceeds 80%. The panel columns correspond to the simulation linearity
and the ICC of the data. The panel rows correspond to whether the predictor was time-variant and the true effect size (β). Each method has a power
trajectory, color-coded according to the legend. Solid lines denote the power of Time, while dashed lines denote the power of X × Time. FE, fixed
effects; LMM, linear mixed model; GEE, generalized estimating equation.
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change over time, but we evaluated such models to observe whether
ignoring real effects of Time or X × Time caused a performance
deficit. All characteristics of these simulated datasets are given
in Table 1A.

If the data contain true effects of X, Time, and their interaction
X × Time, this confers an analytical advantage to methods explicitly
modeling all three terms as ignoring their true effects could bias
estimates of the effect of X. However, some predictor X may affect
the average response at each time point but not the change in the
phenotype trajectory (i.e., X does not have a time-varying effect
X × Time). In such a case, methods that ignore Time (e.g., AGG
method) may be appliable if noX × Time effect exists. Therefore, we
simulated data wherein the response variable was generated without
the X × Time interaction to represent data without time-varying
effects of X. We then compared methods that either did or did not
explicitly model Time and X × Time. In this simulation without
time-varying effects, we also varied the parameters of sample size,
effect size, predictor type, and response linearity. The trajectory of Y
was determined byX, Time, a cluster-specific RI, and residual error.
Datasets had i individuals measured at t = 4 time points, where i was
either 50 or 100 (Table 1B). The predictor X came from a standard
normal distribution and could be time-invariant (fixed across time)
or time-variant (changing across time) (Table 1B). β1 and β2 were
the effects of X and Time, respectively. For all simulations, β1 � β2
and were 0 or 0.3, with null values included to test the FPR
(Table 1B). The RI and residual error e were drawn from normal
distributions centered at zero with variances of σ2g and σ2e ,
respectively. The values of σ2g and σ2e summed to 10 and were

such that the ICC equaled 0.5 (Table 1B). The X, Time, RI, and e
values were generated first and then summed with their respective
effect sizes to produce the response Y. The relationship between
Time and the response was either linear (Eq. 4) or exponential (Eq.
5). Only Time was exponentiated to observe whether bias in the
estimation of X was apparent in methods that did not explicitly
model Time. The intercept term, β0, was set to 1 in all response-
generating functions (Eqs 4–5).

Yit � β0 + β1Xit + β2Timeit + RIi + eit , (4)
Yit � β0 + β1Xit + eβ2Timeit + RIi + eit . (5)

Data corresponding to each of these 16 possible parameter sets
(Table 1B) were replicated 1,000 times. We applied NLR, AGG, CRSE,
and two LMMs to these simulated datasets. The former three methods
modeled X but not Time. NLR and CRSE were fit with the model
Y � β0 + β1X. For the AGG model, Y and X were averaged by group,
and then the model �Y � β0 + β1 �X was applied. The first LMM was fit
with Y � β0 + β1X + β2Time, which directly matches the response-
generating Eq. 4. The second LMMwas overparameterized and fit with
Y � β0 + β1X + β2Time + β3X × Time. Both LMMs assumed a
random intercept. To differentiate between the LMMs in
simulations without time-varying effects, we refer to the correctly
specified model as the “LMM,” while the overparameterized model
is the “LMM+ interaction” (LMM+Int)model in our figures and tables.
The NLR, AGG, CRSE, and LMM+Int approaches were all designed to
be compared to the LMM approach, which was identical to the linear
data-generating formula in Eq. 4 and, therefore, expected to have the

FIGURE 5
Estimation of the N(0, 1) predictor in linear (A) and exponential (B) simulations. The x-axis indicates the median estimate difference. The y-axis
indicates the median absolute deviation (MAD); the y-axis range varies by panel. Point color and shape represent the effect size (β) and the number of
clusters, respectively. For the exponential simulation (B), an effect size of 0.3 is excluded. The dashed vertical and horizontal lines indicate a median and
MAD of zero, respectively. Panel columns correspond to predictor time-variance and the ICC. Methods are plotted along panel rows. NLR, naïve
linear regression; AGG, aggregate regression; FE, fixed effects, LMM, linear mixed model; GEE, generalized estimating equation.
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best performance. Coefficient estimates and their p-values were
extracted for all available terms in the model.

In the aforementioned simulations, the CRSE was implemented
upon a regression that did not model Time or the X × Time
interaction and, thus, could not analyze the phenotype trajectory
change. However, the CRSE is flexible in that it can be applied to any
model formulation, provided that group membership is known and
only two levels of clustering exist (e.g., repeated measures on
independent individuals). We wanted to assess the performance
of the CRSE when applied to a model that correctly fit X, Time, and
X × Time. Longitudinal data were simulated with full time-varying
effects (Eqs 1–2), and then CRSE performance was tested when
applied to a regression with all response-generating terms. The
datasets contained i individuals, where i = 50 or 100, measured
at t = 4 time points (Table 1C). We generated a time-invariant or
time-variant standard normal predictorX (Table 1C). The effects of
X, Time, and X × Time, represented by β1, β2, and β3, respectively,
were equal and set to {0, 0.1, and 0.3} (Table 1C). Datasets with null
effects (β � 0) were generated to evaluate the FPR. The response Y
also depended on an RI and residual error e. Both random error
terms, RI and e, came from normal distributions with a mean of zero
and variances of σ2g and σ2e (Table 1C). Error variances summed to
10 and were set such that the ICC equaled 0.1, 0.5, or 0.9 (Table 1C).
The predictor–response relationship was linear (Eq. 1) or
exponential (Eq. 2), where the intercept β0 � 1. There were
72 parameter sets (Table 1C), each of which was used to generate
1,000 datasets. CRSEs were applied to a model fit with
Y � β0 + β1X + β2Time + β3X × Time. To compare its

performance to that of models with incorrect or correct fixed
effects, we tested it alongside NLR and LMM. NLR was
underparameterized and modeled Y � β0 + β1X, whereas the
LMM was fit with the same model as the CRSE and assumed a
random intercept. The LMM matched the true data-generating
model and would be expected to have the best performance.
Estimates and p-values were extracted from the results for
comparison.

The output from each simulation is available at https://github.
com/HallLab/ldasimulations.

2.1.2 Metrics compared in the simulation study
There were 1,000 unique datasets simulated for each possible

combination of parameters (Table 1). All methods were applied
to the dataset as described previously. Estimates and p-values
were extracted for any non-intercept β coefficient produced by
the model. We then calculated the power/FPR, estimate accuracy,
and estimate precision per 1,000-dataset replicate. To determine
the power and FPR, we used the standardWald test output, which
tests null hypothesis H0: β � 0. For terms (i.e., X, Time, and
X × Time) with a true effect, power was the proportion of tests
with p < 0.05 among the 1,000 replicates. The FPR was the
proportion of tests with null effects with p < 0.05 among the
1,000 replicates. We considered the FPR to be controlled if within
Bradley’s liberal range of 2.5%–7.5% (Bradley, 1978). The NLR,
AGG, and CRSE models used N-p degrees of freedom, where p is
the number of estimated parameters (Bates et al., 2015;
Kuznetsova et al., 2017).

FIGURE 6
Estimation of the (A) Bin(n,0.5) or (B) N(0, 1) predictor in parabolic simulations. The x-axis indicates the median estimate difference. The y-axis
indicates the MAD; the y-axis range varies by panel. Point color and shape represent the effect size (β) and the number of clusters, respectively. The
dashed vertical and horizontal lines indicate a median and MAD of zero, respectively. Panel columns correspond to predictor time-variance and the ICC.
Methods are plotted along panel rows. NLR, naïve linear regression; AGG aggregate regression; FE, fixed effects; LMM, linear mixed model; GEE,
generalized estimating equation.
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To gauge the estimation accuracy and precision, we calculated the
difference between the observed and expected effect sizes (Xi) for each
output. Then, for each 1,000-replicate set, we identified the median
difference and calculated the median absolute deviation (MAD) of
differences. The MAD is defined asMedian(|Xi − ~X|), where ~X is the
median difference. The median difference was used to assess the
estimate accuracy, while the MAD was used to assess the estimate
precision. We chose median-based summary statistics due to large
outliers in the observed–expected difference produced by the FE, which
complicated plotting. In simulations where NLR and CRSE were fit
with the same model, their estimates were identical, so only NLR
estimation accuracy and precision were reported. Figures of power,
FPR, and estimate summary statistics were created using ggplot2
(Wickham, 2016) and viridis color palettes (Garnier et al., 2023).

2.2 Motivated application to a real
longitudinal dataset

2.2.1 Dataset and variable descriptions
To demonstrate how the choice of method affects the output,

we applied a selection of the aforementioned methods to

longitudinal data from a female adolescent cohort (n = 460)
collected from the catchment area of a Midwest US hospital
(Noll et al., 2022). A third of participants had cases of child
sexual abuse (CSA) substantiated in the prior year; the
remaining were demography- or census-matched controls
(Noll et al., 2022). Participants were enrolled at ages
12–16 years and followed for 3 years to assess the health and
development between CSA-exposed and -unexposed youths
(Noll et al., 2022). Due to the high prevalence of CSA, PTSD
was likely to develop among participants (Haag et al., 2022). We
chose self-reported PTSD symptoms as our phenotype and
examined how symptom development was affected by age, a
PTSD-PRS, potentially traumatic events (PTEs), CSA, and
income (Table 2). Noll et al. (2022) and Haag et al. (2022)
described cohort design and variables in more detail (Haag et al.,
2022; Noll et al., 2022).

To compute a PTSD-PRS, meta-GWAS summary statistics from
the study by Nievergelt et al. (2019) were extracted from stratified
African- and European-ancestry analyses (Nievergelt et al., 2019).
We kept SNPs (build GRCh37) with a minor allele frequency >1%
and imputation quality ≥0.8. We removed SNPs with
complementary A1 and A2 alleles and excluded duplicates. The

FIGURE 7
Estimation of Time in (A) linear (B) exponential, and (C) parabolic simulations with an N(0, 1) predictor. The x-axis indicates the median estimate
difference. The y-axis indicates the MAD; the y-axis range varies by panel. Point color and shape represent the effect size (β) and the number of clusters,
respectively. For the exponential simulation (B), an effect size of 0.3 is excluded. The dashed vertical and horizontal lines indicate a median and MAD of
zero, respectively. Panel columns correspond to predictor time-variance and the ICC. Methods are plotted along panel rows. FE, fixed effects; LMM,
linear mixed model; GEE, generalized estimating equation.
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African-ancestry summary statistic data retained 14,051,262 SNPs,
while the European-ancestry summary statistic data retained
8,116,466 SNPs.

In our natural cohort, genome-wide SNP data were available
for 408 samples genotyped on the Infinium Global Screening
Array (build GRCh37). Using PLINK v1.9, we (1) applied a 99%

FIGURE 8
False positive rate (FPR) in simulations with a Bin(n,0.5) predictor. The x-axis indicates the number of clusters. The y-axis indicates the FPR. The
shaded gray region is Bradley’s liberal FPR region from2.5% to 7.5%. The panel columns correspond to the simulation linearity. The panel rows correspond
to the ICC and the predictor time-variance. Eachmethod has an FPR trajectory, color-coded according to the legend. The line type denotes the variable.
NLR, naïve linear regression; CRSE, cluster-robust standard error; AGG, aggregate regression; FE, fixed effects; LMM, linear mixed model; GEE,
generalized estimating equation.

Frontiers in Genetics frontiersin.org11

Passero et al. 10.3389/fgene.2024.1203577

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1203577


sample call rate; (2) imposed a 99% variant call rate and 1%
minor allele frequency; (3) deleted duplicate SNPs; and (4)
calculated identity-by-descent to remove related pairs where
π̂ > 0.125. To calculate the identity-by-descent, the data were
linkage disequilibrium (LD)-pruned to r2 < 0.2 and, among
related pairs, individuals with greater variant missingness
were removed. To infer genetic ancestry, we combined our
cohort with the 2,504 samples from the 1000 Genomes Project
(1 KG) Phase 3 release (1000 Genomes Project Consortium et al.,
2015). We excluded 110 samples from the 1 KG reference panel
in which the IBD met π̂ > 0.1875. Using PLINK 1.9, the combined
variant set was LD-pruned (r2 < 0.2), and principal components
(PCs) were estimated within the 1 KG reference panel. PCs for
our natural dataset were determined by projecting onto the axes
determined by the reference panel. The genetic ancestry was
inferred using the HARE approach, which uses a support vector
machine to predict ancestry and is described by Fang et al.
(2019). We used the hare approach to infer African or
European ancestry as there were too few individuals of other
self-reported race/ethnicities in our natural dataset. The sample
was stratified into African and European genetic ancestry
subgroups. The genetic data of the cohort were cross-
referenced with the meta-GWAS summary statistics to retain
SNPs available in both datasets. The African-ancestry stratum
included 173 samples and 339,749 SNPs. The European-ancestry

stratum included 176 samples and 440,099 SNPs. If necessary,
SNPs from our cohort were strand-flipped, and reference alleles
were reassigned to match the summary statistics.

SNP coefficient estimates were adjusted in African-ancestry
and European-ancestry participants using the PRS with
continuous shrinkage (PRS-CS) method developed by Ge et al.
(2019) and using the 1000 Genomes LD reference panel,
respectively (Ge et al., 2019). The PRS-CS input parameters
were as follows: phi was 1 × 10−2, the African-ancestry sample
size was 15,339 participants, and the European-ancestry sample
size was 174,659 participants [sample sizes were obtained from
the study by Nievergelt et al. (2019)]. The PRS was computed
using the score function in PLINK on the adjusted effect sizes
from PRS-CS. We estimated ancestry-specific PCs using linkage
disequilibrium-pruned (r2 < 0.2) data within each ancestral
stratum. A total of 20 PCs per stratum were regressed out of
their respective PTSD-PRS in R. Residuals from each regression
were the final ancestry-specific PTSD-PRSs.

2.2.2 Analytical strategy applied to natural
longitudinal data

This application was designed to show how different methods
can produce varying results even if applied to the same natural
dataset. From our cohort, we selected three waves of data on
PTSD symptoms, PTSD-PRS, PTE, CSA, income, and age. We

FIGURE 9
Power (A) and FPRs (B) in simulations without an X × Time interaction. The x-axis denotes the number of clusters. The y-axis indicates the (A) power
or (B) FPR. On power plots, the shaded region is where power reaches or exceeds 80%. The shaded region on FPR plots is Bradley’s liberal FPR region from
2.5% to 7.5%. The panel columns correspond to the simulation linearity and the predictor time-variance. The panel rows correspond to the method. The
line color refers to the variables in the model. For FPR plots only, the line type reflects the effect size. NLR, naïve linear regression; CRSE, cluster-
robust standard error; AGG, aggregate regression; LMM, linear mixed model; LMM+Int, overparameterized LMM with an X × Time interaction.
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restricted the cohort to individuals of African or European ancestry
and required that samples have complete data at all three time points.
We excluded initially unexposed participants who experienced CSA
during the study. There remained 124 participants in the African-
ancestry subsample and 125 participants in the European-ancestry
subsample with complete information. The following analyses were
performed separately in each stratum defined by genetic ancestry.

We defined a longitudinal model wherein age, PTSD-PRS, PTE,
CSA, and income were expected to influence PTSD symptoms over
time. We also specified the interaction between age and all other
predictors to allow the variables to show time-varying effects. PTE,
PTSD-PRS, and income were z-scored before fitting the model. For
individual i at time t, the model tested was PTSDit � Ageit + PRSi+
CSAi + PTEit + Incomei + PRSi × Ageit + CSAi × Ageit+PTEit ×
Ageit + Incomei × Ageit. Model terms were significant if the
p-value from the two-sided significance test H0: β � 0 was less
than 0.05. We fit this model using three methods—LMM, GEE,
and naïve regression adjusted with CRSEs.

The LMM was fit using lme4 and lmerTest (Bates et al., 2015;
Kuznetsova et al., 2017). Prior to fitting, we tested unconditional
means and unconditional growth models to determine whether
the LMM should contain random intercepts and/or slopes. The
unconditional growth model failed to converge; this did not improve
when the lme4 optimizer algorithm was changed. Thus, we only
specified a random intercept. We fit the GEE using geepack and
specified an “exchangeable” working correlation structure (Halekoh
et al., 2006). CRSEs were applied with lmtest and the cluster-robust

variance correction from the sandwich package (Zeileis and
Hothorn, 2002; Zeileis, 2004; Zeileis, 2006; Zeileis et al., 2020).
CRSEs used the default degrees of freedom and the HC1 correction.

Lastly, we averaged the select variables across all time points and
fit an AGGmodel; as CSA, PRS, and income were constant over time,
only PTSD symptoms and PTE had to be averaged. As the prior
methods all fit models specifying development over time (age and its
interactions), the AGG model served to compare how removing
possible change-over-time from the data affects results. Likewise,
we used complete data across all three time points. The average
PTE, PTSD-PRS, and income were z-scored. The AGG model fit was
PTSDi � PRSi + CSAi + PTEi + Incomei. Model terms were
significant if p < 0.05 in a two-sided significance test (H0: β � 0).
The AGG model used the R stats general linear model function.

This application of LMMs, GEEs, CRSEs, and AGG to a natural
dataset is intended to demonstrate how the method choice affects
the interpretation of results and potentially any follow-up analyses
based on the findings. We did not use a multiple test correction
because the aim was to compare changes in output and because
the models were inherently non-independent as they were fit using
the same data and most or all of the same variables. We caution
against using the results from this application to make strong
claims about genetic/environmental influences on PTSD
development, especially since models including CSA and PTE
may need to include other potential environmental and
psychosocial confounders (Keane et al., 2006; Qi et al., 2016;
Shalev et al., 2017).

FIGURE 10
Estimation in simulations without an X × Time interaction. The x-axis indicates the median estimate difference. The y-axis indicates the MAD; the
y-axis range varies by panel. Point color and shape represent the effect size (β) and the number of clusters, respectively. The dashed vertical and horizontal
lines indicate a median and MAD of zero, respectively. Panel columns denote simulation linearity and the method. Panel rows correspond to predictor
time-variance and effect size (β). NLR, naïve linear regression; CRSE, cluster-robust standard error; AGG, aggregate regression; LMM, linear mixed
model; LMM+Int, overparameterized LMM with an X × Time interaction.
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3 Results

3.1 NLR or CRSE had the highest power to
detect the effect of X in simulated data with
time-varying effects

We simulated longitudinal datasets where the response
trajectory was dependent on X, Time, and the interaction
X × Time. This represents data where the predictor of interest,

X, affects the change of phenotype Y over time via the X × Time
effect. In such a case, methods that ignore the effects of Time or
X × Timemay produce improper results. We tested the NLR, CRSE,
AGG, FE, LMM, and GEE approaches on these data. The NLR,
CRSE, and AGG approaches all disregarded Time and X × Time as
terms in the model. The remaining methods modeled the three
response-generating predictors X, Time, and X × Time.

Out of all the methods, the NLR usually had the highest power
to detect the effect of X, while LMM and GEE had the lowest

FIGURE 11
Power (A) and false positive rates (FPRs) (B) in simulations with correctly specified CRSE model. The x-axis number of clusters. The y-axis indicates
(A) power or (B) FPR. On power plots, the shaded region is where power reaches or exceeds 80%. The shaded region on FPR plots is Bradley’s liberal FPR
region from 2.5% – 7.5%. The panel columns correspond to the simulation’s linearity and the intraclass correlation coefficient (ICC). The panel rows
correspond to the predictor’s time-variance and, on power plots only, the effect size (β). Line color and type denote method and variable,
respectively. NLR=naïve linear regression, CRSE=cluster-robust standard error, LMM= linear mixed model.
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(Figures 1, 2). However, the relative performance of methods
regarding the power to detect X depended on (1) whether X was
time-invariant (fixed across time) or time-variant (varying
across time); (2) the strength of dependency, as defined by
the ICC; and (3) if the predictor–response relationship was
parabolic. When the predictor X was time-invariant, then
NLR had the highest power. The CRSE and AGG were
equivalent regarding power but had less power than NLR.
The lowest power was that of LMM and GEE, which also had
power comparable to each other. The FE model did not have a
set performance rank; its power solely depended on the ICC, and
in simulations where ICC = 0.9, it sometimes achieved the
highest power of all the methods, surpassing even NLR. In
simulations with a time-variant X, NLR and CRSE had the
highest power of all the methods. AGG had the second highest
power. The FE, LMM, and GEE approaches had, equivalently,
the lowest power. An exception to these trends in power
occurred in simulations with a standard normal X and
parabolic predictor–response relationship (Figure 2). In time-
invariant simulations, the power ranking was (1) NLR or FE, (2)
AGG, and (3) LMM, GEE, and CRSE. In time-variant
simulations, NLR had the highest power, followed by the
LMM and FE, and then the AGG, GEE, and CRSE
approaches. A notable feature of each method was their
sensitivity to the ICC. The AGG, FE, LMM, and GEE all
displayed consistent trends between power and the ICC. The
power of the AGG model decreased as the ICC increased. In
contrast, FE, LMM, and GEE gained power with the increase in

the ICC. The CRSE power decreased with the ICC in time-
invariant simulations, where its power trajectory was identical
to that of AGG. However, there was no trend between CRSE
power and the ICC in time-variant simulations.

3.2 FE, LMM, and GEE had comparable
power to detect effects of Time and X × Time
in simulated data with time-varying effects

In the simulated longitudinal datasets, where the response
trajectory was dependent on X, Time, and the interaction
X × Time, only the LMM, GEE, and FE explicitly modeled
Time and an X × Time interaction. Their power to detect the
effects of Time or X × Time was largely identical (Figures 3, 4),
except in parabolic simulations with a standard normal predictor,
where a large performance difference emerged (Figure 4). The
other deviations from their comparable performance were as
follows: (1) FE had slightly less power than the LMM and GEE in
time-variant simulations with low ICCs and (2) GEE was the
slowest to reach 100% power in exponential simulations.
However, in parabolic simulations with a standard normal X,
the power to detect the effect of X × Time differed between the
FE, LMM, and GEE (Figure 4). The LMM and FE had the highest
and equivalent power, whereas the GEE power remained around
10% for all simulations. Each method exhibited a positive
association between the power to detect Time or X × Time
and the ICC.

FIGURE 12
Estimation in (A) linear or (B) exponential simulations with a correctly specified CRSEmodel. The x-axis indicates median estimate difference. The y-
axis indicatesmedian absolute deviation (MAD); the y-axis range varies by panel. Point color and shape represent effect size (β) and the number of clusters,
respectively. For the exponential simulation (B), the effect size of 0.3 is excluded. Point shape is the number of clusters. The dashed vertical and horizontal
lines indicate amedian or MAD of zero, respectively. Panel columns denote the simulation linearity and intraclass correlation coefficient (ICC). Panel
rows correspond to the variable and method. NLR=naïve linear regression, CRSE=cluster-robust standard error, LMM= linear mixed model
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3.3 NLR and AGG always had a biased
estimation of X in simulated data with time-
varying effects

While power determines whether a true signal can be
discovered by a method, estimation accuracy and precision
reveal whether the reported magnitude of the signal is reliable.
Overestimation or underestimation of an effect can portray an
unrealistic relationship between the predictor and phenotype.
We calculated the difference between each estimated and true
effect. A positive difference indicated that the estimated β was
greater than the actual β, and the effect was overestimated. The
reverse was true if the difference was negative. From this
distribution of estimate differences, we obtained the median
difference and calculated the MAD of the differences to
compare the method accuracy and precision, respectively. As
the NLR and CRSE had the same coefficient estimates, only NLR
results are reported.

In data with time-varying effects, where the response
trajectory is partly determined by the effect of X × Time,
longitudinal methods that ignore the effects of Time and
X × Time may produce biased coefficient estimates. Estimate

bias only occurred if the true effect was non-null, and bias
worsened as the effect size increased (Figures 5, 6;
Supplementary Figures S2, S3). We found that when the NLR
and AGG were fit without modeling Time and X × Time, they
routinely overestimated the effect of X to about the same degree
(Figures 5, 6; Supplementary Figures S2, S3). Neither did the FE,
LMM, and GEE produce biased estimates in simulations with a
linear predictor–response relationship (Figure 5A; Supplementary
Figure S2A), nor did any methods exhibit bias if the simulated data
had a normally distributed X and a parabolic predictor–response
relationship (Figure 6B). However, all methods were biased in the
remaining exponential or parabolic simulations, with the NLR and
AGG having larger bias than the FE, LMM, and GEE (Figures 5B,
6B; Supplementary Figures S2B, S3). The NLR, LMM, and GEE
had the greatest estimate precision (the lowest MAD). In time-
invariant simulations, FE was least precise, having the highest
MAD. The AGG method had the highest MAD in time-variant
simulations. The LMM and GEE always had a negative association
between the MAD and ICC; as the ICC increased, their estimation
precision improved. This negative association between the
MAD and ICC was only exhibited by FE in time-variant
simulations.

TABLE 3 Results of models applied to the African-ancestry or European-ancestry participants.

Term Estimate p-value

LMM GEE CRSE AGG LMM GEE CRSE AGG

African-ancestry models

Age 0.593 0.775 0.593 0.006** 0.135 0.005**

PRS 1.139 1.12 0.67 0.41 0.619 0.59 0.744 0.152

CSA 5.495 5.433 3.895 2.498 0.26 0.302 0.471 1.07 × 10−4**

PTE 2.882 2.905 3.69 1.558 0.164 0.21 0.138 1.33 × 10−6**

Income 3.077 3.042 2.181 0.545 0.239 0.229 0.401 0.077

PRS × age −0.043 −0.042 −0.013 0.768 0.762 0.926

CSA × age −0.186 −0.182 −0.089 0.549 0.599 0.803

PTE × age −0.078 −0.079 −0.12 0.562 0.613 0.474

Income × age −0.163 −0.16 −0.105 0.321 0.331 0.535

European-ancestry models

Age 0.314 0.286 0.516 0.069 0.579 0.007**

PRS 4.401 4.382 3.8 0.178 0.049* 0.031* 0.101 0.536

CSA 2.444 2.481 4.52 2.075 0.656 0.666 0.524 0.007**

PTE −1.941 −1.887 0.826 2.002 0.375 0.526 0.753 3.55 × 10−8**

Income 0.115 0.171 2.274 0.095 0.962 0.939 0.386 0.771

PRS × age −0.282 −0.281 −0.242 0.056 0.038* 0.116

CSA × age 0.037 0.034 −0.124 0.917 0.929 0.791

PTE × age 0.207 0.204 0.057 0.147 0.283 0.739

Income × age −0.027 −0.03 −0.161 0.867 0.834 0.346

LMM, linear mixed model; GEE, generalized estimating equation; AGG, aggregate regression; CRSE, cluster-robust standard error; PRS, polygenic risk score; CSA, child sexual abuse; PTE,

potentially traumatic event. *p < 0.05 and **p < 0.01.

Frontiers in Genetics frontiersin.org16

Passero et al. 10.3389/fgene.2024.1203577

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1203577


3.4 FE, LMM, and GEE only had a biased
estimation of Time and X × Time in nonlinear
simulated data with time-varying effects

To estimate true time-varying effects, the terms Time and
X × Time must be fit by the applied model. In our simulated
datasets with time-varying effects, the methods that modeled
effects were the FE, LMM, and GEE. They had almost identical
values and trends of the median estimate difference and MAD for
Time (Figure 7; Supplementary Figures S4, S5) and X × Time
(Supplementary Figures S6–S8) effects. In linear simulations, they
produced unbiased estimates of Time and X × Time, but their
estimation was inaccurate if the predictor–response relationship
was exponential or parabolic. Each had a MAD that decreased as the
ICC increased, showing improvements in the estimate precision as
the strength of dependency increased.

3.5 If X was time-invariant, NLR and FE had
inflated FPRs in simulated data with time-
varying effects

The FPR was considered maintained if it lay within Bradley’s
liberal range of 2.5%–7.5% (Bradley, 1978). In time-invariant
simulations, the NLR and FE models had inflated FPRs when
detecting the effect of X; FE had higher inflation than NLR
(Figure 8; Supplementary Figure S9). Their FPR inflation
increased with the ICC. Neither method had elevated FPRs when
the predictor X was time-variant. The GEE and CRSE occasionally
had FPRs above 7.5% when the number of clusters was small (i ≤
100) but not to the degree of the NLR and FE inflation.

3.6 All methods had unbiased estimation of
X in simulated data with no time-
varying effects

In some longitudinal data, the effect of a predictor X does not
affect the change of the phenotype trajectory. This means that X
does not have any time-varying effects, as defined byX × Time, and
that methods that do not explicitly model this interaction may no
longer exhibit estimate bias when estimating X. We generated
longitudinal data without time-varying effects and compared the
NLR, AGG, and CRSE—which modeled the response regressed on
X alone—against a correctly specified LMM (modeling the main
effects of and Time) and an incorrectly specified LMM that
contained an X × Time interaction (LMM+Int).

The power to detect the effect of the predictorXwas not affected
by whether the predictor–response relationship was linear or
exponential (Figure 9A). When the simulated X was time-
invariant, then NLR had the highest power, overparameterized
LMM+Int had the lowest power, and the CRSE, AGG, and LMM
had comparable, intermediate power. However, when X was time-
variant, the LMM had the highest power, CRSE and NLR methods
had intermediate power, and LMM+Int and AGG methods had the
lowest power. Only LMM and LMM+Int explicitly modeled Time,
and they exhibited equal power to detect its effect (Figure 9A). In
time-invariant simulations, the FPR of NLR was inflated to

approximately 20% (Figure 9B). The CRSE had a slightly
increased FPR in time-invariant simulations but did not exceed
the 7.5% upper limit of Bradley’s liberal range. All other methods
controlled the FPR, for both the effect of X and of Time, where
applicable. The LMM+Int approach incorrectly modeled X × Time
but kept the FPR at the nominal rate, regardless of whether X and
Time had a true individual effect. In terms of estimation accuracy,
no method was biased when estimating the effect of X (Figure 10).
However, LMM+Int and AGG models had lower estimate precision
(higher MAD) than NLR, CRSE, and LMM. Both LMM and
LMM+Int had biased estimates of Time and X × Time, if
applicable, in non-null exponential simulations (Figure 10).
LMM+Int had lower precision than LMM when estimating the
effects of Time and X × Time.

3.7 CRSE had no estimate bias if all relevant
predictors were included in the model

CRSEs can be applied atop any regression model as long as the
clustering is two-level and group membership is known. Previously,
our CRSE approach ignored time and was applied to a model with
the form Y � β0 + β1X. Nevertheless, CRSEs can also be applied to
models that do not consider time as “nuisance,” which would no
longer disadvantage it when analyzing data with time-varying
effects. We simulated longitudinal data with time-varying effects
(a trueX × Time interaction) and applied CRSEs to a model fit with
all data-generating terms: Y � β0 + β1X + β2Time + β3X × Time.
The performance of the CRSE was compared to an
underparameterized NLR, which regressed the response only
against X, and a correctly specified LMM.

NLR had higher power to detect X than the CRSE and LMM
(Figure 11A). In time-invariant simulations with a linear
predictor–response relationship, LMM and CRSE power was
comparable. However, in the remaining simulations, LMM power
exceeded that of the CRSE, especially as the ICC increased. The NLR
had an inflated FPR when the predictor was time-invariant, which
increased as the ICC increased (Figure 11B). Neither the CRSE nor
LMM had FPR inflation, although the CRSE had a slightly higher
FPR than the LMM (Figure 11B). In simulations with a linear
predictor–response relationship, only NLR overestimated the
effect of X when there was a true effect (Figure 12A). The LMM
and CRSE were unbiased in their estimation of X, Time, and
X × Time. All methods were biased in exponential simulations,
although NLR had the greatest bias (Figure 12B; Supplementary
Figure S10). The MAD of the three methods was within the same
range (Figure 12). The CRSE and LMM had an almost identical
MAD. The MAD of the LMM showed greater improvement than
that of the CRSE with increasing strength of dependency.

3.8 Results varied among methods applied
to natural data

Among African-ancestry participants, the directions of effects
were consistent for all predictors across methods, but statistical
significance differed (Table 3). The LMM and GEE had the most
similar coefficients. The LMM and CRSE methods found positive
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associations between age and PTSD symptoms (βLMM = 0.593,
pLMM = 0.006; βCRSE = 0.593, pCRSE = 0.005). No terms were
significant in GEE. The AGG model found that exposure to CSA
(βAGG = 2.498, pAGG = 1.07 × 10−4) and average PTE (βAGG = 3.69,
pAGG = 1.33 × 10−6) were both associated with greater average
PTSD symptoms.

Differing directions of effect were observed when comparing the
PTE and CSA × age results in European-ancestry samples, although
the LMM and GEE estimates remained the most similar (Table 3). In
the LMM and GEE, the coefficient for PTEs was negative, whereas
for the CRSE and AGG, it was positive. For the CSA × age
interaction, the LMM and GEE estimated a positive coefficient,
implying that the effect of CSA increases with age, whereas the CRSE
approach found a negative interaction. However, neither the PTE
nor CSA × age was significant in any model. Rather, each approach
found a different subset of statistically significant terms when
applied in European-ancestry participants (Table 3). The LMM
found a significant positive association of PRSs with PTSD
symptoms (βLMM = 4.401, pLMM = 0.049). Both the PRS (βGEE =
4.382, pGEE = 0.031) and PRS × age (βGEE = −0.281, pGEE = 0.038)
were significant in the GEE model. The association between PTSD
symptoms and age was positive when CRSEs were applied (βCRSE =
0.516, pCRSE = 0.007). The AGG method found significant positive
associations between PTSD symptoms and CSA (βAGG = 2.076,
pAGG = 0.007) and PTE (βAGG = 2.002, pAGG = 3.55 × 10−8)
risk factors.

4 Discussion

Longitudinal data provide researchers an avenue to investigate and
understand how risks or buffers impact the development of disease.
However, data with repeated measures on individual samples are
implicitly dependent. This violates the independence assumption of
linear or logistic regression models primarily used in GWASs or PRSs.
Evaluating the effect of genetic and environmental risk factors on a
repeatedly measured phenotype requires a statistical methodology that
accommodates dependency. Many such methods exist, but not all may
be suitable in a given analysis. Therefore, we examined five LDA
methods and compared their performance among each other and to
a naïve estimator. Of these methods, the LMM and GEE are often
recommended for the analysis of dependent data (Gibbons et al., 2010;
Garcia and Marder, 2017; McNeish et al., 2017; Woodard, 2017). We
also considered AGG, CRSE, and FE approaches, which accommodate
dependency, and NLR, which does not. Each method was applied to
simulated longitudinal datasets to compare estimation, power, and FPR.
Methods were further implemented in a cohort of African and
European ancestry examining PTSD symptoms in maltreated
adolescents to show how the method choice impacts the
interpretation of polygenic and environmental risk effects on the
symptom trajectory.

The results from the simulation suggest that three factors are
most crucial to consider when selecting a model for LDA: whether
(1) predictor(s) vary across time; (2) the effect of predictor(s) vary
over time—i.e., interacts with Time; and (3) Time is an important
experimental variable. The results showed that when the predictor
was time-invariant, as expected of genetic risk, NLR or FE was
unviable due to FPR inflation. Although null estimates were

unbiased, the FPR elevation worsened with increasing
dependency within the data (Figure 8). Other methods—CRSE,
AGG, LMM, or GEE—prevented FPR inflation when the
predictor was time-invariant and should, therefore, be preferred.
NLR and FE did not have an inflated FPR when the predictor was
time-variant, and in such a case, the power advantage of NLRmay be
attractive to researchers. However, this depends on whether the
predictor interacted with time—if so, then NLR produced biased
estimates as it could not model the trajectory change over time
(Figure 5A), and if not, then other methods had superior or
comparable power (Figure 9A). Furthermore, this point is likely
moot when analyzing genetic data, which are time-invariant.

When the effect of the predictor varied over time, any method
that did not explicitly model Time—as did NLR, AGG, and usually,
CRSE—produced biased estimates (Figure 5A). When the predictor
and time were independent, these methods were unbiased,
regardless of whether Time was linearly related to the response
(Figure 10). NLR still had an increased FPR when the predictor was
time-invariant, but AGG, CRSE, and a correctly specified LMM had
comparable power without compromising the FPR (Figure 9). If the
predictor was time-variant, then the correctly specified LMM had
superior power. Overparameterizing the LMM with an X × Time
interaction (LMM+Int) did not bias estimates or affect the FPR, but
it did diminish the power to detect the effect of X. If there is an
interaction between the predictorX and Time, then Time cannot be
omitted from the model. If no such interactions exist with the
relevant predictor(s), a researcher could consider Time as
“nuisance” and opt for CRSEs applied to a regression not
modeling Time or use a correctly specified LMM if the effect of
Time is of interest (Figures 9, 10). NLR or AGG was not preferred as
NLR had FPR inflation when the predictor was time-invariant
(Figure 9B), while AGG had greatly reduced power when the
predictor was time-variant (Figure 9A). As the AGG approach
has limitations when modeling time-variant predictors, it may
seem to have applicability in genetic data, which are fixed over
time. AGG could be applied if all covariates are time-invariant, none
have suspected interactions with Time, and the ICC is low to
moderate. If not, the AGG will produce biased estimates or be
underpowered relative to other approaches.

The CRSE approach was initially implemented on a linear
regression that did not model Time. However, CRSEs can be
applied to more complex models that specify Time and time-
varying effects. We found that implementing the CRSE atop a
regression with correctly specified fixed effects eliminated estimation
bias incurred by ignoring time-varying effects (Figure 12A). However,
in this scenario, the CRSE approach still performed less well than the
LMM as the latter received boosts in power and estimate precision as
the ICC increased (Figures 11A, 12A). However, CRSEs could still be a
viable option if the researcher has concerns about specifying proper
random effects in an LMM or if the dependency is low. However, the
CRSE occasionally exceeded Bradley’s liberal range for the FPR when
there were less than 100 clusters (Figure 11B; Supplementary Figure
S9). Despite performing similarly to the LMM, the GEE also showed
this drawback with low cluster numbers (Figure 8; Supplementary
Figure S9). Therefore, we recommend LMMs over these methods if
sample size is of concern. Otherwise, GEEs could be used
interchangeably with LMMs and may be preferred if LMM
assumptions are under question.

Frontiers in Genetics frontiersin.org18

Passero et al. 10.3389/fgene.2024.1203577

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1203577


In simulations with a nonlinear—exponential or
parabolic—predictor–response relationship, all methods tended to
have heightened power but consistent overestimation or
underestimation of true effects. Uniquely, the power of GEE
stagnated or even decreased in nonlinear simulations. Given its
biased estimates, this power loss may counterintuitively benefit
researchers as the inaccurate results of GEE are less likely to
reach statistical significance. The overestimation of true effects
did not bias the FPR upward in nonlinear simulations. However,
researchers should investigate their data prior to analysis to check
the linearity assumption. If nonlinearity is evident, then researchers
should expect exaggerated coefficient estimates, which may
overstate the relationship between risk factors and health outcomes.

We demonstrated how the choice of method impacts the
obtained results by applying four longitudinal analysis methods
to a natural cohort studying the risk of PTSD. We modeled four
predictors and their time-varying effects with LMMs, GEEs, and
CRSEs. In applying the AGG approach, we averaged all time-varying
variables and fit a model that ignored potential PTSD development
over time. Furthermore, our cohort was restricted to individuals
with complete data on PTSD, CSA, PTE, PTSD-PRS, and income
across all three time points. Thus, each method was applied to the
exact same dataset. The LMM, GEE, and CRSE modeled the same
fixed effects on the same data but had discrepancies in their results.
Despite the LMM and GEE having the most similar estimates, each
of these models called a different subset of terms significant across
ancestry groups (Table 3). CRSE results had further estimates from
those resulting from LMM and GEE models but more consistent
statistical significance across ancestral strata. The AGG model,
which regressed the average PTSD symptom count on the
average predictor values, predictably had the most distinct
results. Unlike the other approaches, it found strong significant
effects of CSA and PTE on increased average PTSD
symptoms (Table 3).

If different researchers had independently applied each of these
approaches to our cohort, each would come away with a different
interpretation of the role these risk factors play in PTSD. Had LMMs
been applied, the results would have suggested that age increases PTSD
symptoms among African-ancestry individuals, while the PRS is
implicated among European-ancestry individuals. If GEEs were the
chosen method, then the PRS and PRS × age would have been
implicated in PTSD development only within the European-ancestry
subsample. The application of CRSEs would have shown that both
African-ancestry and European-ancestry participants showed increased
PTSD symptomswith increased age. Lastly, if the researcher had chosen
to average all time-varying variables prior to regression, they would
have determined that more PTEs on average and CSA exposure led to
an increased average PTSD symptom count in both ancestral groups.
We are not in the position to state which model is the most appropriate
as all methods applied to the cohort accommodated for the within-
individual dependency of repeated measures data, and it is unknown
whether the data truly meet the assumptions of each method.
Nevertheless, we showed that the choice of method has downstream
implications as different variables would be highlighted for follow-up
investigations, dependent on the approach utilized. Discrepancies
among results would be attenuated by acquiring a well-powered
sample as our simulations imply that once the sample size, true
effect size, and/or intraclass correlation are high enough, all methods

will reach maximum power. We previously highlighted three issues
researchers should consider when choosing methods: the variability of
predictors across time, if the effects of predictors change over time, and
whether the research question considers time an important factor.
These considerations can guide methodological choices, as can other
observations, such as the poorer FPR of GEEs, in small samples or the
advantage both LMM and GEE show when within-individual
dependency is very high.

Our simulation could not cover all possible data-generating
scenarios. We adopted a simple two-level structure consisting of a
cluster-level random intercept to simulate dependence and individual
residual error. By doing so, our data-generating model met the
assumptions of a random intercept LMM. Most of the LMMs we
tested in the simulation study matched the data-generating model
perfectly, and therefore, the good performance of the LMM across
simulations was expected. The results from our simulation suggest that
the LMM approach is the most robust method as it controlled the FPR
and estimate bias across all samples sizes and had improved precision
with increasing ICC values. However, we emphasize that our
conclusions only pertain to situations where the data exhibit the
random-effects structure assumed by the LMM. A major critique
against LMM is that the assumptions it makes regarding random
effects may not be met in natural data, which could bias results
(McNeish et al., 2017). While we tested an LMM with incorrect
fixed effects (Figures 9, 10), and the nonlinear simulations violated
assumptions of linearity of all methods, we never looked at the
performance of a LMM with incorrectly specified random effects.
Furthermore, one expectation of longitudinal data is that
measurements are more correlated with temporally close
measurements than with those taken at distant time points
(Gibbons et al., 2010; Garcia and Marder, 2017). Our simulated data
did not reflect this as the data points were equally correlated across
various time points (and our LMMandGEEmodels, implementedwith
a random intercept and “exchangeable” working correlation structure,
reflected the dependence structure of the simulated data). However, it
would be of benefit to researchers to understand how incorrectly
specifying the within-group correlation structure biases results. Both
the LMM and GEE can be implemented with various within-group
correlation structures, andGEE is reportedly robust tomisspecifications
of its working correlation matrix (Garcia and Marder, 2017). The
simulated data also did not reflect the attrition that occurs in
longitudinal studies, which would result in unbalanced repeated
measures. Future simulation studies could focus on simulating more
“realistic” longitudinal data and examine how the misspecification of
LMM and GEE models affects analysis.

A limitation of the application to our natural cohort is that the
GWAS summary statistics used to compute the PRS in African-
ancestry participants had a smaller sample size (~15,000) than that
used for the European-ancestry PRS (~175,000). The African-
ancestry PRS is underpowered relative to the European-ancestry
PRS, so the lack of significant findings for the PTSD-PRS in any
method applied to African-ancestry participants may be due to this
technical limitation. We also reiterate that the results found in our
cohort, relating the PRS, PTE, CSA, and income to PTSD symptoms,
are intended to showcase the variability of results among
longitudinal data analysis methods applied to non-simulated
data. A more thorough investigation of the genetic and
environmental risk factors associated with PTSD development
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would need to consider (1) more psychosocial confounders, (2)
competing models of best fit with regards to time-varying effects,
and (3) alternative summary statistics for the African-ancestry PRS.
However, our findings do suggest that a failure to replicate results
could be due to the fact that various approaches, despite being
adequate methods for the data under study, produce minute
differences in findings. Furthermore, researchers should not fit
multiple methods to their data and then choose the one with the
most significant results or which validates their hypotheses.

By demonstrating model behavior under different simulated
scenarios, we showed where serious issues such as FPR inflation or
inaccurate estimations are likely to occur. If researchers observe
features in their data that cause such drawbacks, they can choose a
method that alleviates them. Our simulations evaluated method
performance in multiple situations, including the analysis of a time-
invariant predictor, which is standard for genetics. Therefore, these
results can be directly applied to studies investigating the
longitudinal effects of PRSs. We also showed discrepancies
between results in natural data to highlight the practical impacts
of the method choice on result interpretation. Longitudinal analyses
are an important tool for genetic epidemiology as they provide
methods to investigate how genetics play a role in the development
or prognosis of diseases and disorders. However, to take advantage
of these methods requires a clear understanding of the available
methodology. Our findings can be utilized to develop experimental
designs and select the optimum model with regard to accuracy,
precision, power, and FPR. With this article, we provide a tool to
researchers to further the goal of determining the genetic and
nongenetic underpinnings of how complex diseases
develop. Applying the appropriate LDA approach will foster
reliable analyses that identify the risk factors contributing to the
progression of diseases and disorders.
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