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Background: In recent years, microRNAs (miRNAs) have emerged as key players
in the pathophysiology of multiple diseases including Alzheimer’s disease (AD).
Messenger RNA (mRNA) targeting for regulation of gene expression by miRNAs
has been implicated in the annotation of disease pathophysiology as well as in the
explication of their starring role in contemporary therapeutic interventions. One
such miRNA is miR-153 which mediates the survival of cortical neurons and
inhibits plaque formation. However, the core mRNA targets of miR-153 have not
been fully illustrated.

Objective: The present study aimed to elucidate the potential involvement of
miR-153 in AD pathogenesis and to reveal its downstream targets.

Methods: miRanda was used to identify AD-associated targets of miR-153.
TargetScan, PicTar, miRmap, and miRDB were further used to validate these
targets. STRING 12 was employed to assess the protein-protein interaction
network while Gene ontology (GO) analysis was carried out to identify the
molecular functions exhibited by these gene targets.

Results: In silico analysis using miRanda predicted five important AD-related
targets of miR-153, including APP, SORL1, PICALM, USF1, and PSEN1. All five
target genes are negatively regulated by miR-153 and are substantially involved in
AD pathogenesis. A protein interaction network using STRING 12 uncovered
30 potential interacting partners for SORL1, PICALM, and USF1. GO analysis
revealed that miR-153 target genes play a critical role in neuronal survival,
differentiation, exon guidance, amyloid precursor protein processing, and
synapse formation.

Conclusion: These findings unravel the potential role of miR-153 in the
pathogenesis of AD and provide the basis for forthcoming experimental studies.

KEYWORDS

amyloid precursor protein, neurodegeneration, MicroRNAs, Alzheimer’s disease,
miR-153

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the
formation of neurofibrillary tangles (NFTs) and Amyloid-beta (Aβ) plaques in sub-
cortical brain regions that eventually lead to cognitive impairment (Amber et al., 2020).
Various genetic, epigenetic, and environmental factors contribute to the development of AD
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therefore the identification of informative biomarkers remained a
significant challenge. Since the last decade, epigenetic mechanisms
gained widespread prominence as the regulators of various
important biological processes, and central to these processes are
microribonucleic acids (miRNAs) (Filipowicz et al., 2008). miRNAs
belong to the class of small non-coding RNAs that modulate gene
expression post-transcriptionally either by target mRNA
degradation or translational inhibition (Pu et al., 2019). miRNA:
mRNA duplex formation necessitates the complementarity between
eight nucleotide seed regions within both sequences. The duplex is
either directed toward polyribosomes to regulate the mRNA
translational process or targeted to the P-bodies for storage/
degradation (Filipowicz et al., 2008). miRNAs are known to
control the expression of almost 60% of protein-coding genes,
therefore, these are considered important biomarkers for early
diagnosis of various disorders. Their potential as potent
biomarkers can be derived from unique secretory properties as
they regulate the expression of multiple genes in various cell
types without cell-to-cell contact (Schwarzenbach et al., 2014).
Apart from their presence in tissues, miRNAs are also secreted in
extracellular fluids, blood plasma, and saliva and therefore can serve
as potential non-invasive markers for disease diagnosis (François
et al., 2019). The preliminary evidence about the involvement of
miRNAs in human diseases originated from cancer studies. Various
expression profiling studies revealed the abnormal expression of
different miRNAs in cancer samples as compared to the control
(Calin et al., 2002).

The miRNAs that were consistently found to be deregulated
in AD include; miR-9, miR-29, miR-34, miR-107, miR-181, miR-
186, miR-146a, miR-155 and miR-153 (Femminella et al., 2015).
The miR-153 is implicated in various diseases such as
hypertension, osteosarcoma, glioblastoma, and various other
cancers. miR-153 contributes toward the hypertensive state via
the downregulation of KCNQ4 (Carr et al., 2016). An increase in
miR-153 expression elevated neurogenesis and improved
cognition (Qiao et al., 2020). Moreover, a significant reduction
in the expression levels of miR-153 is also observed in early,
moderate, and severe AD cases as compared to age-matched
control specimens. Additionally, an inverse correlation was
observed between miR-153 and Aβ plaque burden making it a
potential disease biomarker and novel drug target (Long et al.,
2012). Ectopic expression of miR-153-3p induced inflammation
by increasing the release of IL-1β, TNF-α, and IL-6 and decreased
neural stem cell differentiation via regulating GPR55 expression
(Dong et al., 2023). Increased expression of miR-153 disrupted
synapsin 1 in the hippocampus and impaired glutamatergic
vesicle transport thus causing chronic cerebral hypoperfusion
in rats (Zhang et al., 2020).

Due to the substantial role of miR-153 in neuronal disorders
including AD, it is vital to identify the molecular targets associated
with this very same miRNA to elucidate the underlying mechanisms
leading to the disease phenotype. The data regarding the regulatory
and therapeutic role of miRNAs is scarce due to the limitations of
current experimental procedures (Jaberi et al., 2024). Owing to the
significance of miRNAs in disease-related processes the pace of
miRNA target prediction needs to be improved. Various in silico
algorithms are available to reveal the molecular targets of a large
proportion of miRNAs with relative sensitivity and specificity

(Hamzeiy et al., 2014). Therefore, this study aimed to investigate
the important AD-related mRNA targets of miR-153 to improve the
current understanding of disease at the molecular level. AD-
associated mRNA targets of miR-153 are identified via the
miRanda algorithm and results are cross-validated by four other
publicly available algorithms, TargetScan, PicTar, miRmap,
and miRDB.

2 Methods

2.1 Targets prediction of miR-153

Web-based bioinformatic algorithm miRanda (Oliveira et al.,
2017) was assessed to predict the mRNA targets of miR-153 and the
mirSVR scores were assigned to each predicted target site. The
sequence of miR-153 is available in the NCBI database
(>LM608503.1 TPA: Homo sapiens microRNA hsa-mir-
153precursor CTCACAGCTGCCAGTGTCATTTTTGTGATC
TGCAGCTAGTATTCTCACTCCAGTTGCATAGTCACAAAAG
TGATCATTGGCAGGTGTGGC).

The miRanda algorithm is developed for the prediction of
mRNA targets and expression profiles of miRNAs available at
MicroRNA.org (http://www.microrna.org); while mirSVR score is
a regression model that reveals contextual features and sequence of
the predicted miRNA:mRNA duplex and is directly correlated to the
downregulation of miRNA and target sites of interest.Homo sapiens
was selected as a species of choice and all the search was performed
using default parameters (MFE threshold: −20 kcal/mol, scaling
parameter: 4·00, score threshold: 140.00, gap open and extend
penalty: −4·000 and −9.000 respectively).

2.2 Validation of results by different
algorithms

The mRNA targets obtained from miRanda were further
validated by four other publicly available algorithms,
i.e., TargetScan, PicTar, miRDB, and MiRmap. In the TargetScan
database, (Release 8, http://www.targetscan.org/), humans were
selected as the species of choice. Furthermore, there were two
options to find the target, i.e., by entering the gene name or
miRNA name. The miRNA-153 was entered as a query and it
gave two options such as miR-153–3p and miR-153–5p. Both
options were explored for the target genes (Huang et al., 2020).

In the PicTar database, “PicTar target prediction in
vertebrates” was selected. Following that, vertebrates was
chosen as a species and then, miR-153 was selected from the
dropdown menu. (http://pictar.mdc-berlin.de/) (Xue et al.,
2020). In miRmap, human was selected as a species and then
miR-153 was selected from the dropdown menu (https://mirmap.
ezlab.org/) (Vejnar and Zdobnov, 2012).

In miRDB, humans were selected as the species of choice.
Furthermore, there were two options to find the target, i.e., by
entering the gene name or miRNA name. The miRNA-153 was
entered as a query and it gave two selections such as miR-153–3p
and miR-153–5p. Both options were explored for the target genes
(http://mirdb.org/miRDB/) (Wong and Wang, 2015).
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2.3 Protein association, functional
enrichment, and post-translational
modification analysis

Targets predicted by miRanda were submitted to STRING v.12
(Szklarczyk et al., 2017) (http://string-db.org/) database to explore
the functional association networks of target proteins using UniProt
accession numbers. Homo sapiens was selected from the given list of
species. Biological processes, cellular localization, molecular
functions, and miRNA targets of the specific miR-153 affected
proteins were investigated by GO analysis and microRNA target
analysis using the WEB-based Gene SeTAnaLysis Toolkit
(WEBGESTALT) (Wang et al., 2017). Swiss-Prot accession
numbers of miR-153 target proteins were employed for
enrichment analysis.

The phosphorylation modification sites were predicted for the
identified target proteins, using NetPhos 3.1 server (www.cbs.dtu.
dk/services/NetPhos-3.1) (Arshad et al., 2018) while S-nitrosylation,
and N and O glycosylation sites were predicted using GPS-SNO
http://sno.biocuckoo.org (Mazina et al., 2023), NetNGlyc 1.0 www.
cbs.dtu.dk/services/NetNGlyc/(Azevedo et al., 2018), and NetOGlyc
4.0 www.cbs.dtu.dk/services/NetOGlyc/(Kwan et al., 2021),
respectively. Default settings were used for the analysis of
posttranslational modification (PTM) sites and the predictions
having output scores above 0.5 were only selected to avoid the
possibility of false positive results. The FASTA sequence of the
targeted proteins was acquired from the NCBI protein database
(https://www.ncbi.nlm.nih.gov/pubmed/).

3 Results

3.1 Targets prediction of miR-153

miRanda algorithm returned 5,810 targets for miR-153 which
were further screened to identify the targets involved in AD
pathophysiology using a literature search. Five of the
5,810 targets found to be most relevant with AD include;
sortilin-related receptor 1 (SORL1), amyloid precursor protein
(APP), phosphatidylinositol binding clathrin assembly protein
(PICALM), upstream stimulatory factor 1 (USF1) and presenilin-
1 (PSEN1). miSVR scores indicated that miR-153 downregulates all
the target genes. The results were cross-validated by four different
freely accessible software TargetScan, PicTar, miRmap, and miRDB.
It is observed that all five targets were not predicted by all the
software (Table 1). APP and PSEN1 are already reported to be

affected by miR-153 so we used SORL1, PICALM, and USF1 for
further analysis.

3.2 Protein association network and
functional analysis

STRING 12 analysis exhibited a strong association (score >0.7)
of miR-153 target proteins with various other proteins,
i.e., SORL1 exhibited strong interaction with GGA1, GGA2,
APOE, ABCA7, CLU, APP, VPS35, VPS26A, LRPAP1, and NTS;
PICALM is strongly associated with CLINT1, AP2A1, EPS15,
RPS27A, CLTC, EPN2, EPN3, UBA52, UBB and UBC. Similarly,
USF1 also showed significant interaction with ten different proteins
such as SP1, ESR1, SMARCD3, EP300, FOSL1, USF2, MED1, RFX5,
TAF7, and GTF2I (Figure 1). The functions and complete names of
all the interacting partners are listed in Table 2.

3.3 Functional enrichment and plausible port
translational modifications analysis

The identified miR-153 target proteins were functionally
annotated using WEBGESTALT and Uniprot (www.uniprot.org/).
Target proteins were classified based on molecular function,
biological process, and cellular localization (Table 3). All three
proteins are actively involved in different biological processes.
SORL1 is a neuronal apolipoprotein E receptor and its gene is
predominantly expressed in the central nervous system (CNS) and is
involved in beta-amyloid binding, vesicle-mediated transport,
cholesterol metabolic process, negative regulation of
neurogenesis, and various other important cellular pathways.
PICALM plays an important role in clathrin-mediated
endocytosis, vesicle-mediated transport, axonogenesis, neuron
projection development, neuronal differentiation, dendrite
development, and many other different processes. USF1 acts as a
transcription factor and belongs to the basic helix-loop-helix leucine
zipper family which is known to regulate the macromolecule
metabolic process, cellular metabolic process, coagulation,
hypoxia, glucose homeostasis, fibrinolysis, and nutrient levels.

A total of 49 serine, tyrosine, and threonine sites were predicted
as plausible phosphorylation sites for USF1, 29 for PICALM, and
368 sites for SORL1. The S-nitrosylation prediction analysis revealed
2 cysteine residue sites at positions 229 and 248 for USF1, while
3 and 4 sites were predicted for PICALM and SORL1, respectively.
The cysteine modifications for PICALM were predicted at positions

TABLE 1 miR-153 targets and their miSVR scores predicted by miRanda and validated by different software.

Sr No. miR-153 targets miSVR score Algorithms

1 APP −1.2559 miRanda, Target Scan, PicTar, miRmap

2 SORL1 −0.6425 miRanda, Target Scan, MIRDB, miRmap

3 PICALM −0.1180 miRanda, Target Scan, miRmap

4 USF1 −0.2466 miRanda, PITA, miRmap

5 PSEN1 −0.1895 miRanda, miRmap
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27, 48, and 230 whereas positions 942, 1,042, 1,502, and 1,593 of
SORL1 are susceptible to cysteine modifications. The N and O
glycosylation analysis for the target proteins also showed significant
susceptibility for these PTMs. A total of 6 sites were predicted as
plausible sites for N-glycosylation in the PICALM sequence at
positions 69, 105, 384, 445, 505, and 513. The O-glycosylation
was also predicted for 58 sites of PICALM For USF1, 43 sites
were predicted for O-glycosylation while no plausible sites were
identified for N-glycosylation. The SORL1 has 28 predicted sites for
N-glycosylation while 314 sites were found to be susceptible to
O-glycosylation (Supplementary Data).

4 Discussion

By regulating the expression of target genes, miRNAs mediate
various biological processes. Different miRNAs are reported to
associate with AD, however, miR-153 plays a crucial role in
regulating the expression of amyloid precursor protein (APP).
Its expression is significantly downregulated in early and late-stage
AD as observed in the APPswe/PSΔE9 murine model (Liang et al.,
2012). SNHG1-mediated suppression of miR-153 increases
neurotoxicity in SH-SY5Y cells (Zhao et al., 2020). Inversely,
increased expression of miR-153 protects the neurons from
cellular death via the upregulation of PRX5 (Xu et al., 2019).
Similarly, miR-153–3p reduces LPS-induced neuroinflammation
and subsequently cell death by inhibiting the NF-κB signaling
pathway (Choi et al., 2022).

miR-153 obstructs APP production in neurons therefore its
deregulation may drive over-expression of APP and subsequently
leads to AD progression. Apart from APP miR-153 also reduced the
expression of APLP2, an (APP homolog), in human fetal brain
cultures therefore, it was hypothesized that it may target some of the
other critical genes linked to neurodegeneration and AD
development (Long et al., 2012). In this study, five main culprits
of AD pathogenesis were found to be negatively regulated by miR-
153 that include; APP, SORL1, PICALM, USF1, and PSEN1. The

relationship between miR-153 and APP expression is well
established while PSEN1 is predicted by just one algorithm hence
we primarily focused on SORL1, PICALM, and USF1.

Apart from the direct role of these genes in AD, the complex
interaction with various important disease-promoting/alleviating
entities is revealed by the STRING database. The interaction
network exhibits that complex multi-dimensional regulation takes
place between key AD players, such as APP, SORL1, PICALM,
USF1, PSEN1, and other disease-causing agents. The predicted
genes/proteins are significant to neuroprotection, synapse
formation, memory and learning, intellectual abilities, and
neurodegeneration (Chandrasekaran and Bonchev, 2016).
Neuronal sortilin receptor-related gene (SORL1) mediates the
intracellular trafficking of APP and dysregulation of the
particular process leads to Aβ accumulation and subsequently
neuronal apoptosis. The exact underlying mechanisms
determining the influence of SORL1 on APP trafficking and
export are not explicitly studied therefore opening new avenues
to investigate AD from a different perspective (Lee et al., 2008).
SORL1 exhibited strong interaction with various proteins, such as
GGA1, GGA2, APOE, ABCA7, CLU, APP, VPS35, VPS26A,
LRPAP1, and NTS. Apolipoprotein E (APOE) modulates lipid
metabolism and is implicated in AD pathogenesis. Lower levels
of APOE are linked with a decline in cognitive abilities. Genetic
variations in the APOE region alter the plasma expression levels of
this gene and increase the risk for AD (Aslam et al., 2023). APOE
ε4 allele leads to poor cognitive abilities and increased amyloid beta
burden in the brain. Moreover, it alters the microglial immune
response by downregulating innate immunity (lysosomal and
complement pathways) and inducing stress-like responses (Liu
et al., 2023). Apolipoproteins mediate cholesterol metabolism
mainly via ABCA1 (ATP-binding cassette transporter A1) (Chen
et al., 2013). ABCA1 is widely present in neurons and astrocytes and
maintains cholesterol homeostasis in the brain. A recent study
reported that amyloid beta-mediated dysfunctional ABCA1 in
astrocytes altered the transport of cholesterol from astrocytes to
the neurons. It subsequently led to impairment of cholesterol

FIGURE 1
Functional association network ofmiR-153 target proteins. High-confidence protein-protein interaction network of identified proteins derived from
the STRING database. Each protein is represented as a node with edged interactions.
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TABLE 2 Functional association of SORL1, PICALM, and USF1 along with interacting partner derived from the STRING database.

Protein Interacting partner Function Score

SORL1 APOE (Apolipoprotein E) A protein associated with lipid particles, that mainly functions
in lipoprotein-mediated lipid transport between organs via the
plasma and interstitial fluids

0.997

ABCA7 (Phospholipid-transporting ATPase ABCA7) Catalyzes the translocation of specific phospholipids from the
cytoplasmic to the extracellular/lumenal leaflet of membrane
coupled to the hydrolysis of ATP

0.841

APP (Amyloid precursor protein) Functions as a cell surface receptor and performs physiological
functions on the surface of neurons relevant to neurite growth,
neuronal adhesion, and axonogenesis

0.999

GGA1 (Golgi-associated, gamma adaptin ear containing, ARF
binding protein 1)

Plays a role in protein sorting and trafficking between the trans-
Golgi network (TGN) and endosomes

0.986

GGA2 (ADP-ribosylation factor-binding protein GGA2) Mediates the ARF-dependent recruitment of clathrin to the
TGN and binds ubiquitinated proteins and membrane cargo
molecules with a cytosolic acidic cluster-dileucine (DXXLL)
motif

0.951

VPS26A (Vacuolar protein sorting 26 homolog A) Acts as a component of the retromer cargo-selective
complex (CSC)

0.946

VPS35 (Vacuolar protein sorting 35 homologs) Acts as a component of the retromer cargo-selective complex
(CSC). The CSC prevents the mis-sorting of selected
transmembrane cargo proteins into the lysosomal degradation
pathway

0.877

CLU (Clusterin alpha chain; [Isoform 1]) Functions as an extracellular chaperone that prevents
aggregation of non-native proteins

0.862

LRPAP1 (low-density lipoprotein receptor-related protein
associated protein 1)

Molecular chaperone for LDL receptor-related proteins that
may regulate their ligand binding activity along the secretory
pathway

0.911

NTS (Neurotensin/neuromedin N) Neurotensin may play an endocrine or paracrine role in the
regulation of fat metabolism

0.852

PICALM CLINT1 (Clathrin interactor 1) May have a role in transport via clathrin-coated vesicles from
the trans-Golgi network to endosomes

0.982

RPS27A (biquitin-40S ribosomal protein S27a) It exists in independent form or is attached to other proteins to
modify their functions

0.949

EPN2 (Epsin-2) Plays a role in the formation of clathrin-coated invaginations
and endocytosis

0.947

CTLC (clathrin, heavy chain 1) Clathrin is the major protein of the polyhedral coat of coated
pits and vesicles

0.971

EPN3 (Epsin-3) Mediates apoptosis 0.944

AP2A1 (Adaptor-related protein complex 2, alpha 1 subunit) Adaptor protein complexes function in protein transport via
transport vesicles in different membrane traffic pathways

0.947

UBA52 (biquitin-60S ribosomal protein L40) It is a component of 60S ribosomal subunit 0.947

UBB (Polyubiquitin-B) It exists in independent form or is attached to other proteins to
modify their functions

0.950

UBC (Ubiquitin C) It exists in independent form or is attached to other proteins to
modify their functions

0.949

EPS15 (Epidermal growth factor receptor pathway substrate 15) Involved in cell growth regulation 0.946

USF1 SP1 (Transcription factor Sp1) It can activate or repress transcription in response to
physiological and pathological signals

0.901

ESR1 (estrogen receptor 1) Involved in the regulation of eukaryotic gene expression and
affect cellular proliferation and differentiation in target tissues

0.796

SMARCD3 (SWI/SNF-related matrix-associated actin-
dependent regulator of chromatin subfamily D member 3)

Stimulates nuclear receptor mediated transcription 0.819

(Continued on following page)
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metabolism, a prominent feature of AD pathogenesis (Azizidoost
et al., 2022). Clusterin (CLU) plays a protective role in the brain
however, mutations in CLU increase the risk of developing AD. The
rs11136000C mutation in CLU causes dysregulation in GABAergic
signaling thus promoting AD pathogenesis (Chen et al., 2023).

Phosphatidylinositol-binding clathrin assembly protein
(PICALM) is associated with clathrin-mediated endocytosis
(Kyriazis et al., 2008). It is predominantly situated in neurons,
oligodendrocytes, astrocytes, and endothelial cells where it
recruits the adaptor protein 2 (AP-2) and clathrin to the plasma
membrane to encapsulate the target proteins (Yao et al., 2003). The

clathrin-coated vesicles are further processed in endosomes or
lysosomes to be removed from the cell. PICALM is also
associated with the removal of Aβ from the cells, therefore,
minimizing the plaque burden and preventing AD pathology.
Altered PICALM expression levels are reported in AD brain
tissues however, it is yet to be determined whether it affects the
Aβ transport or is influenced by Aβ levels (Baig et al., 2010).
PICALM is strongly associated with various other proteins and
alterations in its expression may influence the biological activities of
target proteins correspondingly. The interacting partners of
PICALM include; CLINT1, AP2A1, EPS15, RPS27A, CLTC,

TABLE 2 (Continued) Functional association of SORL1, PICALM, and USF1 along with interacting partner derived from the STRING database.

Protein Interacting partner Function Score

EP300 (Histone acetyltransferase p300) Functions as histone acetyltransferase and regulates
transcription via chromatin remodeling

0.912

FOSL1 (Fos-related antigen 1) Modulates cellular transformation, multiplication, and
differentiation

0.846

USF2 (Upstream stimulatory factor 2) Transcription factor that binds to a symmetrical DNA sequence
(E-boxes)

0.999

MED1(Mediator of RNA polymerase II transcription subunit 1) A coactivator involved in the regulated transcription of nearly
all RNA polymerase II-dependent genes

0.801

RFX5 (NA-binding protein RFX5) Activates transcription from class II MHC promoters 0.752

TAF7 (Transcription initiation factor TFIID subunit 7) Functions as a component of the DNA-binding general
transcription factor complex TFIID.

0.814

GTF2I (General transcription factor II-I) Acts as a coregulator for USF1 by binding independently two
promoter elements, a pyrimidine-rich initiator (Inr) and an
upstream E-box

0.958

TABLE 3 Functional distribution of SORL1, PICALM and USF1 on the basis of biological process, molecular function and cellular compartment.

SORL1 PICALM USF1

Biological
processes

Vesicle mediated transport Vesicle mediated transport Endocytosis Receptor
mediated endocytosis Plasma membrane part Positive
regulation of macromolecule metabolic process Positive
regulation of cellular metabolic process Receptor
metabolic process Cell part morphogenesis Cell
projection morphogenesis Neuron projection
development Axonogenesis Cell morphogenesis
involved in neuronal differentiation Dendrite
development Synapse

Positive regulation of macromolecule
metabolic process

Sterol metabolic process Positive regulation of cellular metabolic
process

Cholesterol metabolic process Cellular response to nutrient levels

Negative regulation of neurogenesis Coagulation

Negative regulation of beta-amyloid formation Response to hypoxia

Positive regulation of protein catabolic process Glucose homeostasis Negative regulation
to fibrinolysis

Molecular
function

Beta-Amyloid binding Phosphatidylinositol-4,5-bisphosphate 5 phosphatase
activity

Transcription factor binding

Protein transporter activity MAP Kinase activity

Beta-aspartyl-transferase activity

Cellular
Components

Early endosome Endoplasmic reticulum
Extracellular exosome

Golgi apparatus Clathrin coated vesicles Nucleoplasm

Membrane Neurofibrillary tangle Nucleus

Nuclear envelop Lumen Neuronal cell body Pre and post synaptic membrane Transcription factor complex

MicroRNA
Targets

MIR-17–5p, MIR-20A, MIR-106A, MIR106B,
MIR-20B and MIR-519D

MIR-520F
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EPN2, EPN3, UBA52, UBB and UBC. RPS27A is a fusion protein
consisting of ubiquitin and S27a (ribosomal protein) (Sayers et al.,
2018). An in silico analysis revealed the potential role of RPS27A in
neurodegenerative disorders by modulating the expression of Il-18
and Cx3cl1 (Khayer et al., 2020). The role of other target proteins is
still unclear in AD and needs further research.

Upstream transcription factor 1 (USF1), a ubiquitously expressed
gene encodes a transcription factor that stimulates the transcription of
various lipid and glucose-metabolizing genes (Lee et al., 2006) including
APOE (Salero et al., 2003). USF1 plays a significant role in abnormal
lipid aggregation (Guo et al., 2018), neuronal differentiation, and
synaptic plasticity, moreover activates the APP promoter thereby
affecting Aβ production and processing (Isotalo et al., 2012).
USF1 strongly interacts with various other proteins such as SP1,
ESR1, SMARCD3, EP300, FOSL1, USF2, MED1, RFX5, TAF7, and
GTF2I. ESR1 (Estrogen receptor 1) is implicated in ADprogression and
it is described that ESR1 mutant (rs9340803) may lead to AD by
perturbing cholesterol metabolism and accumulating amyloid beta in
the brain. Nevertheless, further studies on larger cohorts are required to
confirm the role of the ESR1 variant in AD (Li et al., 2018).

The post-translational modification data for the target
proteins revealed a significant number of predicted sites with
susceptibility towards phosphorylation, S-nitrosylation, and N
and O-glycosylation. There is ample evidence that PTMs play a
crucial role in AD pathology (Marcelli et al., 2018).
Phosphorylation of tau and amyloid beta is detected in
AD mouse models and these modifications affect the functions
of microtubules and synapses, respectively (Wang et al., 2023).

Identification and validation of these predicted PTM sites and
their pathological correlation with miR-153 targets will also provide
substantial data that will be helpful in further elucidation of
molecular mechanisms involved in AD pathology.

In this study, bioinformatics analysis predicted some of the
important AD-related targets of miR-153. The gene ontology (GO)
analysis of putative miR-153 targets revealed their important
functions relevant to AD such as regulation of Aβ formation,
negative regulation of neurogenesis, neuronal projection
development, synapse formation, and NFTs formation. miRNAs
perform their regulatory functions by affecting the target genes
therefore it is crucial to study the potential targets and their
underlying effects. This approach will facilitate the identification
of novel regulatory networks of various miRNAs in different
disease-related processes.

5 Conclusion

Our findings may aid the understanding of different molecular
mechanisms and identification of effective therapeutic targets for
AD. Further experimental studies may provide additional insights
into the regulatory role of miR-153 and its targets in the
development of AD and other neurodegenerative disorders.
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