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Background: In the precisionmedicine era, identifying predictive factors to select
patients most likely to benefit from treatment with immunological agents is a
crucial and open challenge in oncology.

Methods: This paper presents a pan-cancer analysis of Tumor Mutational Burden
(TMB). We developed a novel computational pipeline, TMBcalc, to calculate the
TMB. Our methodology can identify small and reliable gene signatures to
estimate TMB from custom targeted-sequencing panels. For this purpose, our
pipeline has been trained on top of 17 cancer types data obtained from TCGA.

Results: Our results show that TMB, computed through the identified signature,
strongly correlates with TMB obtained from whole-exome sequencing (WES).

Conclusion: We have rigorously analyzed the effectiveness of our methodology
on top of several independent datasets. In particular we conducted a
comprehensive testing on: (i) 126 samples sourced from the TCGA database;
few independent whole-exome sequencing (WES) datasets linked to colon,
breast, and liver cancers, all acquired from the EGA and the ICGC Data Portal.
This rigorous evaluation clearly highlights the robustness and practicality of our
approach, positioning it as a promising avenue for driving substantial progress
within the realm of clinical practice.
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1 Introduction

Cancer Immunotherapy aims to activate or boost patients’ adaptive or innate immune
systems to attack tumor cells. Indeed, tumor cells carry out several mechanisms to evade
their recognition and elimination by T cells. Firstly, they express the programmed cell death
ligand 1 (PD-L1), which binds the programmed death receptor 1 (PD1) on T cells, making
them inactive. Secondly, when cytotoxic T lymphocyte antigen-4 (CTLA-4), a co-inhibitory
molecule that regulates the T cell activation, interacts with its ligands (CD80 and CD86), it
inhibits T cell activity promoting immunological escape. Lastly, tumor cells can lose the
expression of both Major Histocompatibility Complex (MHC) classes, thus becoming
invisible to the host immune system. In the last few years, it has been observed that T cell

OPEN ACCESS

EDITED BY

Elisa Frullanti,
University of Siena, Italy

REVIEWED BY

Xiaotong Yao,
Foundation Medicine Inc., United States
Petros Christopoulos,
Heidelberg University Hospital, Germany

*CORRESPONDENCE

Alfredo Pulvirenti,
alfredo.pulvirenti@unict.it

†These authors have contributed equally to
this work

RECEIVED 04 September 2023
ACCEPTED 11 March 2024
PUBLISHED 05 April 2024

CITATION

Privitera GF, Alaimo S, Caruso A, Ferro A, Forte S
and Pulvirenti A (2024), TMBcalc: a
computational pipeline for identifying pan-
cancer Tumor Mutational Burden
gene signatures.
Front. Genet. 15:1285305.
doi: 10.3389/fgene.2024.1285305

COPYRIGHT

© 2024 Privitera, Alaimo, Caruso, Ferro, Forte
and Pulvirenti. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 05 April 2024
DOI 10.3389/fgene.2024.1285305

https://www.frontiersin.org/articles/10.3389/fgene.2024.1285305/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1285305/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1285305/full
https://www.frontiersin.org/articles/10.3389/fgene.2024.1285305/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2024.1285305&domain=pdf&date_stamp=2024-04-05
mailto:alfredo.pulvirenti@unict.it
mailto:alfredo.pulvirenti@unict.it
https://doi.org/10.3389/fgene.2024.1285305
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2024.1285305


therapies and monoclonal antibodies blocking the CTLA-4 and
PD1 immune checkpoints can induce durable responses across
tumors. In particular, the PD-L1 ligand has been studied since it
is commonly upregulated on several human solid tumors, including
Melanoma, Lung, and Ovarian cancers, leading to peripheral T cell
exhaustion and inhibition of apoptosis of malignant cells (Harview
et al., 2014). Immune checkpoint inhibitors enhance anti-tumor
T-cell activity by inhibiting immune checkpoint molecules. While
the immune system plays a pivotal role in neoplastic controls, its
tolerance to physiological elements must be granted by specific
signals distinguishing cancer cells from normal cells. Indeed, cancer
cells are recognized thanks to particular antigens such as tumor-
associated antigens (TAA), over-expressed in tumor cells, and
neoantigens, also called tumor-specific antigens (TSA). Usually,
these antigens are not expressed by normal cells, but they are
produced in tumor cells due to mutations in coding sequences.
For this reason, these are ideal targets for T cell-based cancer
immunotherapy. Point-mutated genes encode the majority of
these neoantigens. Identifying reliable predictive factors allowing
the selection of patients most likely to benefit from treatment with
immunological agents is still an open challenge in oncology (Hegde
and Chen, 2020; Kossai et al., 2021). Unfortunately, some patients
do not respond to immunotherapy and, in addition,
immunotherapy could lead to unpleasant side effects such as skin
rash, colitis, hepatotoxicity, pneumonitis, endocrinopathies, and
autoimmune diseases (Golshani and Zhang, 2020). The
biomarkers used in cancer immunotherapy include PD-L1 and
PD-L2 expression levels, microsatellite instability (MSI) status,
neoantigen presence, and Tumor Mutational Load or Tumor
Mutational Burden (TMB) (Shu et al., 2020).

In the past years, the most used biomarker to decide
immunotherapy was immunohistochemistry’s evaluation of PD-
1/PD-L1 protein expression. However, this biomarker is
challenging to interpret. Hence, TMB has been considerably
studied as a biomarker in recent years. TMB is defined by
counting all the mutations found in a tumor sample divided by
the total length of the sequenced sample in DNA Megabase (Mb).
Many mutations in a tumor harbor more neoantigens, making them
targets of activated immune cells. In addition, the mutation number
and DNA structural alterations lead to the production of foreign
proteins recognizable by the immune system. Therefore, establishing
the mutational load in cancer cells would allow identifying those
patients who can benefit significantly from this type of therapy
compared to conventional chemotherapy treatment. However, there
is no standardized specific value to decide which is a high TMB
(H-TMB) or a low TMB (L-TMB) level (Lawrence et al., 2013;
Stenzinger et al., 2019). Few commercial and free pipelines have
been implemented to analyze the TMB. In 2020 Yao et al. developed
ecTMB to predict TMB using a statistical model to correct the panel
design biases (Yao et al., 2020). Commercial solutions for the TMB
calculation include Illumina (Illumina, 2021), ThermoFisher
(Thermofisher, 2021), Qiagen (Qiagen, 2021), and Q2 Solutions
(Q2solution, 2021). These solutions have been created specifically to
calculate TMB in the clinical setting. However, their actual workflow
is not known. The commercial tools (approved by FDA)
recommended to establish the TMB are The FoundationOne
CDx assay and the MSK-IMPACT (Memorial Sloan Kettering
Cancer Center) panel, which have been authorized by the 510k

pathway (Food U and Administration D, 2017b; Food U and
Administration D, 2017a; Klempner et al., 2020).

Concerning cancer types, Melanoma has the highest mutation
rate and the highest number of neoantigens (Snyder et al., 2014).
Therefore, immunotherapy represents a common choice for its
treatment. However, high-impact cancer disease on the lungs
(Rizvi et al., 2015), prostate, colorectal (Stein et al., 2018), and
breast could also benefit from this therapy. Monoclonal antibodies
have shown promising efficacy against programmed death 1 (PD-1),
such as Pembrolizumab for gastrointestinal (GI)-related cancer (Doi
et al., 2018), or Nivolumab a PD-1 inhibitor used for patients with
hepatocellular carcinoma (El-Khoueiry et al., 2017). Some
monoclonal antibodies have already been used in angiogenesis
for CRC, and there are two approved immune checkpoint
inhibitors targeting PD-1 (pembrolizumab and nivolumab) used
after progressed chemotherapy. In Cercek et al. (2022), authors show
that 12 patients with advanced rectal cancer treated with single-
agent PD-1 blockade had a complete clinical response, with no
evidence of tumor on magnetic resonance imaging.

The gold standard to measure the TMB is the Whole Exome
Sequencing (WES) analysis with tumor and normal samples. WES
analysis, however, has a high cost and requires extensive data
management. Indeed, two samples are needed to discard
germline mutations. Unfortunately, the availability of these
matched samples in clinical practice varies across organizations.
Germline variants in tumor-only sequencing can be filtered out
using available databases. Still, this procedure needs a high level of
standardization for each type of tumor and each population
(Meléndez et al., 2018). Therefore, to go beyond such a
limitation, targeted panels are under investigation (Campesato
et al., 2015; Johnson et al., 2016) to speed up the analysis and
keep high precision and sensitivity. Some authors recommend using
targeted gene panels, ideally with 1 Megabase as the lower bound
limit to yield reliable TMB estimation (Allgäuer et al., 2018;
Buchhalter et al., 2018; Endris et al., 2018).

Furthermore, differential expression genes (DEGs) analysis has
clarified genes’ role in cancer patients between high and low TMB
patients. Comparing tumor and normal colon samples, Gao et al.
(2018) found that DEGs were mainly involved in protein transport,
apoptotic, and neurotrophin signaling pathways. Wang et al. (2020)
screened the TCGA-BRCA dataset splitting patients in TMB high and
TMB low and analyzed them with the Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Gene Ontology (GO) databases. They
found that DEGs were primarily enriched in epidermis development,
extracellular matrix, and receptor-ligand activity among Biological
processes, Cellular Components, and Molecular Functions,
respectively. Zhang et al. (2020) found that differential genes were
involved in catalytic activity in bladder urothelial carcinoma, acting on
DNA, single−stranded DNA−dependent ATPase activity. Moreover,
TMB enrichment of related signatures correlated with multiple
cancer-related crosstalks, including cell cycle, DNA replication,
cellular senescence, and p53 signaling pathway.

This study presents a Docker-based pipeline designed for pan-
cancer applications, specifically aimed at computing the Tumor
Mutational Burden (TMB) in DNA-Seq samples. Leveraging data
from The Cancer Genome Atlas (TCGA), our research delves into
the prospect of stratifying patients’ TMB using different approaches
with the aim of identifying a small pan-cancer mutational signature
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allowing to effectively predict the actual TMB. Through our
computational model, we identified a small signature composed
of 389 genes showing a strong differential mutation rate between
high and low TMB patients. Our findings reveal that such a signature
effectively stratifies patients without necessitating Whole Exome
Sequencing (WES), thus establishing its suitability for clinical
contexts. We have rigorously validated its reliability, employing
multiple independent datasets from TCGA and the European
Genome Archive (EGA).

To further analyze the implications of this gene signature, we
conducted a functional analysis for both the High TMB (H-TMB)
and Low TMB (L-TMB) groups. Remarkably, our results highlight
either the perturbation of several immunity-related pathways and the
enrichment ofmany immune-involved Transcription Factors, shedding
light on the potential biological significance of our findings.

2 Materials and methods

The forthcoming sections present an in-depth description of our
methodology, delineating the comprehensive pipeline that integrates
both upstream and downstream analyses. Our entire approach was
constructed upon the foundation of the TCGA Harmonized Cancer
Dataset, and its efficacy was rigorously examined across several
independent datasets sourced from the EGA.

2.1 Datasets

We downloaded raw Colon adenocarcinoma samples used as our
study’s primary tumor. BAM cancer and normal tissue biopsy files were
analyzed for each sample, extracting the somaticmutations. All analyses
have been repeated for five thresholds. Other analyzed solid cancer
types were: Ovarian serous cystadenocarcinoma (OV, n= 441); Cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC, n=
305); Thyroid carcinoma (THCA, n = 496); Bladder Urothelial
Carcinoma (BLCA, n = 412); Uterine Corpus Endometrial
Carcinoma and Uterine Carcinosarcoma (UCEC and UCS, n =
628); Esophageal carcinoma (ESCA, n = 181); Kidney renal papillary
cell carcinoma (KIRP, n = 288); Kidney renal clear cell carcinoma
(KIRC, n = 339); Liver hepatocellular carcinoma (LIHC, n = 415);
Stomach adenocarcinoma (STAD, n = 450); Pancreatic
adenocarcinoma (PAAD, n = 183); Prostate adenocarcinoma
(PRAD, n = 497); Adrenocortical carcinoma (ACC, n = 240); Skin
Cutaneous Melanoma (SKCM, n = 466); Lung Squamous Cell
Carcinoma (LUSC, n = 494); Lung Adenocarcinoma (LUAD, n =
512). For these cancers, we directly downloaded the VCF files
supplied by TCGA.

To test our signature we employed six independent datasets.
These comprise 126 Colon Cancer WES obtained from TCGA;
72 colon WES samples from Genentech (Seshagiri et al., 2012);
42 samples taken from Colonomics (Díez-Villanueva et al., 2022);
101 Breast Cancer WES samples obtained from dbGaP (NCBI,
2021); 291 colon samples from COCA-CN study taken from
ICGC (Zhang et al., 2019) and 338 samples from LINC-JP taken
from ICGC. The first three datasets were analyzed with our pipeline
starting from the BAM files. While, the somatic mutation files of the
latter two, from ICGC, have been directly annotated using Annovar.

2.2 The upstream pipeline

The TMBCalc pipeline (see Figure 1) has been implemented in
Bash and R. It computes the TMB, yielding as output (i) the TMB
value and (ii) a list of the mutations implicated in its calculation. The
source code and user manual are available at https://github.com//
knowmics-lab/TMBCalc. In addition, the containerized software
can be downloaded with Docker through the DockerHub
Container Image Library tmbcalc.

Our pipeline comprises five modules:

1. Alignment: WES BAM files are converted in FASTQ with the
“bam2fq” command [Samtools (Li et al., 2009)]. Next, FASTQ
files are aligned with Bowtie 2 (Langmead and Salzberg, 2012)
using the hg38 Genome assembly gathered from NCBI.

2. BAM Processing: First, each BAM file is modified by adding a
read group to each sequencing read using the
“AddOrReplaceReadGroups” command in Picard tool
(Picard toolkit, 2018). Then, all reads are sorted by genomic
coordinate [“SortSam” command (Picard toolkit, 2018)] and
contig ordering [“ReorderSam” command (Picard toolkit,
2018)]. Finally, duplicates are identified and removed
[“MarkDuplicates” command (Picard toolkit, 2018)].

3. Variant calling: Gatk (v4.2.5.0) Mutect2 (McKenna et al., 2010)
is employed to perform variant calling. In this step, all
mutations labeled as “PASS” were retained. Furthermore, we
run a second variant calling using the “somatic” and
“somaticFilter” commands of VarScan (v2.4.4) (Koboldt
et al., 2012) (min-var-freq = 10). This dual-phase procedure
allows us to get a more precise variant calling by intersecting
the two VCF output files.

4. Annotation: In this step, we remove all variants known to be
unusable for computing TMB (Chalmers et al., 2017).
Therefore, first, we annotate all inferred mutations with
Annovar (Wang et al., 2010; Yang and Wang, 2015). The
following databases are used: 1000genome (2015_08)
(Consortium et al., 2015), snp146 (Sherry et al., 2001),
cosmic88 (Tate et al., 2018), NHLBI Exome Sequencing
Project (ESP6500) (Nhlbi go exome sequencing project,
2021). Then, variants that present annotations in these
databases are filtered out, yielding a file containing only
mutations valid for the TMB computation.

5. TMB calculation: This step produces two outputs: (i) the TMB
value and (ii) the list of contributing variants. Although the
TMB is commonly defined as “the number of the counted non-
synonymous mutations that alter the amino acid sequence of a
protein,” we also decided to include synonymous ones,
following (Chalmers et al., 2017; Klempner et al., 2020),
since this inclusion might improve sensitivity. Furthermore,
such mutations are indicative of a mutational process.
Therefore, the TMB has been computed as

TMB � #mutations

GenomeSize
(1)

where #mutations is the number of mutations identified in the
sample, and the genome size is 38 MB (Chalmers et al., 2017).

Given the absence of well-defined TMB thresholds, our analyses
incorporated numerous values documented in existing literature
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pertaining to colon cancer. The selected thresholds were as follows:
5 mutations per megabase (5mut/Mb), 10 mutations per megabase
(10mut/Mb), 20 mutations per megabase (20mut/Mb) as referenced
in (Chalmers et al., 2017) mutations per megabase (25.29mut/Mb)
calculated using the formula TMB + 1.25 × IQR(TMB) as outlined
in (Fernandez et al., 2019), where IQR is the Interquartile range, and
34.66 mutations per megabase (34.66mut/Mb) as cited in (Wu
et al., 2019a).

2.3 The Downstream pipeline

To create a gene signature panel suitable for the TMB analysis, our
study started from the “AmpliSeq for Illumina Comprehensive
Cancer Panel” - a pre-built Illumina panel of length 1.7 Mb, that
covers all exons of 409 cancer-associated genes. To derive the size of
each gene we make use of the R package EDAseq (Risso et al., 2011)
with the “getGeneLengthAndGCContent” function. We measured its
discriminant power in identifying patients with high and low TMB.

Next, we investigated the predictive efficacy of custom panels by
conducting two parallel analyses. Initially, we curated sets of
randomly selected genes, varying in size (50, 100, 200, and
300 genes), featuring mutations from WES data obtained from
colon cancer patients. This process was iterated 1,000 times for
each panel size to ensure robustness. Subsequently, we replicated the
analysis using the most commonly mutated genes observed in colon
cancer WES data, thus constructing panels comprising 50, 100, 200,
300, 409, and 500 genes. The primary objective was to juxtapose
panels derived from randomly selected genes against those enriched
with frequently mutated ones, thereby facilitating a comparative
assessment of their predictive capabilities.

Subsequently, we constructed a concise signature by carefully
selecting the top 10 most frequently mutated genes across 17 distinct
cancer types. This curation resulted in a signature comprising
44 genes (refer to Supplementary Table S1), encompassing a
genomic length of 1.05 Mb.

Finally, we devised a panel comprising genes exhibiting a noteworthy
discrepancy inmutational signatures between high and lowTMB (Tumor

Mutational Burden) patients. To achieve this objective, we employed the
following methodology. Initially, for each cancer type, we calculated the
mutation rate per kilobase (kb) of each gene gi in each patient Pj, denoted
as MutationRate(gi,Pj), using the formula:

MutationRate gi, Pj( ) � M gi, Pj( )
length gi( )

× 1000 (2)

whereM(gi, Pj) is the number of mutations for gene gi in patient Pj
and length(gi) is the length of gene gi in bases.

Subsequently, we compared the gene mutation rates between
H-TMB and L-TMB patients against the expected rates. A significant
deviation from the expected value suggested that such differences could
not be solely attributed to gene length. To ascertain the statistical
significance of such differences, we conducted Mann-Whitney tests
and corrected the p-values for multiple hypotheses using the
Benjamini–Hochberg False Discovery Rate (FDR) method. Then, for
each statistically significant gene gi, we computed its rank as the difference
between the expected gene mutation rates in H-TMB and L-TMB:

rank gi( ) � EH−TMB MutationRate gi, Pj( )[ ]

− EL−TMB MutationRate gi, Pj( )[ ] (3)

Finally, we aggregated the rankings of all genes (one from each
cancer type) and selected the top k genes to approximate a total size
of 1 Mb (1.08 Mb). This methodology enabled us to construct a
signature composed of 389 genes, facilitating robust analysis
and inference.

3 Results

For each panel, we conducted a comprehensive data analysis
involving the computation of correlation and logistic regression. In
particular, we started annotating the mutated genes in all samples
using the “RefSeq gene” Annovar database (Pruitt et al., 2012); after
that, we correlated, using Pearson, the TMB calculated using WES
with the one calculated using our custom gene signatures and the
“AmpliSeq for Illumina Comprehensive Cancer Panel”; finally, we

FIGURE 1
Bioinformatics pipeline: upstream and downstream analysis.
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classified the patients using the R package caret (caret, 2016)
employing the 10-fold cross-validation procedure to measure
gene signatures reliability and calculating measures such as
sensitivity (TPR), specificity (TNR), Positive Predictive Value
(PPV), Negative Predictive Value (NPV).

3.1 Mutational Burden on custom
gene panels

We conducted a comprehensive analysis of custom gene panels
to compute the Tumor Mutational Burden (TMB), comparing their
performance with whole-exome sequencing (WES) data. As
anticipated, increasing the number of genes in the signature
naturally boosts the correlation. Notably, even a modest set of
50 randomly selected genes exhibits a strong correlation with
WES-derived TMB (refer to the Correlation column of Table 1).
Upon stratifying patients into High-TMB (H-TMB) and Low-TMB
(L-TMB) groups using a threshold of 20 mutations per megabase
(mut/Mb), the correlation notably diminishes within the L-TBM
class (see Table 1). The 500-gene panel maintains a robust
correlation within the L-TMB class, albeit its larger size of
6.44 Mb justifies this correlation. Remarkably, our results reveal
that a 389-gene signature maintains a high correlation within the
L-TMB class despite its smaller size of 1.08 Mb (refer to
Supplementary Tables S1, S2 for additional threshold analyses).

Furthermore, we investigated the predictive capability of these
panels. We categorized the actual TMB derived from WES into two

classes, H-TMB and L-TMB, based on a 20 mut/Mb threshold (see
Supplementary Material for alternative thresholds). This
categorization was then utilized for logistic regression analysis.
Table 1 presents the classification outcomes, demonstrating that
TMB calculated with the gene panels effectively aligns with WES
data. Particularly noteworthy is the performance of the 389-gene
signature, which outperforms others when normalized by
signature length.

3.2 In-silico 389 genes signature validation

We extended our analysis to the entire TCGA cancer dataset,
focusing on the 389 genes signature panel. As depicted in Table 2,
the Pearson correlation across all tumors exceeds 85%. Notably, the
correlation within the High-TMB (H-TMB) and Low-TMB
(L-TMB) groups surpasses that of the 44-gene panel (see
Supplementary Material). Additionally, employing logistic
regression allowed us to establish precision and recall metrics.
Across all tumors, we observed minimal occurrences of False
Positives and False Negatives, with a consistently high Specificity
exceeding 0.90 Figure 2.

We also validated the panel’s performance across six
independent datasets (see Table 3):

• 126 TCGA COAD samples that were not utilized in creating
the signature. Their correlation stands at 0.95 for H-TMB and
0.85 for L-TMB.

TABLE 1 For each random group of panels, we have calculated the average values of the follwing quantities: panel length, correlation, precision, recall,
specificity and negative predicted value. For other gene panels,we have calculated their correlation, precision, recall, sensitivity and negative predicted
value. The threshold used was 20mut/Mb. The table also reports the confusion matrix of each experiment.

Number
of genes

and
panel
length

Pearson
correlation

H-TMB
correlation

L-TMB
correlation

PPV TPR TNR NPV TP FP TN FN

50
0.27 R 0.94 0.90 0.31 0.95 0.79 0.96 0.95 9.4 0.5 46.5 2.5

1.08 H 0.97 0.95 0.81 1 1 1 1 12 0 47 0

100
0.55 R 0.97 0.94 0.42 0.98 0.88 0.99 0.97 10.63 0.23 46.77 1.37

1.80 H 0.98 0.97 0.86 1 1 1 1 12 0 47 0

200
1.09 R 0.98 0.97 0.54 0.99 0.94 1 0.98 11.27 0.07 46.93 0.73

3.05 H 0.98 0.97 0.88 1 1 1 1 12 0 47 0

300
1.64 R 0.99 0.98 0.62 1 0.95 1 0.99 11.44 0.02 46.98 0.56

4.28 H 0.99 0.98 0.90 0.91 1 1 1 12 0 47 0

409
5.49 H 0.99 0.98 0.92 1 1 1 1 12 0 47 0

1.7 A 0.93 0.88 0.56 1 1 1 1 12 0 47 0

500 6.44 H 0.99 0.98 0.93 1 1 1 1 12 0 47 0

44 1.05 C 0.97 0.96 0.74 1 0.83 1 0.96 10 0 47 2

389 1.08 C 0.97 0.96 0.82 1 1 1 1 12 0 47 0

The bold values in Table 1 refer to the highest values.
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• 72 samples from Genentech exhibit a high level of correlation
between TMB calculated with WES and the signature gene
panels. This correlation is 0.95 for the H-TMB patients and
0.87 for the L-TMB ones.

• 291 COCA-CN colon cancer samples from EGA demonstrate
an excellent correlation between TMB calculated on the WES
and the gene panels (0.99). This correlation persists within the
H-TMB group, while the L-TMB group has a correlation
coefficient equal to 0.8.

• 42 colon cancer samples from Colonomics show a Pearson
correlation of 0.69. However, since all patients have Low
TMB, we could not determine a correlation for the
H-TMB group.

• dbGaP, consisting of 101 breast cancer samples, shows a
Pearson correlation of 0.89. Upon splitting the samples
into H-TMB and L-TMB with a threshold of 10 mut/Mb,
the panel exhibits a correlation of 1 for H-TMB and
0.86 for L-TMB.

• 338 Liver-JP samples from ICGC show that although the
H-TMB correlation coefficient is as high as in colon cancer,
the L-TMB decreases to 0.73. Despite this decrease, the
correlation level can still be considered moderate.

Therefore, we can conclude that the 389 gene panel is a
promising solution to assess the TMB with reasonable accuracy
for many cancer types. Furthermore, due to the relatively small
size, it could speed up the TMB analysis, cutting the costs while
reaching in principle the same results as WES (see
Supplementary Table S5 for the same analysis on the
44 genes panel).

3.3 Signature functional analysis

We conducted a comprehensive functional analysis using the 389-
gene signature. Differential Expression Analysis (DEGs) was performed
on TCGA RNA-seq data by using the raw counts (HTSeq-Counts) for
the 389 genes of the panel. We collected the expression data with
TCGAbiolinks (Colaprico et al., 2015; Silva et al., 2016; Mounir et al.,
2019) and performed the analysis with Limma (Ritchie et al., 2015).
Genes were considered differentially expressed if |log2FC|≤ log2(1.5)
and adjusted p-value <0.05. Pathway perturbation and enrichment
analysis were conducted using MITHrIL (Alaimo et al., 2016; Alaimo
et al., 2017). Additionally, gProfiler2 (Kolberg et al., 2020) was employed
for gene set enrichment analysis.

The comparative analysis between H-TMB and L-TMB patients
across 17 tumors helped to elucidate differences in enriched pathways.
Our investigation yielded significant outcomes emphasizing pathways
intricately linked with immune and inflammatory responses. As
depicted in Figure 3, we show substantial immune pathways,
including (i) the Cytosolic DNA-sensing pathway, which exhibited
upregulation inH-TMB patients, indicating innate immunity activation
and serving as a potential adjuvant for anticancer immune therapy (Yu
and Liu, 2021); and (ii) the defensins pathway, also upregulated, known
for its role as immunomodulators and attractors of immune cells
(Contreras et al., 2020).

Furthermore, enrichment analysis conducted using gProfiler2
3 highlighted a significant presence of Transcription Factors (TFs)
within our 389 gene signature. This enrichment suggests that these TFs
likely play pivotal roles in regulating the expression of these genes.
Understanding the impact of these TFs on the immune system holds
crucial implications. For instance, NF-κB, AP-1, IRF, and GATA3,

TABLE 2 Correlation, Precision, and Recall of each TCGA tumor between TMB analyzed with the panel built with the 389 and WES TMB using threshold
20 mut/Mb.

Pearson Pearson H-TMB Pearson L-TMB PPV TPR TNR NPV TP FP TN FN

UCEC-UCS 0.98 0.98 0.80 1.00 0.93 1 0.95 42 0 62 3

STAD 0.97 0.96 0.84 0.82 0.87 0.95 0.97 14 3 63 2

SKCM 0.98 0.98 0.86 0.91 0.86 0.90 0.95 44 4 37 7

BLCA 0.95 0.96 0.85 1.00 0.78 1 0.97 7 0 72 2

CESC 0.99 0.99 0.80 1 1 1 1 8 0 51 0

LUSC 0.93 0.91 0.82 0.78 0.5 0.96 0.86 11 3 73 11

LUAD 0.97 0.91 0.82 0.77 0.96 0.91 0.98 23 7 70 1

LIHC 0.93 0.86 0.83 0.5 0.50 0.99 0.99 1 1 76 1

THCA 0.99 1 0.86 0.67 1 0.99 1 2 1 95 0

OV 0.91 0.86 0.83 0.75 0.43 0.97 0.90 3 1 35 4

ESCA 0.90 0.92 0.82 - 0.75 1 0.88 0 0 32 4

PRAD 0.99 1 0.67 - 0 1 0.99 0 0 97 1

PAAD 0.99 1 0.76 1 1 1 1 1 0 34 0

KIRC 0.99 1 0.70 - 0 1 0.98 0 0 67 1

KIRP 0.87 0.97 0.81 - 0 1 0.98 0 0 56 1

ACC 0.98 1 0.88 1 1 1 1 1 0 43 0

The table also reports the True Negative Rate, Negative Predicted Value, and the confusion matrix for each cancer type.
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prominent regulators of immune responses, govern the expression of
genes involved in inflammation, cytokine production, cell
differentiation, and immune cell activation. By comprehending the
regulatory mechanisms of these TFs on immune-related genes, valuable
insights can be gained into immune responses against pathogens,
antigens, and environmental stimuli. For example, GATA3 is critical
in differentiating T helper 2 (Th2) cells, which produce cytokines crucial
for allergic responses and immune regulation. Moreover, the interplay
between Transcription Factors, including NF-κB, AP-1, IRF, and
GATA3, often involves intricate interactions with each other and
with other TFs to orchestrate coordinated immune responses.

4 Discussion

The immune response holds considerable promise in combating
tumors. However, as tumors progress, they evolvemechanisms to evade
detection by the immune system, often by producing a range of
inhibitory molecules. Immunotherapy, leveraging immune
checkpoint inhibitors, works to remove these brakes on the immune
response. Tumors harboring a higher load of neoantigens and
mutations tend to derive greater benefit from this approach, as they
can provoke a more robust immune response. Identifying patients who
are suitable candidates for immunotherapy relies heavily on Tumor

FIGURE 2
gProfiler2 Functional Analysis.

TABLE 3 Correlation, precision, and recall between TMB computed with WES and 389 genes panel using thresholds 20mut/Mb for each cancer except
dbGaP where the threshold was 10 mut/Mb.

Pearson correlation Pearson H-TMB Pearson L-TMB PPV TPR TNR NPV TP FP TN FN

Genentech 0.94 0.95 0.87 1 1 1 1 2 0 11 0

Colonomics 0.69 - 0.69 - - - - - - 8 -

Li-JP 0.99 0.99 0.73 0.87 0.87 0.68 0.68 42 6 13 6

TCGA 126 COAD 0.97 0.95 0.85 0.75 1 0.95 1 3 1 20 0

dbGap* 0.89 1 0.86 - 0 1 0.95 0 0 18 1

COCA 0.99 0.99 0.80 0.89 0.62 1 0.94 5 0 50 3

The table also reports the True Negative Rate, Negative Predicted Value, and the confusion matrix for each cancer type.
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Mutational Burden (TMB) assessment. The computation and analysis
of TMB necessitate sophisticated Next-Generation Sequencing (NGS)
techniques and advanced bioinformatics expertise. Efforts within the
scientific community are directed towards streamlining this process for

clinical application. By obtaining a molecular portrait of the tumor,
precision medicine approaches in immunotherapy can be realized.

Currently, Whole Exome Sequencing (WES) remains the
preferred method for TMB computation, although there are

FIGURE 3
Functional Analysis. Heatmap of Perturbated Pathways with p ≤ 0.05, analyzed with MITHrIL in the 389 genes signature.
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several panel-based alternatives available to expedite the
analysis. Notably, two such panels have already received FDA
approval. We have highlighted the utility of the AmpliSeq for
Illumina Comprehensive Cancer Panel as a novel tool for TMB
analysis. This panel, commonly utilized in laboratories for
identifying variants across various cancer types, offers the
advantage of incorporating additional markers for cost-
effective TMB evaluation. This parallels the trend seen in
some NGS panels, which now include assessment markers for
Microsatellite Instability (MSI). While cancer-specific panels
may offer improved accuracy for TMB estimation, a unified
panel for multiple analyses presents a more cost-effective and
flexible solution for laboratories dealing with diverse tumor
types. Wu et al. (2019b) note that currently available Next-
Generation Sequencing (NGS) panels can accurately assess
Tumor Mutational Burden (TMB) only within specific cancer
types. They emphasize the importance of relying on accuracy
rather than correlation when evaluating panel performance.
Notably, existing TMB commercial panels have been
evaluated solely based on correlation, achieving coefficients
of 0.74 for the FDA-approved FoundationOne CDx Panel
and 0.76 for the MSK-IMPACT panel (Chalmers et al., 2017;
Zehir et al., 2017; Wu et al., 2019b).

Our analysis emphasizes an alternative method for stratifying
patients for immunotherapy by utilizing our 389 gene panel. Our
panel, assessed across 17 tumor types, exhibits higher correlation
coefficients (refer to Table 2 and Supplementary Table S4) and
demonstrates favorable outcomes in regression analysis
measured by Precision/Recall. The genesis of our 44 gene
panel stemmed from identifying the top-10 most mutated
genes in colon cancer. These genes, consistently highlighted in
various studies as highly mutated (Kang et al., 2020a), have been
subject to extensive functional investigations. For instance, Jia
et al. (2019) established that mutations in TTN predict elevated
TMB and increased response rates to Immune checkpoint
blockade immunotherapy. Additionally, they observed
favorable clinical outcomes correlated with TTN mutations.
Furthermore, within the 389 gene signature panel, we
identified genes such as (i) ACE2, recognized for its
involvement in innate immunity; (ii) TRIM51, which exhibits
increased expression in patients with high immune cell
infiltration (Chen et al., 2022); (iii) SERPINB4, whose high
mutation frequency correlates with improved survival post-
immunotherapy in melanoma patients (Riaz et al., 2016); and
(iv) ADAM2, whose expression enhances the cytotoxicity of
CD8 T-cells (Dervovic et al., 2023). These findings underscore
the potential of our panel not only for TMB assessment but also
for uncovering crucial immunoregulatory mechanisms
underlying tumor response to therapy.

Building upon the insights of Wang et al. (2020) and Kang et al.
(2020b), our analysis delved into the identification of Differentially
Expressed Genes (DEGs) between the two Tumor Mutational
Burden (TMB) groups, elucidating their impact on signaling
pathways. Our findings revealed perturbations in numerous
immunity pathways, highlighting the significance of our signature in
modulating immune and inflammatory responses. Consequently,
mutations in these genes or alterations in their activity are likely to

exert a substantial influence on immune responses, thereby affecting the
efficacy of immunotherapy interventions.

5 Limitations of the study

The main limitation of our study is the lack of patients who
have undergone immunotherapy to understand better our panel
role in predicting its clinical outcome, in a future work we aim
to investigate those data. Moreover, the lack of standardization
for the TMB thresholds makes determining the best one for each
cancer type impossible. Indeed, clinical trials are needed to
confirm our data.
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